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Abstract: Missing item responses are frequently found in educational large-scale assessment studies.
In this article, the Mislevy-Wu item response model is applied for handling nonignorable missing
item responses. This model allows that the missingness of an item depends on the item itself and a
further latent variable. However, with low to moderate amounts of missing item responses, model
parameters for the missingness mechanism are difficult to estimate. Hence, regularized estimation
using a fused ridge penalty is applied to the Mislevy-Wu model to stabilize estimation. The fused
ridge penalty function is separately defined for multiple-choice and constructed response items
because previous research indicated that the missingness mechanisms strongly differed for the two
item types. In a simulation study, it turned out that regularized estimation improves the stability of
item parameter estimation. The method is also illustrated using international data from the progress
in international reading literacy study (PIRLS) 2011 data.

Keywords: Mislevy-Wu model; missing data; nonignorable missingness; missing not at random;
item response model; regularized estimation

1. Introduction

In educational large-scale assessment (LSA) studies [1,2], such as the progress in
international reading literacy study (PIRLS; [3]), the trends in international mathematics
and science study (TIMSS; [4]), or the programme for international student assessment
(PISA; [5]), students’ abilities are assessed using cognitive test items. Often, however,
students do not respond to specific items leading to missing item responses [6]. It is not
obvious how item nonresponse [7] should be treated in the computation of values of
abilities (i.e., values of the latent trait) in item response theory (IRT) models [8–10] that are
used as scaling models.

Researchers frequently argue for applying complex IRT models that model missing
item responses in order to avoid biased item parameters [6,11]. If students omit items,
the most obvious option would be treating them as either wrong or missing, which effec-
tively means removing them from the estimation. In the latter case, missing item responses
are simply ignored. Slightly more complex treatments assume that missing item responses
can be ignored when conditioning on further latent variables (i.e., latent ignorability; [12]).
However, it has been shown that these kinds of models do not adequately fit typical LSA
datasets [13]. Recently, the Mislevy-Wu (MW) model received some attention [7,13–16] that
relaxes the strict assumption that missingness on item responses should either be treated as
wrong or latent ignorable. However, the MW model tends to produce unstable parameter
estimates if the missingness parameters are estimated item-specific. To circumvent this
issue, this paper proposes a regularized estimation approach to the MW model to stabilize
parameter estimation.

The decision of how to score missing item responses in LSA studies is a delicate one.
On the one hand, students might omit item responses because of a lack of motivation.
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On the other hand, students could simply not know the correct answer and therefore do
not deliver an item response. Even if students have only low motivation to respond to
an item in LSA studies, it could be generally questioned whether item omissions should
not be scored as wrong. Treating item omission as wrong might induce a strategy for
students to only respond to those items that they do know with sufficient confidence.
Introducing different item selection (or solution) strategies would undoubtedly impact the
interpretation of results in an LSA study. Hence, one can conclude that the decision on
how to score item responses is not (mainly) a statistical one [17]. Nevertheless, we use the
regularized MW model in this paper to explore potential causes of missing item responses
and the consequences of different missing data treatments.

The rest of the article is structured as follows. The regularized MW model is introduced
in Section 2. Section 3 presents results from a simulation study that investigates the
performance of regularized estimation of the MW model. In Section 4, an empirical
example involving PIRLS 2011 data is provided. Finally, the article closes with a discussion
in Section 5.

2. Mislevy-Wu Model

In this section, we review missing data terminology and introduce the regularized
MW model for handling nonignorable missing item responses.

A vector of item responses for person p is denoted by Xp. In the presence of missing
values, we decompose Xp into Xp = (Xobs,p, Xmis,p), where Xobs,p denotes the observed
and Xmis,p the missing item responses. Let Rp denote the vector of response indicators
whose values are 1 if an item is observed and 0 if it is missing. We can factorize the joint
distribution of Xp and Rp as

P(Rp, Xobs,p, Xmis,p) = P(Rp|Xobs,p, Xmis,p)P(Xobs,p, Xmis,p) (1)

Missing data literature distinguishes different missingness mechanisms regarding the
assumptions of the conditional distribution P(Rp|Xobs,p, Xmis,p) (see [18,19]). The most
important distinction is between missing at random (MAR; [20]) and missing not at random
(MNAR). MAR holds if

P(Rp|Xobs,p, Xmis,p) = P(Rp|Xobs,p). (2)

If (2) is violated, the missing data are MNAR. Based on the MAR assumption in (2),
we can integrate out the missing data Xmis,p and obtain∫

P(Rp|Xobs,p, Xmis,p)P(Xobs,p, Xmis,p)dXmis,p = P(Rp|Xobs,p)
∫

P(Xobs,p, Xmis,p)dXmis,p (3)

The crucial point is that the factor P(Rp|Xobs,p) does not depend on missing data
Xmis,p, which is the reason why likelihood-based inference can rely on the observed data
by parametrizing the distribution

∫
P(Xobs,p, Xmis,p)dXmis,p. If the model parameters of

the two factors are distinct [18], missing data are denoted as ignorable. Hence, we also
label the MAR assumption (2) as manifest ignorability (MI).

Latent ignorability (LI; [21–27]) is one of the weakest nonignorable missingness
mechanisms. LI weakens the assumption of ignorability for MAR data. In this case,
the existence of a latent variable ηp is assumed. The dimension of ηp is typically much
lower than the dimension of Xp. LI is formally defined as (see [27])

P(Rp|Xobs,p, Xmis,p, ηp) = P(Rp|Xobs,p, ηp). (4)

That is, the probability of missing item responses depends on observed item responses
and the latent variable ηp, but not the unknown missing item responses Xmis,p itself.
By integrating out Xmis,p, we obtain
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∫
P(Rp|Xobs,p, Xmis,p, ηp)P(Xobs,p, Xmis,p|ηp)dXmis,p dηp =

∫
P(Rp|Xobs,p, ηp)P(Xobs,p, Xmis,p|ηp)dXmis,p dηp (5)

Specification (4) is also known as a shared-parameter model [28,29]. In most ap-
plications, conditional independence of item responses Xpi and response indicators Rpi
conditional on ηp is assumed [27]. In this case, Equation (5) simplifies to

∫
P(Rp|Xobs,p, Xmis,p, ηp)P(Xobs,p, Xmis,p|ηp)dXmis,p dηp =

∫ I

∏
i=1

[
P(Rpi = rpi|ηp)P(Xpi = xpi|ηp)

rpi
]

dηp . (6)

In the rest of this paper, it is assumed that the latent variable ηp consists of a latent
ability θp and a latent response propensity ξp. The latent response propensity ξp is a
unidimensional latent variable that represents the dimensional structure of the response
indicators Rp.

The IRT model of interest follows a two-parameter logistic (2PL) model [30]:

P(Xpi = 1|θp) = Ψ(ai(θp − bi)) , (7)

where Ψ is the logistic link function, ai represents item discriminations, and bi represents
item difficulties.

Regularized Mislevy-Wu Model

For allowing nonignorable missing item responses, the conditional distribution
P(Rpi = 1|Xpi = x, θp, ξp) must be specified. The conditional probability of a missing
item response in the MW model [13,14,16,31–33] is defined as

P(Rpi = 1, Xpi = x|θp, ξp) = Ψ(ξp − βi − ρix) for x = 0, 1 . (8)

The total probability of a missing item response is given by

P(Rpi = 0|θp, ξp) = P(Rpi = 1, Xpi = NA|θp, ξp) =
1

∑
x=0

P(Rpi = 1, Xpi = x|θp, ξp) . (9)

By combining (8) and (9), we get

P(Xpi = x, Rpi = r|θp, ξp) =



[
1−Ψ(ai(θp − bi))

]
Ψ(ξp − βi) if x = 0 and r = 1,

Ψ(ai(θp − bi))Ψ(ξp − βi − ρi) if x = 1 and r = 1,

Ψ(ai(θp − bi)Ψ(ξp − βi − ρi) +
[
1−Ψ(ai(θp − bi))

]
Ψ(ξp − βi) if x = NA and r = 0.

(10)

Note that the model defined in Equation (10) can be interpreted as an IRT model
for a variable Upi that has three categories: Category 0 (observed incorrect): Xpi = 0,
Rpi = 1, Category 1 (observed correct): Xpi = 1, Rpi = 1, and Category 2 (missing item
response): Xpi = NA, Rpi = 0 (see [34,35]). The marginal distribution P(Xpi = x|θp, ξp) in
(10) follows the 2PL model (7). The conditional probabilities for response indicators Rpi
are modeled with parameters βi and δi. The parameter βi parametrizes the item-specific
proportion of missing item responses, while the parameter δi quantifies the dependence of
the responding to item i conditional on the true but possibly unobserved item response
Xpi. It has been pointed out in [13,33] that the MW model (10) contains the special cases
of treating missing item responses as latent ignorable and as wrong as two extreme cases.
Moreover, the simulation studies in [13,14] demonstrated that a common δ parameter that
is constant across items could be consistently estimated.

Figure 1 graphically displays the MW model. Note the dependency of response
indicators Ri from items Xi.
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X1 R1 X2 R2 X3 R3

θ ξ

Figure 1. Graphical representation of the Mislevy-Wu model with three items X1, X2, and X3,
and their corresponding response indicators R1, R2, and R3, and latent ability θ and latent response
propensity ξ.

In this article, a bivariate normal distribution for (θp, ξp) is assumed, where SD(θp) is
fixed to one, and SD(ξp), as well as Cor(θp, ξp), are estimated (see [36,37] for more complex
distributions). LI in general and the model of Holman and Glas [12] in particular is obtained
in the MW model by fixing all δi parameters equal to zero. If one fixes all δi parameters in
the MW model at a sufficiently small (negative) value, such as−9.99, students with missing
item responses are scored as incorrect. Moreover, if one fixes all δi parameters to zero and
sets the correlation of θ and ξ to zero, MI (i.e., MAR) is obtained. Hence, LI can be tested
against MI. Moreover, the MW model is more general than the LI model because the latter
model only models the dependence of missingness on item i from ξ, but not the item itself.

The MW model can be estimated with maximum likelihood (ML). By denoting all
item parameters by γ = (γ1, . . . , γI) and distribution parameters by α, the log-likelihood
function is given by

l(γ, α; X, R) =
N

∑
p=1

log
∫ ∞

−∞

I

∏
i=1

[
P(Xpi = xpi, Rpi = rpi|θ, ξ; γi)

]
f (θ, ξ; α)dθ dξ , (11)

where X = (xpi)pi and R = (rpi)pi denote the datasets of item responses and response
indicators. The item-specific parameters are given as γi = (ai, bi, βi, δi). The log-likelihood
function can be numerically maximized to obtain item parameter estimates γ̂ and distribu-
tion parameters α̂. In IRT software, the expectation-maximization algorithm is frequently
utilized [38,39].

In our experience, estimating item-specific δi parameters in the MW model can become
quite unstable. Moreover, it has been shown that average δi parameters typically strongly
differ between constructed response (CR) and multiple-choice (MC) items, because the
omission of CR items is more associated with the true but not fully observed item response,
while omissions of MC items are only weakly associated with true item responses [13].
For stabilizing the estimation of δi parameters in ML, we propose to employ regularized
ML estimation with fused ridge-type penalty functions [40].

Let IMC ⊂ I and ICR ⊂ I be distinct integer sets of multiple-choice and constructed
response items, respectively, where I = {1, . . . , I}. The fused ridge penalty function P for
the MW model is defined by

P(γ; λ) = λ

[
∑

i,j∈ICR

(δi − δj)
2 + ∑

i,j∈IMC

(δi − δj)
2

]
, (12)
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where λ is a fixed regularization parameter. In regularized ML estimation, one maximizes
the penalized log-likelihood function lpen defined by

lpen(γ, α; λ, X, R) = l(γ, α; X, R)−P(γ; λ) . (13)

Using the penalty function in (12) implies normal priors for δi with means for CR and
MC items, respectively, and a common variance [40]. Importantly, by only considering
differences in pairs of item parameters δi, the item-type specific means of δi are not explicitly
estimated. The MW model (10) applied with regularized ML estimation using the fitting
function (13) is also called the regularized MW model.

The maximization of lpen involves the unknown regularization parameter λ. The k-fold
cross-validation approach is used for obtaining the optimal regularization parameter λopt.
The dataset is divided into k groups, and the parameters of the regularized MW model are
estimated on k− 1 folds leaving one fold out to evaluate the cross-validation error. This is
performed by leaving one fold out in turn and for each value of the regularization parameter
λ. In this article, the error was evaluated using the negative log-likelihood function
value [40]. The cross-validation error is calculated as ∑k

h=1 l(γ̂(−h), α̂(−h); Xh, Rh), where
γ̂(−u) and α̂(−h) are the vector of item parameter and distribution estimates obtained by
excluding the hth group of data. Moreover, Xh and Rh denote the datasets of item responses
and response indicators in the hth part of the data, respectively. In cross-validation, the log-
likelihood function is predicted on the part of the data that has not been used for parameter
estimation [41]. The smallest cross-validated log-likelihood value determines the optimal
regularization parameter λopt. In practice, k = 5 or k = 10 is frequently chosen.

3. Simulation Study
3.1. Method

In this simulation study that studies the performance of the regularized MW model,
we fixed the number of items to I = 20 and fixed item parameters ai, bi and δi throughout all
replications. To mimic real-data situations, we assumed that the first ten items C01, ..., C10
were CR, while the last ten items M11, ..., M20 were MC. On average, the missing proportion
of CR items was larger than for MC items. The δi parameters were varied according to
two data-generating models DGM1 and DGM2. In DGM1, the missing proportions were
0.112 for MC items and 0.153 for CR items. In DGM2, a higher missing proportion of 0.341
for CR items was assumed while retaining the missing proportion for MC items at 0.112.
The item parameters used in the simulation study can be found in Table A1 in Appendix A
(see also the directory “Simulation Study” https://osf.io/5pd28 (accessed on 21 June 2023)).

We chose sample sizes N = 1000 and N = 2500. We did not opt for smaller sample
sizes because we think that estimating an IRT model for response indicators requires
sufficiently large sample sizes. Hence, the MW model is more suitable for LSA studies than
for small-scale studies.

A bivariate normal distribution was simulated for the ability variable θ and the
response propensity ξ. The standard deviation of θ was set to 1, while the standard
deviation of ξ was fixed at 2. Moreover, the correlation of θ and ξ was fixed at 0.5 when
simulating the data.

The regularized MW model was estimated for a fixed sequence of values for the
regularization parameter λ. A grid of 21 regularization parameters was chosen: 0.000010,
0.000018, 0.000034, 0.000062, 0.000113, 0.000207, 0.000379, 0.000695, 0.001274, 0.002336,
0.004281, 0.007848, 0.014384, 0.026367, 0.048329, 0.088587, 0.162378, 0.297635, 0.545560, 1.0,
and 10,000. Values between 0.000010 and 1.0 were equidistantly chosen on a logarithmic
scale. In k-fold cross-validation, k = 5 folds were used. In the MW model, the estimated
distribution parameters α consisted of the variance of ξ and the covariance of θ and ξ.

In total, 2500 replications were conducted in each simulation condition. We assessed
the performance of parameter estimates by bias and root mean square error (RMSE).

https://osf.io/5pd28
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To provide simple summary statistics, we averaged absolute biases and RMSE values
across items for the same item parameter groups (i.e., the a, b, β, and δ parameters).

The statistical software R [42] was employed for all parts of the simulation. The esti-
mation of the regularized MW model was carried out using the sirt::xxirt() function in
the sirt package [43]. Replication material can be found in the directory “Simulation Study”
at https://osf.io/5pd28 (accessed on 21 June 2023).

3.2. Results

In Figure 2, the average absolute bias (red dashed line) and the average RMSE (solid
black line) for item parameter groups δ, β, a, and b are displayed for the DGM2. It can be
seen that for N = 1000, the minimum average RMSE for δ parameters is obtained for a λ
value that is substantially larger than the optimal regularization parameter λopt obtained
with k-fold cross-validated log-likelihood estimation. Interestingly, biases in all parameters
became relevant for sufficiently large regularization parameters. Hence, the search for an
optimal λ parameter regarding RMSE reflects a bias-variance tradeoff. However, it should
be emphasized that for a broad range of sufficiently small λ values, the bias and RMSE for
item discriminations ai, and item difficulties bi were almost unaffected by the choice of λ.

In Table 1, average absolute bias and average RMSE are displayed for the optimal
regularization parameter λopt, and fixed regularization parameters 10−5, 0.0263665, and 105.
It can be seen that λ = 0.0263665 strongly outperformed the other λ choices in terms of
RMSE for the δi parameters. However, a nonnegligible bias in δi and βi parameters was
introduced by using this regularization parameter. Nevertheless, inducing too much
regularization could stabilize estimated item parameters for the response indicators, while
the target parameters ai and bi were almost unaffected by the choice of λ. Hence, one could
generally conclude that the MW model should be utilized to estimate the missing response
mechanism flexibly. The regularization technique is only applied for stabilizing parameter
estimates without introducing relevant bias in target item parameter estimates.

Table 1. Simulation Study: Average absolute bias (Bias) and average absolute RMSE of estimated
item parameters of the regularized Mislevy-Wu model as a function of sample size N and different
choices of the regularization parameter λ for two data-generating models (DGM) DGM1 and DGM2.

DGM Par N
Bias for λ = RMSE for λ =

10−5 λopt 0.0263665 105 10−5 λopt 0.0263665 105

DGM1

δi
1000 0.123 0.076 0.304 0.754 0.915 0.845 0.638 0.875
2500 0.067 0.045 0.190 0.757 0.563 0.540 0.451 0.812

βi
1000 0.063 0.068 0.092 0.221 0.313 0.309 0.285 0.329
2500 0.028 0.031 0.052 0.221 0.189 0.189 0.186 0.277

ai
1000 0.008 0.008 0.011 0.028 0.154 0.154 0.154 0.156
2500 0.002 0.002 0.005 0.028 0.096 0.096 0.096 0.102

bi
1000 0.016 0.018 0.028 0.064 0.146 0.146 0.144 0.154
2500 0.008 0.010 0.017 0.062 0.089 0.090 0.090 0.109

DGM2

δi
1000 0.063 0.063 0.184 0.750 0.687 0.631 0.518 0.896
2500 0.018 0.028 0.090 0.750 0.382 0.374 0.349 0.822

βi
1000 0.038 0.052 0.080 0.266 0.311 0.299 0.280 0.376
2500 0.017 0.023 0.039 0.267 0.188 0.187 0.183 0.323

ai
1000 0.012 0.012 0.015 0.043 0.172 0.172 0.171 0.178
2500 0.004 0.004 0.006 0.041 0.105 0.105 0.105 0.118

bi
1000 0.013 0.020 0.032 0.108 0.165 0.164 0.161 0.201
2500 0.005 0.008 0.015 0.105 0.100 0.100 0.099 0.155

Note. Par = item parameter group; λopt = optimal regularization parameter selected with cross-validated log-likelihood.

https://osf.io/5pd28
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Figure 2. Average absolute bias and average root mean square error (RMSE) for item parameter
groups of the regularized Mislevy-Wu model for data-generating model DGM2 as a function of sample
size N and the regularization parameter λ. RMSE and bias values for the optimal regularization
parameter λopt selected with cross-validated log-likelihood are displayed with dotted lines.
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4. Empirical Example
4.1. Method

In the following analysis, item responses of booklet 13 in PIRLS 2011 (i.e., the “PIRLS
Reader”) consisting of 35 items (20 CR items and 15 MC items with four response alter-
natives) were used. For this booklet, item responses of 968 Austrian (AUT), 809 German
(DEU), 901 French (FRA), and 802 Dutch (NLD) students were available. The resulting
dataset is used for illustrative purposes in this section. For ease of presentation, all poly-
tomous items were dichotomized, where only the highest scores were recoded as correct.
The dataset has been made available as data.pirlsmissing in the R [42] package sirt [43].

Descriptive analyses showed that the average proportion of missing item responses
varied considerably between items and countries (AUT: 0.112, DEU: 0.079, FRA: 0.136, NLD:
0.027). For MC items, the average rate of missing item responses was 0.023 (SD = 0.016).
For CR items, the average rate of missing item responses was substantially larger (M = 0.141,
SD = 0.070).

We estimated the nonregularized MW model with freely estimated δi parameters and
compared this model to constrained alternatives. In the LI model [12], all δi parameters were
fixed to zero. In the WR model, all missing item responses are treated as incorrect, which
was implemented by fixing all δi parameters to −9.99 setting the response probabilities
effectively to zero for students who do not know the item. Finally, in the MI model,
we fixed all δi parameters to zero and fixed the correlation of θ and ξ to zero. Model
comparisons were conducted based on the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC).

The MW model was also estimated using regularized estimation. The optimal reg-
ularization parameter λopt was selected by minimizing the negative cross-validated log-
likelihood value. The sequence of the regularization parameter λ was selected between
10−8 and 10,000, equidistantly spaced on a logarithmic scale.

The R [42] package sirt [43] using the sirt::xxirt() was employed for fitting the
IRT models. Replication material can be found in the directory “Empirical Example” at
https://osf.io/5pd28 (accessed on 21 June 2023).

4.2. Results

In Table 2, model comparisons of the four nonregularized models are displayed. The
most general MW model turned out to be the best-fitting model in terms of AIC and
BIC. In line with [13], the WR model (i.e., treating missing item responses as incorrect)
outperformed the LI model (i.e., treating missing item responses as missing). The standard
deviation of ξ slightly varies across models, being smallest when treating missing item
responses as wrong in model MW. Also note that the correlation of θ and ξ was practically
identical for the models LI, WR, and MW.

Table 2. PIRLS Reader 2011: Model comparisons.

Model #npars AIC BIC SD(ξ) Cor(θ, ξ) δi

MI 106 162,192 162,844 2.41 0 ‡ 0 ‡

LI 107 161,796 162,454 2.38 0.41 0 ‡

WR 107 161,414 162,073 2.29 0.41 −9.99 ‡

MW 142 161,086 161,960 2.34 0.41 est

Note. #npars = number of estimated model parameters; MI = manifest ignorabiity; LI = latent ignorability;
WR = treating missing item responses as wrong (i.e., 0); MW = Mislevy-Wu model; ‡ = fixed model parameter;
est = estimated model parameters; Entries with the least AIC or BIC are printed in bold font, respectively.

In Table 3, estimated item parameters of the regularized Mislevy-Wu model are
displayed. Notably, the average δ parameters for CR items (M = −2.01, Med = −1.65,
SD = 1.44) were lower than MC items (M = 0.60, Med = 0.03, SD = 2.06). Moreover,
the average βi parameter was larger for CR items (M = −2.70, Med = −2.89, SD = 0.85)

https://osf.io/5pd28
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than for MC items (M = −6.55, Med = −5.75, SD = 1.84), reflecting that the missing
proportions for CR items were larger than for MC items.

Table 3. PIRLS Reader 2011: Estimated item parameters of the regularized Mislevy-Wu model.

ai bi βi δi

Item Type Freq0 Freq1 FreqNA MI LI WR MW MI LI WR MW MW MW

R31G02C CR 0.28 0.64 0.08 0.86 0.85 0.89 0.91 −1.04 −1.04 −0.81 −0.80 −3.03 −4.45
R31G04C CR 0.58 0.21 0.20 1.05 1.04 1.06 1.05 1.23 1.25 1.43 1.36 −2.34 −1.40
R31G08CZ CR 0.41 0.40 0.19 1.27 1.26 1.34 1.23 0.18 0.20 0.48 0.30 −2.01 −0.90
R31G08CA CR 0.40 0.37 0.23 1.76 1.74 1.82 1.74 1.32 1.35 1.44 1.39 −1.99 −0.76
R31G08CB CR 0.61 0.14 0.25 1.45 1.44 1.51 1.41 0.09 0.11 0.31 0.17 −2.41 −0.79
R31G10C CR 0.48 0.40 0.13 1.13 1.13 1.20 1.17 0.28 0.29 0.40 0.35 −3.08 −1.42
R31G12C CR 0.51 0.29 0.20 0.49 0.48 0.63 0.49 1.24 1.26 1.47 1.25 −2.53 −0.04
R31G13CZ CR 0.17 0.66 0.17 2.43 2.46 3.31 3.18 −0.55 −0.53 −0.27 −0.33 −1.55 −2.81
R31G13CA CR 0.23 0.58 0.20 2.11 2.12 2.85 2.72 −0.36 −0.34 −0.11 −0.14 −1.35 −3.40
R31G13CB CR 0.26 0.52 0.22 2.19 2.19 2.75 2.68 −0.12 −0.10 0.07 0.05 −1.54 −3.21
R31G13CC CR 0.32 0.46 0.22 3.58 3.67 4.88 5.07 −0.76 −0.74 −0.51 −0.57 −1.69 −2.69
R31P02C CR 0.23 0.73 0.04 0.81 0.81 0.79 0.81 −1.61 −1.62 −1.52 −1.48 −3.77 −3.88
R31P03C CR 0.16 0.79 0.06 1.26 1.25 1.24 1.29 −1.57 −1.57 −1.42 −1.38 −2.88 −4.36
R31P05C CR 0.45 0.48 0.08 1.08 1.09 1.07 1.02 −0.05 −0.05 0.04 −0.11 −4.51 0.59
R31P06C CR 0.19 0.76 0.04 1.40 1.39 1.34 1.37 −1.28 −1.28 −1.23 −1.24 −3.85 −2.43
R31P07C CR 0.19 0.74 0.07 1.74 1.74 1.67 1.74 −1.08 −1.08 −0.98 −0.98 −2.90 −3.12
R31P09C CR 0.14 0.80 0.06 1.25 1.26 1.37 1.33 −1.71 −1.68 −1.40 −1.55 −3.40 −1.83
R31P14C CR 0.33 0.54 0.13 1.06 1.06 1.15 1.07 −0.48 −0.47 −0.24 −0.39 −2.92 −1.22
R31P15C CR 0.51 0.36 0.13 0.52 0.53 0.63 0.53 0.74 0.75 0.92 0.81 −3.19 −0.55
R31P16C CR 0.49 0.38 0.13 0.76 0.75 0.86 0.80 0.48 0.49 0.62 0.57 −3.03 −1.48
R31G01M MC 0.18 0.81 0.01 1.11 1.15 1.13 1.15 −1.66 −1.63 −1.66 −1.68 −10.51 4.20
R31G03M MC 0.26 0.73 0.01 1.19 1.18 1.04 1.10 −1.11 −1.11 −1.24 −1.23 −7.52 1.24
R31G05M MC 0.42 0.56 0.02 0.84 0.85 0.81 0.80 −0.41 −0.40 −0.42 −0.50 −7.56 2.18
R31G06M MC 0.27 0.72 0.01 0.98 0.97 0.84 0.90 −1.20 −1.22 −1.38 −1.30 −5.72 −2.94
R31G07M MC 0.40 0.58 0.02 1.04 1.04 0.95 0.99 −0.41 −0.41 −0.45 −0.45 −5.64 −0.82
R31G09M MC 0.38 0.60 0.02 0.69 0.69 0.65 0.65 −0.71 −0.71 −0.74 −0.78 −6.06 0.08
R31G11M MC 0.36 0.62 0.02 1.25 1.26 1.23 1.24 −0.54 −0.54 −0.56 −0.58 −5.81 0.03
R31G14M MC 0.33 0.60 0.07 1.16 1.17 1.07 1.09 −0.65 −0.64 −0.53 −0.79 −5.41 1.68
R31P01M MC 0.25 0.74 0.01 1.06 1.06 0.97 0.99 −1.24 −1.24 −1.33 −1.37 −9.84 3.88
R31P04M MC 0.53 0.46 0.01 0.76 0.77 0.75 0.74 0.19 0.19 0.17 0.12 −8.56 3.12
R31P08M MC 0.19 0.79 0.02 1.19 1.21 1.13 1.16 −1.52 −1.51 −1.53 −1.58 −5.75 −0.01
R31P10M MC 0.11 0.87 0.03 1.88 1.89 1.74 1.81 −1.66 −1.65 −1.65 −1.69 −4.80 −1.29
R31P11M MC 0.27 0.70 0.03 1.07 1.07 1.04 1.04 −1.05 −1.05 −1.05 −1.09 −5.18 −0.78
R31P12M MC 0.33 0.64 0.03 1.02 1.03 1.02 1.00 −0.77 −0.76 −0.75 −0.80 −5.33 −0.32
R31P13M MC 0.09 0.88 0.03 1.59 1.60 1.49 1.54 −1.97 −1.96 −1.90 −1.99 −4.53 −1.28

Note. Type = item format; CR = constructed response item; MC = multiple-choice item; MI = manifest ignorabiity;
LI = latent ignorability; WR = treating missing item responses as wrong (i.e., 0); MW = Mislevy-Wu model.

It is also noteworthy that item discriminations ai hardly varied between the MI and
LI model (model MI for CR items: M = 1.41, Med = 1.25, SD = 0.74; model LI for CR
items: M = 1.41, Med = 1.25, SD = 0.75). However, item discriminations ai were larger
for models WR (M = 1.62, Med = 1.29, SD = 1.06) and MW (M = 1.58, Med = 1.26,
SD = 1.09). Similarly, item difficulties bi did not show practical differences between MI
and LI models (model MI for CR items: M = −0.25, Med = −0.24, SD = 0.96; model LI for
CR items: M = −0.24, Med = −0.22, SD = 0.97). In line with expectations, the MW model
(CR items: M = −0.14, Med = −0.12, SD = 0.93) and the WR model resulted in larger item
difficulties (CR items: M = −0.07, Med = −0.03, SD = 0.97). The pattern was similar for
MC items but less pronounced because the missing proportion rates were smaller for MC
items compared to CR items.

In Figure 3, the negative cross-validated log-likelihood value is displayed as a function
of the regularization parameter λ. For sufficiently small λ values, there is almost no
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difference in cross-validated log-likelihood values. The optimal regularization parameter
was estimated as λopt = 0.0004342.
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Figure 3. Negative cross-validated log-likelihood value as a function of the regularization parameter
λ. The optimal regularization parameter λopt selected with cross-validated log-likelihood is displayed
with a red triangle.

In Figure 4, estimated δi item parameters are displayed as a function of the regulariza-
tion parameter λ for CR and MC items, respectively. With increasing λ parameters, item
parameters are fused to item-format-specific parameters. The fused values were δi = −3.18
for CR items and δi = −0.79 for MC items. This result indicated that missing item responses
for CR items are more likely associated with a wrong item response than for MC items.
Notably, the fused δi parameters were both negative.
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Figure 4. Curves of item parameter estimates δi are shown as a function of the regularization
parameter λ for constructed response (CR) items (left panel) and multiple-choice (MC) items (right
panel). The optimal regularization parameter λopt selected with cross-validated log-likelihood is
displayed with a red dashed line.
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In Figure 5, estimated βi item parameters are displayed as a function of the regular-
ization parameter λ for CR and MC items, respectively. The regularization of the δi also
affected the estimated βi parameters, particularly for MC items.
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Figure 5. Curves of item parameter estimates βi as a function of the regularization parameter λ

for constructed response (CR) items (left panel) and multiple-choice (MC) items (right panel). The
optimal regularization parameter λopt selected with cross-validated log-likelihood is displayed with
a red dashed line.

Finally, Figures 6 and 7 display the ai and bi parameters as a function of the regulariza-
tion parameter λ. The target item parameters are hardly affected for small values of the
regularization parameter λ, but show some variation for λ parameters larger than 10−2.
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Figure 6. Curves of item parameter estimates ai as a function of the regularization parameter λ

for constructed response (CR) items (left panel) and multiple-choice (MC) items (right panel). The
optimal regularization parameter λopt selected with cross-validated log-likelihood is displayed with
a red dashed line.
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Figure 7. Curves of item parameter estimates bi as a function of the regularization parameter λ

for constructed response (CR) items (left panel) and multiple-choice (MC) items (right panel). The
optimal regularization parameter λopt selected with cross-validated log-likelihood is displayed with
a red dashed line.

5. Discussion

In this article, we proposed a regularization estimation approach to the Mislevy-Wu
model. This approach allows sufficiently complex missingness mechanisms as well as
estimation in moderate sample sizes such as N = 1000. Interestingly, the most stable
item parameter estimates in terms of RMSE were obtained for values of the regularization
parameters that were larger than the one obtained by k-fold cross-validation based on the
log-likelihood function value.

To further stabilize estimation, the fused ridge penalty function could also involve
the βi parameters because they are also difficult to estimate for items with low missing
proportion rates or in moderate sample sizes.

It has been shown in the PIRLS 2011 application that the Mislevy-Wu model outper-
formed all other estimation approaches. Omissions on constructed response items were
strongly associated with true item responses. This implies that students who do not know
an item likely do not respond to it [33]. In contrast, multiple-choice items were only weakly
associated with true but non-fully observed item responses. Given these findings, it seems
plausible in large-scale assessment studies to score omitted constructed response items as
wrong while treating multiple-choice as fractionally correct in a pseudo-likelihood estima-
tion approach [44]. In the latter case, a multiple-choice item with Ki answer alternative is
scored with 1/Ki.

It could be generally argued that constructed response items are omitted more to a
lack of knowledge than multiple-choice items. In this sense, as argued by an anonymous
reviewer, omissions on constructed response items are likely missing not at random data.
In contrast, multiple-choice items could be regarded as missing at random data. In practice,
the tendency to omit items can be associated with person traits [45].

The Mislevy-Wu model can be easily extended to item response models for polytomous
items. For dichotomous items, the dependence of response indicators Ri from true item
responses Xi is modeled by the item parameter δi. For polytomous items scored between
0 and Ki, Ki parameters δi,k (k = 1, . . . , Ki) that differentially weigh the impact of item
category k on the response indicator can be identified from the data.
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The Mislevy-Wu model can be extended to include covariates for predicting the latent
ability θp and the latent response propensity ξp [46]. In a latent regression model [47,48],
the estimated item parameters could be fixed, and IRT packages such as TAM [49] could
be utilized for estimation. Such an approach could also be applied in providing plausible
values [50] in LSA studies as realizations of the latent ability θp that can be used for
secondary analysis. In this sense, the Mislevy-Wu model can be implemented in operational
practice when scaling item responses in LSA studies such as PISA, PIRLS, or TIMSS [51].

Missing item responses are typically classified into omitted and not-reached item
responses [52]. In this article, we only investigated omitted item responses within a test.
For speeded tests, it might be preferable not to score not-reached item responses as wrong.
However, large-scale assessment studies like PIRLS are not strongly speeded such that
there is only a low prevalence of not-reached items.

The Mislevy-Wu model follows a model-based strategy in which the missingness
mechanism for the response indicators is simultaneously modeled with the item response
model (e.g., 2PL model) of interest. It might be beneficial to weaken the assumption of
a unidimensional ability variable θ and unidimensional response propensity variable ξ
and to estimate multidimensional variables with an exploratory loading structure [35]
in an imputation model. In this case, the imputation model is more complex than the
intentionally misspecified analysis model [17,53]. Certainly, such an estimation approach
would need even larger sample sizes, and regularized estimation could also be applied to
the exploratory loading structure.

Although modeling missingness mechanisms in educational studies now receive wide
attention, only in rare cases, the dependence of item omissions from the item itself is
considered a viable alternative (e.g., see [6]). This is unfortunate because we empirically
demonstrated that there are several studies in which treating constructed response items
as wrong [13] instead of latent ignorable (i.e., as missing; [6]) resulted in superior model
fit. The Mislevy-Wu model contains these two extreme scoring treatments as particular
constrained models and also parameterizes processes that are a mixture of both. Hence,
if missing item responses should be modeled in large-scale assessment studies, there is no
excuse for neglecting the Mislevy-Wu model from the preferred psychometrician’s toolkit.
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Data Availability Statement: The PIRLS 2011 dataset is available at https://timssandpirls.bc.edu/
pirls2011/international-database.html (accessed on 21 June 2023). The part of the dataset used in this
article can be accessed as the R object data.pirlsmissing in the R package sirt [43].
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2PL two-parameter logistic
AIC Akaike information criterion
BIC Bayesian information criterion
CR constructed response
DGM data-generating model
IRT item response theory
LSA large-scale assessment
LI latent ignorability
MAR missing at random
MC multiple-choice
MI manifest ignorability
ML maximum likelihood
MNAR missing not at random
MW Mislevy-Wu
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PIRLS progress in international reading literacy study
RMSE root mean square error

Appendix A. Item Parameters Used in the Simulation Study

In Table A1, data-generating item parameters for the simulation study are displayed.

Table A1. Simulation Study: Data-generating item parameters of the Mislevy-Wu model.

Item Type ai bi
βi

δi
DGM1 DGM2

C01 CR 1.7 1.4 −1.7 0.3 −2.0
C02 CR 1.2 0.4 −2.7 −0.7 −1.7
C03 CR 0.5 1.3 −2.2 −0.2 −3.6
C04 CR 2.2 −0.6 −1.4 0.6 −2.9
C05 CR 2.7 −0.3 −1.3 0.7 −3.1
C06 CR 2.8 −0.1 −1.2 0.8 −3.8
C07 CR 1.3 −1.4 −2.5 −0.5 −4.8
C08 CR 1.3 −1.5 −1.8 0.2 −2.0
C09 CR 1.1 −0.4 −2.5 −0.5 −1.3
C10 CR 0.5 0.8 −2.4 −0.4 −0.6
M11 MC 0.9 −1.3 −3.2 −3.2 0.5
M12 MC 1.0 −0.4 −3.4 −3.4 −0.8
M13 MC 0.7 −0.8 −3.6 −3.6 −0.3
M14 MC 1.2 −0.6 −3.7 −3.7 −0.2
M15 MC 1.1 −0.8 −2.8 −2.8 0.4
M16 MC 1.2 −1.6 −2.8 −2.8 −0.3
M17 MC 1.8 −1.7 −2.8 −2.8 −1.1
M18 MC 1.0 −1.1 −3.4 −3.4 −1.0
M19 MC 1.0 −0.8 −2.8 −2.8 −0.5
M20 MC 1.5 −2.0 −1.8 −1.8 −0.9

Note. DGM = data-generating model; Type = item format; CR = constructed response item; MC = multiple-
choice item.
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