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Abstract: In this paper, we proposed a new method for image-based grammatical inference of deter-
ministic, context-free L-systems (D0L systems) from a single sequence. This approach is characterized
by first parsing an input image into a sequence of symbols and then, using a genetic algorithm,
attempting to infer a grammar that can generate this sequence. This technique has been tested using
our test suite and compared to similar algorithms, showing promising results, including solving the
problem for systems with more rules than in existing approaches. The tests show that it performs
better than similar heuristic methods and can handle the same cases as arithmetic algorithms.

Keywords: L-system; genetic algorithm; grammatical inference

1. Introduction

The discipline of artificial life aims to create models and tools for simulating and
solving complex biological problems [1]. It allows for experimentation and studies on
systems imitating existing life, without its physical presence. Examples of such models are
cellular automata and Lindenmayer systems [2]. The latter, sometimes called L-systems, are
a type of formal grammar introduced by Astrid Lindenmayer in 1968 [3]. Their trademark
is a graphical representation associated with symbols of the alphabet. Initially, they were
created as a tool for modelling symmetric biological structures such as some types of plants.
Using L-systems, we can try to find a solution for a very basic problem—predicting the
growth of an organism, given its current state and environment. They have also been used
for a plethora of other use cases, such as modelling whole cities [4], sound synthesis [5]
or fractal generation [6]. They can also be used in procedural generation. After the initial
model is created, minor parameters or initial state modifications can create similar-looking
but still distinct objects in great numbers. While the usefulness of L-systems is not in
question, they are challenging to develop, especially when they are supposed to model
an existing object. In this article, an attempt at the automatic generation of deterministic,
context-free L-systems (D0L-systems [3]), from an image through grammar inference, has
been made using a genetic algorithm (GA).

The main contributions of the article include the following:

• A new line detection algorithm,
• Extending the current capabilities of inference algorithms for D0L-systems from a

single sequence from two to at least three rules,
• Improving the execution speed of heuristic algorithms for systems with one or two

rules and reducing the number of assumptions that need to be made about the gram-
mars being inferred.

The remaining part of the article is organized as follows. Section 2 first introduces the
fundamental knowledge necessary to understand the following sections and presents the
existing works dealing with similar problems. Then, our approach to solving the described
problem is presented. The test results and comparison to other methods are shown in
Section 3, while Section 4 draws conclusions and presents further investigation areas.
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2. Materials and Methods
2.1. L-Systems

L-systems comprise three elements—a set of symbols Vp called an alphabet, a starting
sequence A called an axiom, and a set of rewriting rules F in the form of Base→ Successor.
These systems work in iterations on sequences of symbols, starting with the axiom. In
each iteration, a new string is created by applying every rewriting rule to the current
sequence, meaning that every occurrence of the rule’s base is replaced by its successor.
The alphabet contains two types of symbols, terminal and non-terminal, which differ in a
single aspect—a rule’s base has to contain at least one non-terminal character. In the case of
D0L-systems, rules have single-symbol bases, meaning a non-terminal symbol is a base of
a rule.

The most recognizable property of Lindenmayer systems is the geometrical represen-
tation that is usually associated with all or some of the symbols in the alphabet. Turtle
graphics is a commonly encountered method of translating sequences to geometric struc-
tures. It utilizes a cursor with a straightforward command set—it can draw a straight line,
turn by angle, save the current position and tilt, and return to the previously memorized
state. Each of these operations can be mapped to symbols of the L-system alphabet, making
an output sequence a command list for the cursor. In Figure 1, an example structure is
shown, drawn from a sequence L3:

L3 = FFF− [XY] + [XY]FF− [XY] + [XY]− [+FY− FX]

+[+FY− FX]FF− [XY] + [XY]FF− [XY] + [XY]−
[+FY− FX] + [+FY− FX]− [+FF− [XY] + [XY]

−FX− FF− [XY] + [XY] + FY] + [+FF− [XY]+

[XY]− FX− FF− [XY] + [XY] + FY],

which was generated in the third iteration by the system S3, defined as:

S3 = {A = F, F → FF− [XY] + [XY], X → +FY, Y → −FX}.

The F, X, and Y symbols are mapped to the draw forward action, symbols [ and ]
traditionally represent the save and return to the position actions, and the characters + and
− command the cursor to turn by an angle of ±27.5◦.

Figure 1. A structure generated by the S3 system in the third iteration.
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2.2. Grammatical Inference

As mentioned, the most significant problem with L-systems is the difficulty of creating
the models. Usually, the model is supposed to imitate an existing object or create a structure
that satisfies defined requirements. However, the connection between system rules and
generated structures is not intuitive, making modelling difficult and usually requiring a
significant amount of trial and error. This is why the need to create L-systems from existing
examples automatically arose. The generation of a grammar from one or more samples is
called grammatical inference [7]. During this process, three elements of L-systems need
to be proposed—an alphabet, an axiom, and a set of rewriting rules. Generating correct
rules is the most challenging problem because the possibilities are numerous, and their
number grows exponentially with the number of rules a system can have. That is why,
usually, except for small systems, this task has been approached as a search problem,
and using metaheuristics has been the most common since they are designed to deal
with problems with a large search space. The genetic algorithm is a metaheuristic most
commonly associated with L-system inference research. It was also used in this article as a
good starting reference point.

2.3. Genetic Algorithms

Genetic algorithms are metaheuristics belonging to the family of evolutionary al-
gorithms [8,9]. Based on naturally occurring evolution and natural selection, they are
commonly used for optimization and search problems where the search space is extensive,
exact methods are unavailable, or the time constraints are too strict. The main compo-
nent of this algorithm is a population that contains many individuals, each representing a
specific solution to a problem, usually encoded as a set of values or symbols that belong
to the search space. The quality of such a solution is measured in terms of fitness by a
problem-specific function. To improve the quality of individuals, a few genetic operators
are employed—crossover, mutation, and selection. In each iteration of the GA, individuals
are selected from the population for breeding and then subjected to crossover and mutation.
If better solutions emerge, they are included in the next generation, and the process repeats.

2.4. Related Works

The attempts at single-sequence D0L-system inference can be generally divided into
arithmetic and evolutionary approaches. In the first group, two algorithms have been
proposed [10,11], but they were constrained to solving systems with only one or two rules,
with the first one also requiring a known axiom. More attempts have been made using evo-
lutionary algorithms. Some of them used genetic programming, including one of the first
ones in [12] who managed to infer a single-rule Quadratic Koch Island system with a known
axiom, but also a new approach in [13] who used a genetic programming variant called
bacterial programming and managed to infer systems with up to two rules. The others
opted for genetic algorithms [14] or grammatical evolution with BNF grammar encod-
ing [15]. However, both algorithms required either axiom or axiom and iteration number to
be known. Even though we are dealing with a particular type of L-systems inference in this
article, there is an abundance of work done for other types and applications of L-systems.
One closely related research topic is grammar inference based on multiple sequences. Most
interesting are relatively recent articles by J. Bernard and I. McQuillan [16–18], which our
proposed algorithm is partly based on. Their work also extended to different types of
L-systems—context-sensitive [19], stochastic [20,21], or temporal [22].

2.5. Inferring Grammar from a Single Input Image

The proposed approach is to parse the input image into a sequence of symbols that
describe the geometrical structure generated from an L-system and then use a GA to
infer the system’s grammar (Figure 2). The respective steps of the proposed D0L-system
induction method are described below.
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++++[B++[B+[B+]A+]A+

{A: G, F → FF, G → F[AG]BG}

Read the input image
Detect straight lines
and build a model

Generate corresponding sequence

Infer the grammar

Generate the output

Figure 2. General Outline of the Grammar Inference Algorithm.

2.6. Image Parsing

The parsing can be done using general line detection algorithms (like D-DBSCAN [23]),
but the results are often not precise enough for this application; therefore, we have em-
ployed our line detection algorithm.

The process of parsing the image into an input sequence is divided into three steps.
First, all of the straight lines are detected in the image. Then, all of these lines are connected,
building a model of the structure in the image so in the last step we can generate a sequence
that accurately describes this model.

2.6.1. Straight Line Detection

For usage in our algorithm, we defined a line as a set of continuous points, understood
as pixels in an image, each neighbouring at most two other points. A point with more than
two neighbours is treated as a line intersection, and a point with only one neighbour, an
edge point, is considered a line end. The neighbourhood is based on the euclidean distance
between points in the image—two points are neighbours if the distance between them is
not greater than

√
2, which is the largest distance between two touching pixels in an image.

To detect straight lines in the image, the procedure traverses the image looking for
a pixel that has two neighbours and therefore belongs to a straight line according to its
definition. Starting from this point, consecutive connected pixels are added to the detected
line for as long as they have only two neighbours. The line detection ends when on both
ends of the line the algorithm detects either an edge point or an intersection (multiple-
neighbour point). Each visited point is also marked, so it is not under consideration when
looking for the next lines.

One case that is not handled by the line definition is when a line changes direction.
Two connected lines might conform to the definition and be detected as a single line even
if they are clearly not the same line. The splitting of such lines is handled after the line
detection process finishes. Given that a line is a set of points, to find a change of direction,
we are looking for the largest continuous subsets of points that fit a linear model with some
acceptable error.

To check if a set of points fits a linear model, an algorithm based on a simple idea
is used—if the subset contains points of a straight line, the line between the first and
the last point goes through all of the remaining points. It takes the first and the last
point of the subset and finds a linear model that fits those points. Afterwards, it checks
whether the model fits the remaining points of the subset. A model fits a point when the
distance between the point and the linear model is smaller than a specified acceptable
error. However, when working with indexes of pixels in an image, the accuracy is often not
enough to correctly match the line to the points. That is why the points are first cast into a
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virtual space with higher granularity, which is a parameter of the algorithm. For example,
given a granularity of 2, a pixel is divided into a grid of 5 by 5 cells (Figure 3).

Figure 3. A few line points cast into virtual space with granularity = 2.

After casting each of the points to this virtual space, now a pixel matches the linear
model if the distance from any of his cells to the linear model is smaller than the acceptable
error. This effectively allows us to work with higher resolution than the original image and
gives much more accurate results.

Due to inaccuracies in drawing straight lines, especially at the intersections of mul-
tiple lines, there are usually some points that could not be assigned to any of the lines.
These points are grouped together with their unassigned neighbours and memorized into
intersection groups for later use. They will be used during model building as connectors
between lines.

2.6.2. Model Building

Before a model can be built from detected lines, two preprocessing steps must be
made. We are looking for a non-parametric system, which means that every line must be of
the same length. However, in the image, multiple lines can appear in consecutive order
without changing direction, and the line detection algorithm will detect it as a single long
line. The first pre-processing step takes care of this problem and splits long lines so that
each line in the model is of the same length.

Because every symbol representing the “turn-by-angle” action needs to be associated
with a specific angle, in the second pre-processing step, the information about all of the
angles between the lines needs to be retrieved from the image. The drawn lines are only an
approximation of actual straight lines; therefore, to calculate an angle between them, we
need to apply some rounding and cannot achieve very high precision. The result of this
step is a set of unique tilt angles rounded to the closest k degrees.

After the presented pre-processing steps, a model of the detected structure can be
built. This is a recursive process that connects lines with their successors by finding the
edge point of the line and then looking in the set of unused lines for one that is connected
to it. A line is connected to an edge point when the edge point is a neighbour of one of its
points. However, an edge point might not be connected to any line. In this case, we can
search the set of intersection groups to check if the edge point is connected to any of them.
If that is true, it means that the line connects to an intersection and will be connected to any
other line that is also connected to this intersection.

2.6.3. Sequence Generation

The last step is the translation of generated model of a structure into a sequence of
symbols. First, an alphabet needs to be generated. Some of the symbols are expected
to always appear in an alphabet. Those include a draw forward (‘+’) symbol, and if the
structure contains intersections, save the current position (‘[’) and return to the last saved
position (‘]’) symbols since they are required to produce a branching structure. Some
systems might use more than one draw-forward symbol; however, at this stage, it is not
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possible to deduce this, so a placeholder is used for every possible actual symbol. The last
class of symbols that needs to be included in the alphabet is the turn symbols. During
the pre-processing step, a set of all unique tilt angles is gathered, and a unique symbol is
assigned for each value and added to the alphabet.

After creating the alphabet, a sequence can be generated. The algorithm traverses the
structure model starting from the first line. For each straight line, a draw forward symbol is
added to the sequence and the algorithm moves on to the next connected line. If there is a
change of direction between the current and the next line before translating the next part of
the model, an appropriate tilt-by-angle symbol is inserted. When the algorithm approaches
an intersection, a save position symbol is inserted, and each branch is translated, returning
to the previous position after finishing and moving on to the next branch. The branches
are processed in the order of the smallest absolute value of the tilt angle. The return to
the position symbol is not inserted at the end of the sequence since this information is
redundant and does not appear in practical systems.

2.7. Grammar Inference

After parsing the input image into a sequence of symbols, an attempt at grammar
inference can be made. There are many unknown variables, and the search space is large.
A genetic algorithm is proposed (Algorithm 1), but first, two techniques used for space
reduction need to be introduced.

2.7.1. Calculating Sequence Length at the nth Iteration of System

For a given alphabet Vp = {σ1, σ2, . . . , σn}, the Parikh vector of a sequence w is a vector
Pw = [|Sσ1 |, |Sσ2 |, . . . , |Sσn |] where the element |Sσi | contains the number of appearances of
symbol σi in this sequence. Let Pri denote a Parikh vector of the successor of the rule ri and
PLi a Parikh vector of a sequence generated by a system in its ith iteration. Then, we can
define a growth matrix

I =


Pr1

Pr2
...

Prn

. (1)

which allows us to calculate the Parikh vector of the sequence generated by a system in
any iteration, which will be essential for calculating offspring fitness. The sequence Parikh
vector can be calculated as follows:

PLk Im = PLm+k . (2)

Using a growth matrix, we can check if a set of rules ω can generate a sequence with
a given Parikh vector PLm . To do this, we need to determine if there exists, for a given m,
such a Parikh vector PL0 that the Equation (2) is satisfied. If it does, then a system with
rules ω and an axiom with a Parikh vector PL0 can generate a sequence of the same length
as the target sequence in m iterations. If such a vector does not exist, we can find a vector
with the closest sequence length by solving an integer programming problem:

max PL0 [1], PL0 [2], . . . , PL0 [n], (3)

∀i ∈ {1, . . . , n}, PLn [i] ≤ Pw[i]
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Algorithm 1: L-system inference
Input: sequence—the target sequence
Output: bestSpecimen—the best current solution
population← generate initial population;
tabuList← ∅;
i← 0;
bestSpecimen← ∅;
evaluate population fitness;
sequence← remove terminal symbols from the sequence (Section 2.7.2);
while termination condition is not satisfied do

if i mod 5 == 0 then
population←
replace the worst 50% of population with new random individuals

end
forall ancestor in population do

selected← select another individual from the population;
descendant← crossover ancestor with selected;
mutant← mutate descendant;
f itness← calculate mutant fitness;
if mutant has higher fitness than ancestor then

if mutant has higher fitness than bestSpecimen then
bestSpecimen← mutant

end
replace ancestor with mutant;

end
add mutant to tabuList;

end
i← i + 1

end
return bestSpecimen

2.7.2. System Independence from Terminal Symbols

Let us say that S is an L-system with an alphabet containing two terminal and non-
terminal symbols that generates a sequence L in the nth iteration. Knowing that a terminal
character cannot be a base of a rule, we can notice that we can remove terminal symbols
and analyze a more straightforward case [16]. If system S generates a sequence L and we
remove terminal characters from the rules of S, it will still produce the same sequence
without the terminal symbols. For example,

S : {A : F, F → F + G + F, G → G− F− G}
L2 = F+G+F+G-F-G+F+G+F

Ŝ : {A : F, F → FGF, G → GFG}
L̂2 = FGFGFGFGF

We can see that excluding the terminal symbols sequences L3 and L̂3 are equivalent.
Thanks to this property during system inference, we can first solve a simpler problem
without the terminal symbols and then gradually add the terminal symbols back to the
system, obtaining subsequent partial solutions. The algorithm arrives at a full solution
after restoring all of the terminal symbols. This requires more searches, but each has a
significantly reduced search space.
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2.7.3. Genetic Algorithm

The task to be solved by this algorithm is as follows: find a set of rewriting rules that,
for some axiom, allows for the generation of the target sequence in the nth iteration. The
individuals are encoded using Parikh vectors of rewriting rules. Before the start of the
algorithm, all of the terminal symbols are removed from the target sequence in line with
the logic from Section 2.7.2. Therefore, the individuals’ Parikh vectors contain only counts
of non-terminal symbols.

Initial Population Generation

The exact number of rules is unknown; therefore, the population should contain
individuals with different amounts. An m

N ratio was adopted, where m represents the
maximum amount of rules and N is the size of the population. For each class of systems,
rules are generated randomly, with lengths ranging from 1 to a specified maximum length
value k. Due to the high cost of the fitness function, the population size has to be kept
low. This might cause all of the individuals to converge to the same local minima, which
prevents the algorithm from exploring the whole search space. To solve this problem, the
worse half of the population is replaced by new randomly generated offspring every five
iterations.

Genetic Operators

This algorithm uses a typical crossover operator, with the offspring having some
chance of receiving each rule from either of the parents regulated by the crossoverRatio
parameter. It needs to be noted that only parents with an identical rule count can be
bred together. The mutation operator is implemented in the form of four independent
operations—SWAP (swap the successors of two rules), ADD (add a random symbol to one
of the rules), REMOVE (remove a random character from one of the rules with more than
one symbol), and CHANGE (change one of the symbols in one of the rules into another). If
an offspring is to be modified, each operation has an equal probability of being applied. In
the case of L-systems, changing a single symbol rarely leads to a better result. That is why
a memory mechanism has been introduced. Every visited solution is memorized, and if
the future mutation results in a previously encountered state, the operator is repeatedly
applied until a new solution is obtained. The selection operator picks a random partner
for every individual in the population, with candidates with higher fitness having a better
chance of being selected. The algorithm terminates when a complete solution is found or
the maximum iteration count has been reached.

Fitness Function

The selected fitness function executes in two phases. During the first stage (Algorithm 2),
the sequence length is considered, and the fitness can reach a maximum value of 1.0, which
signals that the generated sequence has reached the target length. If an individual reaches
ultimate fitness for the first stage, the second phase begins, where terminal symbols are
consecutively reinserted, and an exact sequence match is evaluated in each step. The fitness
increases for each correctly inserted terminal character.

The first phase of the fitness calculation evaluates whether the individual can generate
a sequence with the same length as the target sequence in N iterations. The closer the
sequence length is to the target sequence length, the higher the fitness. The fitness of the
individual for a given N can be evaluated using the method specified in Section 2.7.1 by
calculating the coefficient vector:

IN =


a11 a12 . . . a1n

a21
. . .

...
...

. . .
...

an1 an2 . . . ann

V c =


c0
c1
...

cn

 =


a11 + a12 + · · ·+ a1n
a21 + a22 + · · ·+ a2n

...
an1 + an2 + · · ·+ ann

, (4)
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and solving an integer programming problem:

max(c0x0 + c1x1 + · · ·+ cnxn), (5)

0 ≤ c0x0 + c1x1 + · · ·+ cnxn ≤ |L|,

∀i ∈ {0, . . . , n}, xi ≤ |L|

that gives a solution in the form of −→r =
[
x0 x1 . . . xn

]
, which is a Parikh vector of the

system axiom. Then the fitness of the individual is calculated as follows:

Fitness = 1.0−
|L| −∑

|−→r |
i=0 cixi

|L| . (6)

However, since N is unknown, we must check multiple values. For every system,
there is an iteration number M for which finding a valid axiom is no longer possible, and
a value of N = 1 is not practically useful; therefore, we have to check values of N in the
range 〈2; M〉 and find N with the highest fitness value as the final result.

Algorithm 2: Fitness function
Input: candidate—the subject individual
Output: fitness—the individual fitness value
candidates← ∅;
iteration← 2;
while lastFitness 6= 0 do

currentCandidate← individual candidate with iteration number iteration;
coe f f icients← calculate coefficients vector for currentCandidate (Equation (8));

axiom← calculate individual axiom based on coefficients vector coe f f icients;
f itness← calculate individual fitness (Equation (6));
lastFitness← f itness;
if f itness 6= 0 then

candidates← add currentCandidate to the set
end
iteration← iteration + 1

end
best← best candidate from the set candidates;
if fitness of best == 1 then

return result of the second phase of fitness function for best;
end
return fitness of best;

The second phase of the fitness calculation evaluates whether the individual can
correctly generate a sequence that exactly matches the target sequence. The process runs
in a few iterations, and in each one, a single terminal symbol is reinserted into the target
sequence. Then, we are trying to find how to insert the new character into the rules and the
axiom so that the system can generate the target sequence. The general outline of a single
iteration is pictured in Figure 4. The initial state is the result of the previous iteration. For
the sequences to match, they must contain the same number of each symbol. Therefore,
there is a finite set of combinations in which we can insert the new character into the rules
so that the Parikh vectors of the sequences are equal. In step 2, the algorithm calculates all
of the possible combinations by calculating the coefficients vector W:

W =
k

∑
i=1

PA Ii−1 =
[
W0 W1 . . . Wn

]
, (7)
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and solving an integer programming problem:

W0x0 + W1x1 + · · ·+ Wnxn + xA = |L|, (8)

∀i ∈ {0, . . . , n}, xi ≤ |L|,

0 ≤ xA ≤ |L|,

which gives us a set of vectors
[
x0 x1 . . . xn xA

]
, where xn and xA is the occurrence

count of terminal symbol in the nth rule and the axiom, respectively. Because the number of
combinations can be large, we can take the simplest ten for the best results. Now we know
how many symbols to insert but not where. To avoid exploring all of the possibilities, since
the rules’ successors must appear in the target sequence, we can reduce the search space by
only using the appropriate subsequences in the target sequence, which is done in step 3.
From the found subsequences, in step 4, the algorithm generates a population for the GA.
Since the axiom does not appear in the sequence, we only know the number of symbols to
be added but not their positions; therefore, the symbols are randomly inserted. In the last
step, a GA finds a system that can recreate the target sequence using the generated initial
population.

A : FG
R1 : F → FGF
R2 : G → GF

System rules

Add one + symbol to axiom
Add two + symbols to R1
Add two + symbols to R2

Combination n

Add one + symbol to axiom
Add three + symbols to R1
Add one + symbol to R2

Combination 1

. . .

...G+F+FF+FG+F+G+FFG+F+GF+...

...G+F+G+F+GF+GGG+F+GF+G+F...
...G+F+FF+FG+F+G+FFG+F+GF+...
...G+F+G+F+GF+GGG+F+GF+G+F...

R1R2R1R2

A : F+G
R1 : F → F + G + F+
R2 : G → G + F

Individual m

A : FG+
R1 : F → +F + G + F
R2 : G → GF+

Individual 1

. . .A : FG+
R1 : F → F + G + F+
R2 : G → G + F

Individual m

A : F+G
R1 : F → +F + G + F
R2 : G → GF+

Individual 1

. . .

Fitness: 0.3 < 1.0
No fitting system found

Fitness: 1.98 > 1.0
Fitting system has been found

(1)

(2)

(3)

(4)

(5)

Figure 4. General outline of a single iteration of the second phase of the fitness function.

A typical crossover operator has been employed, with the descendant receiving each
rule from one of the parents according to a selected ratio. A mutation operator can permute
non-terminal symbols of one or more rules and the system axiom. Individuals are picked
for breeding using elitist selection, with the top 10% of the population moving on to the
next generation unchanged. The chosen fitness function compares the generated sequence
and target sequence symbol by symbol. If a character at a given position matches, the
individual receives one point. It needs to be noted that the output of the image parsing
algorithm contains only a single type of non-terminal symbol; therefore, every non-terminal
character receives a point for matching with it. The final fitness is a ratio between received
points and total sequence length. Because the target sequences are usually very long, an
optimization was applied, where only the first 100 symbols are compared, and only if those
match the rest of the string is validated. When the entire sequence is correctly matched, the
individual can increase their fitness value by a maximum of 1.0, relative to the simplicity of
the system evaluated as:

Fitness =
|L| − |A|
|L| . (9)

The algorithm terminates when it finds a solution or reaches the maximum iteration
count.
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If we are looking for a single rule system, an additional optimization can be applied.
Since the system axiom must start with a non-terminal symbol and a single rule cannot start
with a terminal character, we can conclude that any generated sequence must begin with
the rule’s successor. Therefore, in step 3, instead of searching the whole string for matches,
we can analyze only the first subsequence of adequate length and avoid steps 4 and 5 since
there is only one matching subsequence, and we can outright check if it generates a correct
sequence.

3. Results

Multiple L-systems found in the literature were selected as the example inputs to
test the algorithm’s efficiency. To be picked, the grammar could not have contained non-
graphical symbols in its alphabet and had to generate a structure with no intersecting
lines. The following systems were used: Koch Island [6,12,24], Koch Snowflake [24], Koch
Curve [25], Barnsley Fern [6,13], Sierpiński Triangle [6], and Binary Tree [13]. From each
selected system, an example image was generated by our plotting program and used during
testing (such an approach is called grammar inference on synthetic images [26]). All of
the tests were run on an AMD Ryzen 9 3900X PC with 16GB RAM. GPU acceleration and
multi-threading were not used.

3.1. Grammar Inference

The tests for the provided examples succeeded in every case, including those success-
fully used in [13]. The initial population of 20 was used, with a mutation probability of 0.7
and a crossover ratio of 0.5. These parameters were selected during the initial experiments.
The inferred systems were an exact match to the originals, with some minor notation
differences that did not alter the system functionality.

The algorithm was also tested using examples used by the LGIN tool [11], and the
results were compared. A solution was found in every case. However, the runtime was
longer. It was to be expected since the LGIN tool uses an arithmetic approach instead of a
search algorithm, which allows for faster execution but requires multiple constraints to be
applied—only one or two rule systems can be inferred, with known axiom and rule count.

To compare our algorithm to the approach of Runqiang et al. [14], we used the same
two examples with one and two rules, with the single-rule L-system being an equivalent of
the Ex01 system from the LGIN test suite and the second system being given as:

{A : X, F → FF, X → F[+X]F[−X]X}.

The original algorithm found a solution in every run for the first system and in 66%
of the runs for the second system. Meanwhile, our approach found a solution for both
systems in every run. Moreover, our algorithm ran for fewer iterations than the original
one (Table 1).

Table 1. Results of comparison with the algorithm from [14].

Iteration Count of Own Algorithm Iteration Count of GA from [14]

Minimum Average Maximum σ 1 Minimum Average Maximum

System A 1 1.7 5 1.34 1 10.8 38
System B 8 31.5 70 30.79 32 53.5 97

1 Standard deviation.

3.2. More Complex Systems

The main advantage of our approach over the related arithmetic and heuristic algo-
rithms described in Section 2.4 is its ability to work on systems with more than two rules.
To test this capability, a system S3 with three rewriting rules from Section 2.1 was used, and
our algorithm successfully inferred the original grammar. Even though it took longer than
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for the simpler systems—1105 iterations in 25 min, it is a significant improvement over the
mentioned algorithms that infer grammars with two rules at most.

3.3. Runtime Distribution

To test the replicability of our results, runtime distribution for the GA has been tested
on systems with one and two rewriting rules. Test examples were taken from [14]. As seen
in Figure 5, for a single rule system, most algorithm executions ran for a similar amount
of time, around 100 ms, with very few stragglers that ran for more than 600 ms. For a
system with two rules (Figure 6), we can notice similar behavior. However, here, we can see
that a significant amount of runs finished quickly, meaning the initial population already
contained a candidate with very high fitness. This lets us conclude that the algorithm has a
low tendency to get stuck in areas of search space containing candidates with low fitness.

Figure 5. Runtime distribution for single rule system.

Figure 6. Runtime distribution for two rule system.

3.4. Koch Island

The effectiveness of the proposed algorithm was compared to the genetic programming
method developed in [12]. It was one of the first attempts at inferring D0L-systems from
a single sequence. Since then, multiple new solutions have been proposed. However, it
is one of the better-documented articles, providing various performance metrics, which
allow for a comprehensive comparison. The first difference in the results can be seen in the
initial population generation. In the article mentioned above, it is stated that the members
of the initial population of 4000 are not very good on average, with most placed around the
middle of the fitness scale and the worst 12% of the population having the highest possible
(the worst) fitness value. In our proposed algorithm, the population is much smaller; the
tests were run using only 20 individuals. However, the generation is more effective—out of
1000 executed tests, only 32.7% of them required more than one iteration to reach a solution.
Looking at the heatmap that shows the progress of hits histograms [12] (Figure 7) and
changes of best and average fitness (Figure 8), we can notice that while in Koza’s algorithm
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the progress is very steady and consistent (Figures 9 and 10), in our case, it is slower but
has a tendency to take more significant leaps in quality.

Figure 7. Hits heatmap of our algorithm.

Figure 8. Fitness progression of our algorithm.

Figure 9. Fitness progression of the algorithm from [12].
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Figure 10. Hits histograms of the algorithm from [12].

3.5. Genetic Programming Using BNF Grammar

Finally, a comparison to the algorithm from the article by D. Beaumont and A. Stepney
was made [15]. For this purpose, two example L-systems were used. The first one has a
single rule and is given as

{A→ F, F → F[+F]F[−F]F}. (10)

The second one is equivalent to the Ex04Y system used for tests by the LGIN tool.
In the first case, both algorithms arrived at a solution; although the compared algorithm
returned multiple solutions, some of them very long or containing redundant symbols. In
the second case, our algorithm managed to find a correct system every time; meanwhile,
the compared algorithm achieved the same feat in only 2 in 200 test runs. The runtime was
also much shorter; on average, the compared algorithm ran for several CPU-days for each
test and required 891 iterations. Meanwhile, our algorithm completed the whole test suite
of 30 runs in around 1 h and found a solution on average in 35 iterations.

3.6. Crossover between Individuals with Different Rule Counts

Since the selected crossover function operates only on individuals with the same rule
count, two modifications have been tested. The main issue with the crossover between
individuals with different rule counts is that individuals with more rules will have a larger
alphabet and use symbols that are not valid for those with fewer rules. Therefore, the first
modification allowed for a crossover when the second individual had the same amount
or fewer rules as the main individual. This resulted in a slightly worse performance.
The tests consisted of running the inference algorithm on System A from Section 3.1 for
1000 iterations. The modified crossover function resulted in an algorithm average runtime
of 166.42 ms, while the original function achieved an average runtime of 161.04 ms.

The second modification further relaxed the constraints and allowed crossover be-
tween individuals with any rule count. To achieve this, a post-processing step had to be
added, which, if the second individual had more rules, replaced the excess symbols with
a random symbol from the smaller individual alphabet. This resulted in worse perfor-
mance than the previous modification, with an average runtime of 169.84 ms. Overall,
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the crossover constrained to individuals with the same rule count seems to work the best,
possibly because the rules already fit for this class of systems.

3.7. Comparison with Generational GA Approach

Our proposed solution uses a steady-state GA (SSGA) algorithm [27] in which only
individuals that are better than their parents are inserted into the population. This approach
has been compared to a generational GA (GGA) algorithm that replaces each generation’s
whole population. The comparison was made using the same tests as in Section 3.6. The
results show a promising improvement, with the GGA algorithm achieving an average
runtime of 147.5 ms compared to the 161.04 ms of the SSGA algorithm. This shows
that enhancements to the breeding scheme can introduce even better performance of the
inference algorithm.

4. Discussion

An algorithm for image-based grammatical inference of deterministic, context-free
L-systems was proposed. The effectiveness of this approach was compared to multiple test
results of comparable algorithms and tested using our examples. The results show that
the algorithm performs better than existing heuristic techniques and can find solutions
for the same problems as the arithmetic approaches. A significant improvement over
previous methods has been made, proving that solving inference problems for systems
with more than two rules is possible. However, further research is still needed. The GA’s
fitness function is effective but computationally costly, which implies that optimizations in
this area could lead to the development of an algorithm that can solve systems with even
higher rule count in a reasonable time. Further improvements to the fitness function or
the encoding scheme should also be researched, studying whether fitness progress can be
faster and more gradual, eliminating the frequent large jumps or decreasing the number of
runs that take much longer than average. Some of the compared algorithms work faster
under certain conditions, and incorporating some of their ideas into the fitness function
might lead to quicker computation. Most importantly, this research shows that further
advancements in single-sequence grammatical inference for D0L-systems are possible, and
new solutions can provide better results, solving even more complex systems.
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