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Abstract: Canonical ensembles of walks in a finite connected graph assign the properly normalized
probability distributions to all nodes, subgraphs, and nodal subsets of the graph at all time and connec-
tivity scales of the diffusion process. The probabilistic description of graphs allows for introducing the
quantitative measures of navigability through the graph, walkability of individual paths, and mutual
perspicacity of the different modes of the (diffusion) processes. The application of information theory
methods to problems about graphs, in contrast to geometric, combinatoric, algorithmic, and algebraic
approaches, can be called information graph theory. As it involves evaluating communication effi-
ciency between individual systems’ units at different time and connectivity scales, information graph
theory is in demand for a wide range of applications, such as designing network-on-chip architecture
and engineering urban morphology within the concept of the smart city.

Keywords: statistical ensembles of walks; information graph theory; navigability, walkability, and
perspicacity in networking systems

MSC: 05Cxx; 05C82; 90Bxx; 91D30

1. Introduction to Information Graph Theory

Real-world networking systems comprising functional units that interact with each
other at different and disparate temporal and spatial scales are often metaphorically repre-
sented by finite connected undirected graphs [1]. In graph models, the vertices embody the
system functional units, and the edges sketch the various interactions between these units.
Graph models are useful for computer networking, sociology, urban morphology, smart
city networks, chemistry, engineering, communication, logistics and management, security
applications, etc., as they help us to answer the fundamental question about relations
between the local and global properties of a networking system.

In our work, we assess the quality of these relations by using some information quanti-
ties at different graph connectivity scales, ranging from the connectivity between the nearest
neighbors to the connectivity with respect to infinitely long paths available in the graph.
The proposed information approach to the description of graph structures (which can be
called information graph theory) may be especially useful for the assessment of communication
efficiency between individual systems’ units at different time and connectivity scales.

One possible application of graph information theory is the design of network-on-
chip (NoC), or network-based communications subsystems on an integrated circuit, most
typically between semiconductor intellectual property cores schematizing various functions
of the computer system in a system on a single chip [2]. (We profoundly thank our reviewer
for pointing us at the possible NoC-related application of graph information theory.) NoCs
provide the advantage of customized architecture, increased scalability, and bandwidth
and come in many network topologies, many of which are still experimental [3].
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The interconnections between multiple cores on a chip present a considerable influence
on the performance and communication of the chip design regarding the throughput, end-
to-end delay, and packet loss ratio. Based on the huge amount of supported heterogeneous
cores, efficient communication between the associated processors has to be considered
at all levels of system design to ensure global interconnection [4]. Although hierarchical
architectures have addressed the majority of the associated challenges of the traditional
interconnection techniques, the main limiting factor is scalability, and NoC has proven
to be a promising solution. As communicating nodes require a routing algorithm for
successful transmission of packets, it is important to design an NoC routing algorithm
capable of providing less congested paths, better energy efficiency, and high scalability [5].
It is important to mention that the same choices of routing algorithms, when considered
for more than one performance parameter of the network, do not yield expected results,
since different applications exhibit different network performances for the same routing
technique [6]. Fault-tolerant mapping and routing techniques at different levels of an
NoC were surveyed in [7]. In [8], a method for choosing hierarchical coordinates and a
greedy forwarding algorithm for path-finding were presented. Nevertheless, reliability
is becoming a major concern in NoC design [7]. In particular, the accurate predictions of
network packet latency, contention delay, and the static and dynamic energy consumption
of the network are in demand [9].

Another evident application field of graph information theory is the study of urban
morphology, i.e., urban forms and structures affecting sustainability and urban growth.
Along with the spreading of new technologies and the availability of big data, cities are
increasingly viewed not simply as places in space but as systems of networks and flows [10].
This became particularly evident in the concept of a smart city, as the synergy of architecture,
technology, and the Internet of Things which enables the collection and data exchange of
objects embedded with electronics, software, sensors, and network connectivity [11].

All above-mentioned research problems involve a variety of information quantities
resolving uncertainty about evolution of some diffusion processes at different connectivity
scales in a graph, and therefore the entire approach to graphs summarized in the present
paper may be called information graph theory.

Thinking about transportation in networks—imagine the weekend pedestrian flow
in a city downtown area—we may notice that some streets are more preferred by walkers
than others. While some urban quarters are visited quite often, others seem to be excluded
from the rest of urban fabric, as though being barricaded by invisible gates, literally
turning the deserted city block into a ghetto. A widespread belief in the influence of the
spatial organization of the built environment on the way people move through urban
spaces and meet others by chance was common in architectural and urban thinking for
centuries [12–14]. The dynamics of poverty areas in London studied over the past century
in [15] has shown that the creation of poverty areas is ultimately a spatial process relating
to spatial segregation and poverty. In order to quantify isolation by identifying the most and
least probable paths through the areas with respect to a certain exploration strategy, in the present
paper we put forward a concept of walkability.

Navigation focuses on locating a walker’s position with respect to known locations,
traversed paths, and structural patterns in the environment [16]. In the probabilistic setting,
navigability would represent a share of predictable information about the future location of a
traveler given their walking history and the present location. The predictable information
about the future location of a walker is obtained with the use of two major navigation
strategies, known as path integration (which allows for keeping track of the position and
heading while exploring a new space) and landmark-based piloting (re-calculating position
of a traveler while in a familiar environment), working in concert during navigation in
humans and animals [16].

Finally, as such a circumstance appears quite often in the context of science and
technology, we may pose the following question: How long should one observe a networking
system for the information collected to be enough to draw a reliable conclusion about its evolution in
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the long run? Of course, an answer to the above-posed question ultimately depends on the
structural complexity of a system (that can often be represented by a graph), the dynamics
of the processes in question, as well as on the chosen graph exploration strategy—all are
difficult to quantify, in general. In the present paper, we call such a deep, penetrating
discernment of the system’s nature and evolution perspicacity and discuss and quantify it in
the framework of a proposed model.

In our work, we put forward a toy model, in which the questions of interest may
receive quantitative answers. The role of a complex system will be played by a finite
connected undirected graph providing a scene for isotropic and a variety of anisotropic
diffusions, i.e., different types of random walks, forming the canonical statistical ensembles
of walks defined in graphs (see Section 3). Uncertainty about the current state in Markov
chains contains predictable (apparent uncertainty) and unpredictable (true uncertainty) infor-
mation components: the conditional mutual information quantities among the past, present,
and future states of the chain (see Section 2). The amount of predictable information can be
viewed as a divergence between the ensemble average (defined with respect to the stationary
distribution of random walks) and the time-average of walks describing the probability of
observing a walker in a unit time of random walks. Consequently, the amount of uncer-
tainty about the future location of random walkers in the graph that can be resolved by
using the standard navigation strategies, such as path integration (based on the entire history
of travels) and landmark-based piloting (based on the present location of the walker), can
be viewed as a navigability potential of a node in the given graph structure with respect
to the chosen exploration strategy (the type of diffusion process) (see Section 4). We call
the opposite potential characterizing the amount of true uncertainty about the walker’s
location in the graph strive, which is quantified as the expected exploration time of a node’s
neighborhood by the given type of random walk (Section 4). Information flows associated
with the diffusion processes in graphs (see Sections 3 and 5) can be viewed as the stochastic
point processes, called determinantal process or fermionic processes [17], because the corre-
sponding densities are the squared wedge-products (determinants) of eigenvectors of the
symmetrized transition matrices. We use the properties of the determinantal processes to
assess perspicacity and walkability in graphs (see Sections 3 and 5). The perfect perspicacity
is possible only for the processes that enjoy the same type of symmetry. In Section 6, we
discuss an example of the walkability analysis in urban neighborhoods and, eventually,
conclude on a discussion of graph information theory and its applications in the last section.

2. Predictable and Unpredictable Information in Markov Chains

The resolution of uncertainty about future events is known as information [18]. For ex-
ample, each coin flip reveals a single bit of information. The side repeating probability
0 ≤ p ≤ 1 in the coin tossing sequence does not affect the amount of information released
at every flip, but rather determines a share of predictable and unpredictable information
components in every released bit of information [19–22]. Indeed, the forthcoming state of
the Markov chain describing tossing of a biased coin is completely predictable for p = 1
when coin tossing generates the stationary sequences heads, heads, heads,. . . or tails, tails,
tails, . . . , as well as for p = 0 when an alternating sequence of states arises. However,
the side of the coin that will come up on the next toss is utterly unpredictable if p = 1/2.

For a Markov chain {Xt}, t ≥ 0, defined over a finite set of N states by a (stationary)
irreducible, row-stochastic transition probability matrix Pr(Xt+1 = j|Xt = i) = Tij ≥ 0, the
expected amount of uncertainty about a state over infinitely long sequences is given by the
Boltzmann–Gibbs–Shannon entropy [20,22–24],

H(Xt) = −
N

∑
k=1

πk logN πk, (1)

where πk = Pr(Xt = k) is a stationary distribution of states over the chain, i.e., the left
eigenvector of the Markov chain transition matrix, πT = π, belonging to the major eigenvalue
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1. In all information-related calculations, we shall assume that 0 · log 0 = log 00 = log 1 = 0.
As the information shared between the past and future in Markov chains is transmitted
only through the present, the time average of the conditional entropy of the present state
conditioned on all past states simplifies to the entropy rate [19,22,25,26], viz.,

lim
τ→∞

1
τ

τ

∑
t=1

H(Xt|Xt−1, . . . X1) = H(Xt+1|Xt) = −
N

∑
k=1

πk

N

∑
s=1

TkslogNTks. (2)

Then, the following formal decomposition involving one-step conditional entropies [19–22],

H(Xt) =

I(Xt+1|Xt)︷ ︸︸ ︷
(H(Xt)− H(Xt+1|Xt)) +

I(Xt+1,Xt |Xt−1)︷ ︸︸ ︷
(H(Xt+1|Xt−1)− H(Xt|Xt−1))︸ ︷︷ ︸

Predictable component

+

H(Xt |Xt+1,Xt−1)︷ ︸︸ ︷
(H(Xt+1|Xt) + H(Xt|Xt−1)− H(Xt+1|Xt−1) )︸ ︷︷ ︸

Unpredictable component

,

(3)

represents the state’s uncertainty as a sum of the following three information components:
(i) I(Xt+1|Xt), expressing the amount of information about the future state that can be inferred
from the entire past history of the chain, excepting for its present state; (ii) I(Xt+1, Xt|Xt−1),
the mutual information between the future and present states of the chain, expressing the
amount of information about the future state that can be inferred from the present state,
independently of the past; and (iii) H(Xt|Xt+1, Xt−1), expressing the true uncertainty about
the present state of the chain that cannot be resolved by observing the past history and
that does not have repercussions for the future evolution of the chain. Assuming that all
past states and the present state of the chain are known, we conclude that the first two
quantities contribute to the predictable information component of the chain, viz.,

P(Xt) ≡ I(Xt+1|Xt) + I(Xt+1, Xt|Xt−1), (4)

while the last term quantifies the ephemeral, unpredictable information component, viz.,

U (Xt) ≡ H(Xt|Xt+1, Xt−1) = H(Xt)−P(Xt), (5)

which exists at the present moment only and then disappears without consequences [19,20].
The information diagram for a Markov chain is shown in Figure 1. In the context

of Markov chains, we may interpret or explain a future event either as a consequence of
history, or as an immediate outcome of the present event. However, for 0 < p < 1, some
amount of uncertainty remains unresolved before the event occurs, and such a surprise
cannot be avoided, eliminated, or controlled. Given the Markov chain transition matrix T,
the entropy excess I(Xt+1|Xt) [19–22,27–29] reads as follows:

I(Xt+1|Xt) = −
N

∑
k=1

πk

(
logNπk −

N

∑
s=1

TkslogNTks

)
. (6)
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Figure 1. information diagram for a Markov chain. The amount of uncertainty about the future state
of the chain can be resolved partially by observing its past states (at an amount of I(Xt+1|Xt)), as
well as from the present state alone (quantified by I(Xt+1, Xt|Xt−1)). True uncertainty about the state
(H(Xt|Xt+1, Xt−1)) exists at the present moment only and then disappears without consequences.
All three components sum to the entropy H(Xt), quantifying uncertainty of a state over the infinitely
long sequences generated by the Markov chain.

The conditional mutual information I(Xt+1, Xt|Xt−1) between the present and the
future states of the chain conditioned on the past state takes the following form [19–22]:

I(Xt+1, Xt|Xt−1) =
N

∑
k=1

πk

N

∑
r=1

(
TkrlogNTkr − T2

krlogNT2
kr

)
. (7)

The conditional mutual information (7) quantifies a consequence of the present state
for the future evolution of the Markov chain. Finally, the amount of true uncertainty
existing only at the present moment of time is the entropy residue [19–22], viz.,

H(Xt|Xt+1, Xt−1) = H(Xt)− I(Xt+1|Xt)− I(Xt+1, Xt|Xt−1)

= −∑N
k=1 πk · log2

[
∏N

s=1
(
T2

ks
)−T2

ks

]
.

(8)

For example, let us consider three games of chance shown in Figure 2a–c having
N = 2, 3, and 4 states, respectively. The probability of repeating a state in each game
is taken as 0 ≤ p ≤ 1. Other transitions are chosen to be equiprobable. For entropy
calculations in this section, we use the N-based logarithm logN , so that the information
and entropy quantities for these games of chance are measured in bits, trits, and quadrits,
respectively. Namely, a single bit of information is released at every coin flip (see Figure 2a);
one trit of information is produced at every round of the rock–paper–scissors game (see
Figure 2b); and one quadrit of information is brought about at every round of the card
suit game of four states (see Figure 2c). The use of different information units allows
for comparing the structure of information components for all three games in a single
frame (as shown in Figure 3). Otherwise, the graphs would scale up by log2 3 ≈ 1.585 and
log2 4 = 2 if we used bits as a major information unit. The detailed information analysis of
a two-state Markov chain shown in Figure 2a has been developed by us in [20], and in [30]
we discussed information components in a three-state chain (Figure 2b). The four-state
chain shown in Figure 2c has never before been discussed.

The information components (6–8) for all three games shown in Figure 2 are presented
in Figure 3 as functions of the state repetition probability p. In Figure 3a, the predictable
information components in a coin tossing game (see Figure 2a) are indicated by the solid
line, and the graph regions representing the predictable information components I(Xt+1|Xt)
and I(Xt+1, Xt|Xt−1) are highlighted in blue and yellow, respectively.
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(a) (b) (c)

Figure 2. Three games of chance, with N = 2, 3, and 4 states, respectively. In each game, the probabil-
ity of repeating a state is 0 ≤ p ≤ 1. Other transitions are chosen to be equiprobable. The information
components (6–8) for all three games are the functions of a single independent variable p, as shown
in Figure 3. (a) The two-state game of chance describing tossing of a biased coin. (b) The three-state
game of chance corresponding to the rock–paper–scissors game. (c) The four-state game of chance
corresponding to the card game.

(a) (b)

Figure 3. (a) The information components (6–8) as functions of the state repetition probability p.
The bold line represents the information quantities for the coin tossing (see Figure 2a). The amount
of information that can be predicted by observing the past history of the chain is highlighted in
blue. The amount of information that can be guessed from the present state alone is highlighted
in yellow. The information components for the rock–paper–scissors game (Figure 2b) are shown as
dotted lines. The information components for the card suit game (Figure 2c) are shown as dashed
lines. (b) The amounts of predictable information in three games of chance as functions of the state
repetition probability p.

The future outcome of coin tossing is reliably predictable for p = 0 or p = 1 when
the game generates the stationary alternating or constant sequences of states, respectively.
In this case, the entire uncertainty of a state equals the entropy excess (blue in Figure 3a),
viz., 1 bit ≡ H(Xt) = I(Xt+1|Xt). As p > 0 or p < 1, the reliability of predictions based on
the past history of the chain decays; however, the future outcome may then be guessed
from the present state of the coin alone, either by alternating the present side of the coin
at the next tossing (for p > 0), or by repeating it (for p < 1). The corresponding amount
of information, I(Xt+1, Xt|Xt−1), quantifying the degree of reliability of such a guess, is
highlighted by yellow in Figure 3a. When p ≈ 1/2, there is a destructive interference
between two incompatible hypotheses about the future outcome of coin tossing that causes
the gradual attenuation and cancellation of mutual information, I(Xt+1, Xt|Xt−1), and the
coin becomes fair at p = 1/2. At this moment, the entire uncertainty of a state equals the
amount of true uncertainty quantified by H(Xt|Xt+1, Xt−1) [20]. Summing the predictable
information components together, we obtain the amount of predictable information about
the future outcome of coin tossing as a function of p, shown in Figure 3b as a solid line. The
coin tossing game (see Figure 2a) is predictable at p = 0 and p = 1, but unpredictable at
p = 1/2 when the coin is fair.

The information components for other games of chance (Figure 2b,c) are presented
in Figure 3a,b by the dotted and dashed lines. The rock–paper–scissors game (Figure 2b)
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becomes fair at p = 1/3, and the relevant information components are shown as dotted
lines. The model of a three-sided coin (susceptible–infected–immune) was recently used for
assessing pandemic uncertainty on conditions of vaccination and self-isolation [30]. The
card suit game (Figure 2c) is fair when p = 1/4, as shown by the dashed lines in Figure 3a,b.
In contrast to the simple coin flipping game, other games of chance, having more possible
states, are not completely predictable for p = 0, as they retain a certain degree of uncertainty
of symbols in the alternating sequences of chain states.

3. Symmetries and Statistical Ensembles of Walks in Finite Connected
Undirected Graphs

A finite connected undirected graph G(V, E), in which V, |V| = N, is a set of vertices
and E ⊆ V ×V is a set of edges, is defined by a symmetric adjacency matrix, A = A†, such
that Aij = 1, iff (i, j) ∈ E, but Aij = 0 otherwise. The adjacency matrix allows for the fol-
lowing spectral decomposition: Aij = ∑N

s=1 αsuisusj, in which { ui}N
i=1 is an orthogonal sys-

tem of eigenvectors belonging to the ordered real eigenvalues αmax ≡ α1 > α2 ≥ · · · ≥ αN ,
where αmax is simple according to the Perron—Frobenius theorem [31].

Graph symmetries: Multiple eigenvalues of the adjacency matrix indicate the presence
of non-identity automorphisms in the graph G [19,32–36]. A group of a graph’s automor-
phisms Aut(G) preserving the graph structure is formed by all permutations Π ∈ P(V)
defined on the set of graph vertices V that commute with the graph adjacency matrix,
[A, Π] ≡ AΠ−ΠA = 0 [19,32,34]. If a non-identical Π ∈ Aut(G) exists, and u is an eigen-
vector of the adjacency matrix, such that Au = αuu, then the vector v = Πu is another eigen-
vector of A belonging to the same eigenvalue αu, as αuv = Παuu = ΠAu = AΠu = Av.
An automorphism associated with some eigenvalue α of multiplicity mα ≤ (N − 1) is
represented by a low-dimensional mα ×mα real orthogonal submatrix corresponding to
the related block of a permutation matrix. As the eigenvectors of a symmetric adjacency
matrix are real and mutually orthogonal, (u, v) = (u, Πu) = 0, it also follows that elements
of these eigenvectors are {0,±1} mapped to each other under the action of Π ∈ Aut(G).
For example, the major (Perron) eigenvector 〈1, 1, 1〉 of the adjacency matrix of a triangle
graph belongs to the maximum eigenvalue αmax = 2, while another, double eigenvalue
α2,3 = −1 corresponds to the eigenvectors 〈−1, 1, 0〉 and 〈−1, 0, 1〉mapped to each other
by a simple 2-permutation.

Microcanonical ensemble of walks: The microcanonical ensemble of walks (MCE) is a
collection of n-walks in G taken with the same probability Pn ≡ exp(Fn/kT) for all walks
of the same length n, in which the (Boltzmann constant and) temperature kT ≡ 1/ln 2,
and the free energy of n–walks is defined by the logarithm of the number of n-walks
available in the graph G, Fn ≡ log2 ∑ij An

ij. For very long walks, n � 1, An
ij ≈ γ2

1αn
max,

where γ1 ≡ ∑N
i=1 ui1, and therefore the intensive free energy (per edge absorbed by a very

long MCE walk) equals the graph topological entropy [21,22,37], viz.,

µ ≡ lim
n→∞

Fn

n
= log2 αmax. (9)

Canonical ensemble of walks: In the canonical ensembles of walks (CNE) defined on G,
each of κ

(n)
i ≡ ∑N

j=1(An)ij walks of length n available from every node i ∈ V are taken with

equal probability. As κ
(n+1)
i = ∑N

j=1 Aijκ
(n)
j , the CNE walks are defined by the following

irreducible row-stochastic transition matrices [19,21,22]:

W(n)
ij =

Aijκ
(n)
j

κ
(n+1)
i

, κ
(0)
i = 1,

N

∑
j=1

W(n)
ij = 1, n ∈ N. (10)
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The CNE walks W(n)
ij are the random walks defining the following stationary distribu-

tions (centrality measures [21,22]) of nodes:

π
(n)
i =

κ
(n)
i κ

(n−1)
i

∑N
s=1 κ

(n)
s κ

(n−1)
s

,
N

∑
s=1

π
(n)
r W(n)

rs = π
(n)
s . (11)

In particular, the locally isotropic first order random walks, in which a random walker
chooses a node to visit with equal probability among all available nearest neighbors,
W(1)

ij = Aij/κ
(1)
i , defines the well-known stationary distribution of nodes (degree centrality),

viz., π
(1)
i = κ

(1)
i /2|E| [19,21,22]. For n → ∞, κ

(n)
i ≈ αn

maxγ1ui1, so that the series of
transition matrices converges to the Ruelle–Bowen random walk [38], viz.,

W(∞)
ij = lim

n→∞

Aijκ
(n)
j

κ
(n+1)
i

=
Aijuj1

αmaxui1
, (12)

with a stationary distribution π
(∞)
i = u2

i1 [39] that is related to the eigenvector centrality of
nodes [40].

Grand canonical ensemble of walks: Finally, the grand canonical ensemble of walks (GCE)
describes the statistics of “fluctuations” of the local growth rate of the number of walks
available at the node log2 κ

(n)
i over a “chemical potential” nµ of the equiprobable n-walks

in the graph G, viz.,

P (n)
i ∝ exp

(
nµ− log2 κ

(n)
i

kT

)
. (13)

In the thermodynamic limit of infinite walks n→ ∞, the exponential factor represent-
ing a node’s “fugacity” takes the following form [22]:

lim
n→∞

exp

(
nµ− log2 κ

(n)
i

kT

)
=

1
ui1γ1

, γ1 ≡
N

∑
j=1

uj1. (14)

The limiting distribution of relative fugacity, describing the change of the system of
infinitely long walks (free energy of walks) due to adding/removing a node, takes the form
of a Fermi—Dirac distribution, viz.,

Pi = lim
n→∞

P (n)
i =

1
1 + ui1 ∑N

j 6=i u−1
j1

, (15)

typical for the distribution of fermions in a single-particle state i of the energy
εi ≡ log2

(
ui1 ∑N

j 6=i u−1
j1

)
. The Fermi—Dirac distribution, previously observed only in a

quantum system of non-interacting fermions, appears in the model due to the non-interacting
quality of walks in the graph, similar to the Pauli exclusion principle allowing for only two
possible microstates for each single-particle level [22].

Determinantal point processes associated with canonical ensembles of walks—Perspicacity:
The CNE walks in a connected undirected graph define the determinantal point processes
characterized by the probabilities of random currents calculated as the squared deter-
minants of submatrices made up from the elements of eigenvectors of the symmetrized
random walk transition matrices. These determinantal point processes provide the properly
normalized probability distributions for all nodes, subgraphs, and nodal subsets at all
time scales of the corresponding diffusion process [22]. Slater determinants in quantum
mechanics [41] were historically the first examples of determinantal point processes that
later acquired multiple applications in physics, applied mathematics, and statistics [42–45].



Information 2023, 14, 338 9 of 18

The symmetrization similarity transformation [19,22] makes the Markov matrix W(n)
ij into a

symmetric form, Ŵ(n)
ij , viz.,

Ŵ(n)
ij =

√√√√ κ
(n)
i

κ
(n+1)
i

Aij

√√√√√ κ
(n)
j

κ
(n+1)
j

, κ
(n)
i ≡

N

∑
j=1

(An)ij. (16)

In the rest of this section, we omit the index (n) in the symmetrized transition matrix (16)
to simplify the notations. The determinantal point processes may be defined for any
type of random walk, and the resulting probability distributions indeed vary for different
n. The symmetrized transition matrix (16) can be written in a spectral form as follows:
Ŵ = ΦΛΦ>, in which Φ ∈ O(N) is an orthogonal matrix, det Φ ≡ Sgn(Φ) = ±1,
with columns being the orthonormal eigenvectors φk : V → SN−1

1 of the symmetrized
transition matrix (16), and Λ is a diagonal matrix of real valued, ordered eigenvalues of
the transition matrix, 1 = λ1 > λ2 ≥ . . . ≥ λN ≥ −1. The repeating eigenvalues indicate
the presence of symmetries in the diffusion process, and if φk is an eigenvector of the
symmetrized transition matrix (16) belonging to the multiple eigenvalue λk, then there
exists a permutation matrix Π, such that [Ŵ, Π] = 0, and Πφk is another eigenvector of Ŵ
belonging to the same eigenvalue λk. In the latter case, the symmetry may be represented
by a low-dimensional real orthogonal submatrix in Φ corresponding to the related blocks
of a permutation matrix.

As the dynamics of discrete time random walks evolves with powers of the corre-
sponding transition matrix, the eigenvalues 0 < |λk| < 1, for k > 1, describe the rates of
relaxation processes toward a stationary distribution over graph nodes belonging to the
maximal eigenvalue λ1 = 1. Herewith, the positive eigenvalues λk > 0, k > 1, describe the
exponential decay of the relaxation processes (as |λk| < 1), while the negative eigenvalues
correspond to damped oscillations, and both fade away within the finite characteristic relax-
ation times tk = −1/ ln |λk|. The characteristic relaxation time of the stationary distribution
is taken to be t1 = ∞.

The k-th order wedge products, φi1 ∧ . . . ∧ φik , are the determinants of the correspond-
ing k-th order minors of the matrix Φ. The properties of determinants of submatrices
composed of orthonormal vectors were discussed in [19,46] in more detail. In particu-
lar, the squared determinants of the k-th order minors of the orthogonal matrix Φ de-
fine the properly normalized probability distributions over the index set {i1, . . . , ik}, viz.,∣∣φi1 ∧ . . . ∧ φik

∣∣2 = 1. For example, the squared elements of the major eigenvector of the
symmetrized transition matrix, φ2

1 , can be considered the squared determinants of the prim-
itive submatrices of size 1, determining the stationary distribution of random walks, viz.,
φ2

1,i ≡ Pr∞(i) = πi, ∑i∈V πi = 1. The corresponding probability Pr∞(i) > 0 is interpreted
as a measure of likeliness to observe a random walker at i ∈ V in infinite observation time
t1 = ∞. Other eigenvectors, φk, k > 1, also enjoy the proper normalization, φ2

k,i ≡ Prtk (i),
∑i∈V Prtk (i) = 1, and therefore can be interpreted as the ephemeral probability distributions
decaying in the finite characteristic time, tk < ∞.

The squared wedge products, |φk ∧ φl |2 = 1, define the ephemeral probability distri-
butions over pairs of nodes (not necessarily corresponding to graph’s edges) fostered by
the modes φk and φl of the diffusion process, viz.,

Pr
tk ,tl

(i, j) ≡
∣∣∣∣ φk,i φk,j

φl,i φl,j

∣∣∣∣2, ∑
i,j∈V

Pr
tk ,tl

(i, j) = 1. (17)

Prtk ,tl (i, j), i 6= j, may be interpreted as the joint probability mass functions (correlation
functions) describing the probability amplitudes for a random walker to sojourn at the
nodes i and j during the characteristic times tl and tk. Using the properties of determinants,
we may expand the probability mass function Prtk ,tl (i, j) into the joint probability of in-
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dependent observations of the walker at i and j during the characteristic times tl and tk,
conditional on obviously incompatible events, such as the simultaneous presence of the
random walker at two different nodes, viz.,

Prtk ,tl (i, j) = φ2
k,iφ

2
l,j + φ2

k,jφ
2
l,i − 2φk,iφk,jφl,jφl,i

= Prtk (i)Prtl (j) + Prtk (j)Prtl (i)
−2
√

Prtk (i)Prtl (j)Prtk (j)Prtl (i).
(18)

If k = l and λk and λl are the simple eigenvalues, then the determinants in (17) equal
zero for any i and j. Otherwise, if φk and φl belong to the same multiple eigenvalue,
then Prtk ,tl (i, j) > 0 for i and j involved in permutations expressing the symmetry of
the diffusion process. In the latter case, the vectors φk and φl are localized at the graph
nodes that enjoy the symmetry, while other vector elements equal zero. As the absolute
value of a determinant is nothing but the volume of the parallelogram spanned by two
vectors, 〈φk,i, φk,j〉 and 〈φl,i, φl,j〉, for the determinant to be maximal, these vectors should
be orthogonal to each other. The vectors φk and φl are mutually orthogonal in RN ; however,
many of their elements are zero (as corresponding to the block structure of the symmetry-
related permutation matrix), and others are related to each other by permutation, so there
may be 2× 2 orthogonal submatrices, for which the determinant (17) is maximal.

To evaluate the amount of mutual information that knowing either of the diffusion
process mode described by the eigenvector φl provides about the other one described by
the eigenvector φk, we introduce the perspicacity matrix as the mutual information between
the diffusion modes as follows:

I(φk, φl) = ∑
i,j∈V

Pr
tk ,tl

(i, j) log2

(
Prtk ,tl (i, j)

Pr∞(i)Pr∞(j)

)
. (19)

As all nodes’ densities are Pr∞(i) > 0 in a connected graph, the mutual information
(19) is a non-negative symmetric matrix having positive elements for every pair of different
eigenmodes k 6= l, with the zero elements on the major diagonal, k = l, due to the
properties of the determinants. Herewith, the maximal perspicacity (mutual information)
in (19) I(φk, φl) is obtained for the mutually orthogonal eigenvectors φk and φl belonging
to the same multiple eigenvalues (if there are any) of Markov transition matrices (10),
indicating the presence of symmetries in the diffusion processes. These symmetries depend
on the chosen CNE walks (10), grounded in the structural symmetry of the graph (see
Section 5 for an example).

Similarly, we may define the third- and higher-order correlation functions using the
squared determinants of corresponding submatrices of Φ.

4. Navigability and Strive with Different Exploration Strategies

Random walks of every type (n ≥ 1) discussed in Section 3 introduce densities (11)
over graph nodes playing the role of centrality measures [20] and defining quantitative
measures of navigability for graph nodes. Frequently visited sites are predicted more
efficiently than those that are little frequented, especially in the long run: the more fre-
quent a node, the more predictable the navigator’s position visiting it [21]. The two major
navigation strategies working in concert during wayfinding in humans [16,47] and ani-
mals [48,49]—landmark-based piloting and walk (path) integration—might be associated with
the predictable information components (7) and (6) of the Markov chains, defined by the
irreducible row-stochastic transition matrices W(n), n ≥ 1, and by Equations (10) and (12),
defining the CNE random walks on the graph G [21]. Namely, the (information) efficacy
of the path integration strategy taking the entire walk history into account to infer the
forthcoming navigator’s position cannot exceed the entropy excess I(Xt+1|Xt) (6), and the
efficacy of landmark-based piloting that uses the present location of the navigator to predict
her forthcoming position can be assessed through the conditional mutual information
between the present and future positions of the navigator, I(Xt+1, Xt|Xt−1) (7).
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As discussed in [21], the predictable (4) and unpredictable information components of
Equations (5) and (8), P(Xt) ≡ −∑N

k=1 πk log2 ϕk and U (Xt) ≡ −∑N
k=1 πk log2 ψk, have the

same form as the entropy function, −∑N
k=1 πk log2 πk = H(Xt) = P(Xt) + U (Xt), where

we have introduced

ϕk ≡ πk ·
N

∏
s=1

(
W2

ks

)W2
ks , and ψk ≡

N

∏
s=1

(
W2

ks

)−W2
ks , (20)

the navigability and strive potentials of a node, such that πk = ϕkψk. The product factor in
(20) has a form of time-average (the geometric mean) probability of the 2-step transition from
k to s calculated over an infinitely long time of observation, viz.,

lim
τ→∞

N

∏
s=1

τ
√(

W2
ks
)mk,·,s(τ) = lim

τ→∞

N

∏
s=1

(
W2

ks

)mk,·,s(τ)
τ

=
N

∏
s=1

(
W2

ks

)W2
ks , (21)

in which the number of 2-step transitions observed between the nodes k and s per time
interval τ, mk,·,s(τ)/τ, tends to the ks-element of the squared transition matrix, W2

ks, as
τ → ∞.

Given that the probability of finding a random walker at k equals πk, the navigability
potential ϕk defined accordingly (20,21) can be interpreted as the probability that the node
k is a 2-step precursor for other nodes in the graph (including k itself) at any moment of
time. Consequently, the strive potential ψk of the node k (as the inverse probability) may
be interpreted as the expected time for the walker located at k to explore the entire 2-step
neighborhood of the k-neighborhood’s exploration time: the more sizable the neighborhood,
the longer its exploration time and the stronger the strive potential, reducing the amount of
predictable information about the location of the random walker.

The navigability and strive potentials of a node depend on the node’s function in
the graph structure, as well as on the chosen graph exploration strategy described by the
random walks transition matrices W(n)

ij (10) for some n ≥ 1. In Figure 4, we presented a
buckle graph with nodes color-coded according to the node’s density, navigability, and
strive potentials calculated for the different graph exploration strategies represented by the
isotropic (W(1)

ij ) and maximally anisotropic (W(∞)
ij ) random walks, respectively. Namely, in

Figure 4a–c, the graph nodes are color-coded with respect to the quantities calculated for the
isotropic, first-order walks, in which a random walker chooses the next node equiprobably
over all nearest neighbors. The corresponding node density defined with respect to W(1)

ij
(see Figure 4a) represents the node degree centrality: the better-connected nodes have a
higher probability of hosting a random walker.

The navigability potential of nodes for the random walks W(1)
ij is shown in Figure 4b.

The nodes that have fewer neighbors, as well as those connected to them (located on
graph’s boundary), are easy to navigate by isotropic random walks. On the contrary, the
location of a walker over the better-connected nodes located at the graph center is less
predictable. Conversely, the strive potential of nodes with respect to the random walks
W(1)

ij presented in Figure 4c is maximal for the central nodes of the graph (the longest
neighborhood exploration time).
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(a) (b) (c)

(d) (e) (f)

Figure 4. The color-coded density, navigability and strive potentials of nodes in a buckle graph
under different graph exploration strategies. (a) The density of nodes with respect to the isotropic

random walks defined by W(1)
ij (node’s degree centrality). (b) The navigability potential of nodes

for the random walks W(1)
ij . The low-connectivity nodes and nodes connected to them located on

the graph’s boundary are easy to navigate while the walker’s position at the center of the graph

is less predictable. (c) The strive potential of nodes for the random walks W(1)
ij is maximal for the

central nodes of the graph (of the longest neighborhood exploration time). (d) The density of nodes

with respect to the Ruelle–Bowen random walks W(∞)
ij (12) of maximal anisotropy (the square root of

the node’s eigenvector centrality). Repelling from the graph boundaries, these random walks are
anchored at the central nodes hosting the maximal share of the infinitely long paths available in the

graph. (e) The navigability potential of nodes with respect to the Ruelle–Bowen random walks W(∞)
ij

is dominated by the node’s density (the square root of the node’s eigenvector centrality). (f) The

strive potential of nodes for the Ruelle–Bowen random walks W(∞)
ij (neighborhood’s exploration

time) decays from the graph’s center to its periphery.

The node density with respect to the Ruelle–Bowen random walks of maximal anisotropy
defined by the transition matrix W(∞)

ij (12) corresponds to the square root of the node’s
eigenvector centrality (see Figure 4d). The Ruelle–Bowen random walks are statistically
confined to the graph center, hosting the lion’s share of available infinite paths but repelling
from the graph boundaries. The confinement of anisotropic walks at the best structurally
integrated part of the graph reveals itself by the fact that the magnitude of the node’s density
at the graph center is as twice as high with respect to W(∞)

ij than with respect to W(1)
ij and, vice

versa, the Ruelle–Bowen random walkers are less probably found on the graph’s boundaries
than those following isotropic random walks.

The navigability potential of nodes with respect to Ruelle–Bowen random walks W(∞)
ij

presented in Figure 4e is dominated by the node’s density for anisotropic walks (the square
root of the node’s eigenvector centrality) and enhanced by the effect of their confinement at
the graph center. The appearance of anisotropic walks in the central part of the graph is
more predictable than that on the graph boundary.

In contrast to isotropic random walks, the strive potential of nodes with respect to
the Ruelle–Bowen random walks W(∞)

ij is highest over the ring of five central nodes of
the graph (see Figure 4f). The neighborhood exploration time of the center by the Ruelle–
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Bowen random walks slightly exceeds five (steps), indicating that these walks are indeed
statistically confined within the central ring.

In Figure 5a,b, we contrasted the navigability potentials of nodes in a membrane
graph explored by isotropic random walks W(1)

ij (a) and by Ruelle–Bowen random walks

W(∞)
ij (b), respectively. Again, the isotropic walks are most predictable along the graph’s

boundaries and at the membrane’s corners especially, but the location of walkers can hardly
be predicted while in the central part of the graph. On the contrary, the navigability of the
central nodes is highest if the graph is explored by Ruelle–Bowen random walks W(∞)

ij due
to the statistical confinement of anisotropic walks at the best structurally integrated part of
the graph. Finally, in Figure 5c, we have presented the strive potential of nodes (neighbor-
hood’s exploration times) in a barbell graph explored by isotropic random walks W(1)

ij , and
the nodes of the highest degree indeed generate the maximal strive for those walks.

(a) (b)

(c)

Figure 5. (a) The navigability potential of nodes in a membrane graph explored by Ruelle–Bowen

random walks W(∞)
ij . (b) The navigability potential of nodes in a membrane graph explored by

isotropic random walks W(1)
ij . (c) The strive potential of nodes (neighborhood’s exploration times) in

a barbell graph.

As the expected node’s neighborhood exploration time serves as a statistical estimate
of its neighborhood size, ψk = Nk, we may conclude that the navigation properties of
the graph vertices are determined by the sizes of their neighborhoods with respect to the
chosen graph exploration strategy. In particular, the navigability potential of a node as
defined in (20) is nothing else but the “specific” density of the vertex over the size of its
neighborhood, viz., ϕk = πk/Nk. This observation can be formulated as the following
“uncertainty principle” for isotropic random walks in graphs: the larger the neighborhood of a
vertex, the less reliable the assumption that a random walker is at it. In Figure 5c, the statistical
neighborhoods of the best-connected nodes are highlighted in dark red and red as being
characterized by the maximal strive magnitudes with respect to the isotropic random walks
in the barbell graph. The anisotropic random walks are statistically confined within the
best-integrated nodes of the graph, furthest from the graph’s boundaries and structural
irregularities, and therefore these nodes are the most predictable of all.
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5. Perspicacity and Walkability of the Determinantal Point Processes Associated with
Canonical Ensembles of Walks

Perspicacity, as defined in Section 3 as the mutual information (19) between the
different modes of diffusion process (described by the mutually orthogonal eigenvectors of
a symmetrized transition matrix of random walks), quantifies the ability to discern and
understand either of the diffusion modes by knowing the other. Although perspicacity
depends on the type of random walk implemented for the graph exploration, it attains its
maximum value over the diffusion modes (eigenvectors) localized at the same symmetric
subgraphs in the graph (if any exist) and belonging to the same repeating eigenvalue of the
related Markov transition matrix.

In Figure 6a, we present the perspicacity matrix (19) calculated for the maximally
anisotropic Ruelle–Bowen random walks (12) defined on the Kittel graph shown in Figure 6b,c.
The Kittel graph contains a symmetric subgraph (of 9 vertices) affecting the diffusion processes
that may be defined on that. For instance, the symmetrized transition matrix of Ruelle–Bowen
random walks has two eigenvectors, φ18 and φ19, related to each other by some permutation
and belonging to the same double eigenvalue, λ = −0.358225932.

(a) (b) (c)

Figure 6. (a) The perspicacity matrix (19) calculated for the maximally anisotropic Ruelle–Bowen
random walks (12) defined on the Kittel graph with 23 vertices and 63 edges (shown in panels (b,c)).
The symmetric perspicacity matrix represents mutual information (measured in bits) between the
diffusion modes defined by the eigenvectors φk and φl . The mutual information (perspicacity) attains
its maximum value for the eigenvectors (φ18 and φ19) belonging to the same double eigenvalue
(λ = −0.358225932), indicating the structural symmetry in the graph. (b) The vertices of the Kittel
graph are highlighted according to the squared elements φ2

18 by hues of gray (white stands for
0, black stands for 1). The eigenvector φ18 is localized at the graph nodes that enjoy the graph
symmetry (automorphism) and that are related to the elements of the eigenvector φ19 shown in (c) by
permutation. (c) The vertices of the Kittel graph are highlighted according to the squared elements
φ2

19 by hues of gray (white stands for 0, black stands for 1). The eigenvector φ19 is localized at the
graph nodes that enjoy the graph symmetry (automorphism) and that are related to the elements of
the eigenvector φ18 shown in (b) by permutation.

The squared elements of the eigenvectors φ18 and φ19 are shown in Figure 6b,c. The
vertices of the Kittel graph are highlighted by hues of gray (white stands for 0, black stands
for 1) according to the squared elements of φ2

18 in Figure 6b and the squared elements of
φ2

19 in Figure 6c. The mutual information (19) between the eigenvectors φ18 and φ19 attains
its maximum available value (of 9 bits). Thus, perspicacity, a penetrating discernment of
either of the diffusion modes when the other mode is known, is fully possible only within
the framework of structural symmetry common to both modes.

In urban studies, walkability is an essential concept of sustainable urban design as-
sociated with the ideal of a dense, mixed-used, walkable neighborhood fostering higher
levels of creativity, reduced crime, improved health, and civic engagement, in contrast
to the dull and deadly cul-de-sacs of car-oriented suburbs [50]. Walkability relies on the
complex interdependence between built environment density, mix, and pedestrian access in
synergy, which is difficult to quantify and measure for urban neighborhoods. In the present
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section, we propose a mathematically robust approach to the walkability assessment in
built environments (naturally represented by connected undirected graphs). Essentially,
our approach is based on the following idea: the most walkable path in a graph is that most
likely to be walked (over a relatively long period of observations). The determinantal point
process associated with CNE walks can be used to estimate the likelihood that either
graph edge is traversed by random walkers. Namely, each and every edge of the graph
(i, j) ∈ E is assigned the probability (17) to be chosen for a walk during the longest available
characteristic times t1 = ∞ and t2, viz.,

Pr
t1,t2

(i, j) ≡
∣∣∣∣ φ1,i φ1,j

φ2,i φ2,j

∣∣∣∣2. (22)

The standard Dijkstra’s algorithm [51,52] for finding the shortest/longest paths be-
tween nodes in a weighted graph can then be used to chart the most/least probable paths
between two given nodes. In Figure 7, we have highlighted the most probable (shown by
the solid line) and least probable (shown by the dot-dashed line) paths between the given
pair of vertices in the Kittel graph.

Figure 7. The most probable path (shown by the solid line) and the least probable path (shown by the
dot-dashed line) between the given pair of vertices in the Kittel graph. All graph nodes are shown in
blue for color contrasting.

6. Discussion: On the Walkability Analysis of Urban Neighborhoods

Cities can be considered to be among the largest and most complex artificial networks
created by human beings. At the same time, the city is the biggest communication editor
that determines the social and economic wellbeing not only of our present generation but
also for those generations to come, as it provides an interface for our everyday mutual
interactions. Sociologists think that isolation worsens an area’s economic prospects by
reducing opportunities for commerce and engenders a sense of isolation in inhabitants,
both of which can fuel poverty and crime [19]. The speed and scale of urban growth
require urgent global action to help cities prepare for growth and to avoid their being the
future epicenters of poverty and human suffering. Physical segregation of minority groups
dispersed over the spatially isolated pockets of streets and other inner-city areas being
socially barricaded by railways and industries causes their economic marginalization [35].

Together with the “Neurocognition and Action – Biomechanics” research group of
the Center for Cognitive Interaction Technology at Bielefeld University (Germany), we
worked on a project aimed at improving the urban neighborhood of state-subsidized rental
apartments located on Carlmeyerstraße in Bielefeld.

Although it is often impossible to change the structure of built environments in urban
neighborhoods, one can try to alter the social function of a place in order to increase its
attendance and improve the local social climate in it. The idea was to encourage visiting
the least-walkable paths and areas surrounding them by placing sports equipment in them.
In order to quantify walkability in the urban neighborhood and identify the least-walkable
paths through it, we used the approach discussed in Section 5. The spatial graph of the
neighborhood was created by tessellation of the available walkable space, with overlapping
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rectangles anchored at the built environment (see Figure 8a). Each rectangle shown in
Figure 8a represented a vertex of the spatial graph, and each overlap of these rectangles
was interpreted as an edge in the graph. These edges were weighted by the probabilities
defined in (22), and then the least probable paths connecting the rectangles were identified
with the use of Dijkstra’s algorithm.

The university initiative received positive feedback from residents of the neighborhood.

(a) (b)

Figure 8. The urban neighborhood of state-subsidized rental apartments located on Carlmeyerstraße
in Bielefeld (Germany). (a) Tessellation of walkable space in the neighborhood with 66 overlapping
rectangles anchored at the built environment. (b) The least-walkable paths in the neighborhood with
places for sports equipment indicated.

7. Conclusions

In the present paper, we studied three important applications of CNE walks defined
in finite connected graphs. The CNE walks define the properly normalized probability
distributions for all nodes, subgraphs, and nodal sets of the graph at all time scales of the
diffusion process.

The first application is related to the quantitative measures of navigability in graphs
with respect to the different graph exploration strategies. In general, frequently visited
graph nodes are predicted more efficiently than those that are little frequented. In particular,
each node of the graph can be characterized by the navigability and strive potentials that
depend on the node’s function in the graph structure and the chosen graph exploration
strategy. The navigability potential is defined as the probability that the node serves as
a precursor for other nodes, while the strive potential of the node is interpreted as its
neighborhood exploration time.

The second application is related to the mutual information quantifying the discern-
ment of either of the diffusion modes by knowing the other, which we call perspicacity. We
have shown that perfect perspicacity is possible only when both diffusion modes enjoy the
same symmetry (grounded in the structural symmetry of the graph).

Finally, the third application is related to a walkability assessment of the graph, includ-
ing identification of the most and least probable paths in that. We assume that the most
walkable path is a graph is that most likely to be walked over a long enough observation
time. The proposed walkability analysis was used for the assessment of walkability in
urban neighborhoods and received positive feedback from the neighborhood residents.

The application of information theory methods to problems about graphs, in contrast to
geometric, combinatoric, algorithmic, and algebraic approaches, can be called information
graph theory. As it involves evaluating communication efficiency between individual
systems’ units at different time and connectivity scales, information graph theory is in
demand for a wide range of applications, such as designing network-on-chip architecture
and engineering urban morphology within the concept of the smart city.
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