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Abstract: The semantic segmentation of 3D medical image stacks enables accurate volumetric recon-
structions, computer-aided diagnostics and follow-up treatment planning. In this work, we present a
novel variant of the Unet model, called the NUMSnet, that transmits pixel neighborhood features
across scans through nested layers to achieve accurate multi-class semantic segmentation with mini-
mal training data. We analyzed the semantic segmentation performance of the NUMSnet model in
comparison with several Unet model variants in the segmentation of 3–7 regions of interest using
only 5–10% of images for training per Lung-CT and Heart-CT volumetric image stack. The proposed
NUMSnet model achieves up to 20% improvement in segmentation recall, with 2–9% improvement
in Dice scores for Lung-CT stacks and 2.5–16% improvement in Dice scores for Heart-CT stacks when
compared to the Unet++ model. The NUMSnet model needs to be trained with ordered images
around the central scan of each volumetric stack. The propagation of image feature information from
the six nested layers of the Unet++ model are found to have better computation and segmentation
performance than the propagation of fewer hidden layers or all ten up-sampling layers in a Unet++
model. The NUMSnet model achieves comparable segmentation performance to previous works
while being trained on as few as 5–10% of the images from 3D stacks. In addition, transfer learn-
ing allows faster convergence of the NUMSnet model for multi-class semantic segmentation from
pathology in Lung-CT images to cardiac segmentation in Heart-CT stacks. Thus, the proposed model
can standardize multi-class semantic segmentation for a variety of volumetric image stacks with a
minimal training dataset. This can significantly reduce the cost, time and inter-observer variability
associated with computer-aided detection and treatment.

Keywords: semantic segmentation; multi-class; 3D image stacks; region of interest; Dice score; Unet;
CT images; overfitting

1. Introduction

Deep learning approaches for vision-based detection have seen significant break-
throughs over the past five years [1]. From autonomous driving to virtual reality and
from facial detection for phone unlocking to home security camera systems, several deep-
learning-based object detection and segmentation models have been developed to date to
keep up with speed, precision and hardware requirements [2]. For semantic segmentation
tasks, where objects or regions of interest (ROIs) are enclosed within a closed polygon,
the Unet model [3] and its variants have been a widely preferred method owing to the
relatively low computational complexity and high adaptability across use cases due to
short- and long-range skip connections. This allows the Unet and variant models to be well
trained from only a few hundred images, as opposed to requiring thousands of annotated
images for deep learning models with dense connections, which are preferred in the real-
time use cases of autonomous driving and augmented reality [4,5]. However, segmenting
multiple ROIs with varying sizes and shapes in continuous image stacks or videos can be
challenging due to the biases introduced by foreground regions with varying sizes and
can result in jittery detection across subsequent frames. In this work, we present a novel
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Unet model variant, called the NUMSnet, that is capable of accurately segmenting multiple
shapes and sizes of ROIs and transferring information across subsequent images in a stack
to provide superior segmentation performance while training with only a fraction of the
training images when compared to state-of-the art approaches.

Deep learning approaches for medical imaging use cases have a unique requirement
to maintain high recall for pathological detection: i.e., the over-detection of pathology
is acceptable since a specialist will always look at the report and confirm, but detection
failures must be minimized. To enhance the quality of detection and enable explainability,
semantic segmentation and explainable classification models are preferred across medical
domain use cases to identify pathology in patients and also localize the pathological
sites. For example, the recent work in [6] demonstrated the significance of segmentation
for detecting Leukemia using bloodstream images. A review of several deep learning
approaches/models developed to detect pathology is presented in [7] for the use case of
detecting monkeypox from RGB images. Another work in [8] reviewed recent advances in
deep learning models for chest disease detection using X-ray images. Unet and its variant
models continue to be the preferred method in the medical imaging domain owing to the
fewer parameters involved when compared to dense-connection models. The Unet and
variant models have thus far been applied to a variety of medical imaging use cases, from
dental segmentation in [9] and human skin classification in [10] to polyp segmentation
tasks in colonoscopy images in [11]. This demonstrates the versatility of the Unet and
variant models in the medical imaging domain, thereby necessitating the development of
advanced Unet model versions.

The medical imaging domain often requires the semantic segmentation of multiple
ROIs, also known as multi-class segmentation, from 3D medical image stacks of CT or MRI
images for diagnostics and pre-procedural planning tasks. Performing such segmentation
manually can be both costly and time-intensive [12]. Additionally, the manual segmenta-
tion process suffers from inter-observer variability, where two medical practitioners may
disagree on the exact locations of the ROIs [12]. The challenge associated with training
deep learning models using annotated images isolated across patient stacks is that 3D
medical image stacks often have variable pixel resolutions and vary in additive image noise
owing to imaging and storage conditions. This can impede the scalability of automated
deep learning solutions to other patient image stacks acquired under different imaging
settings [13]. Several previous works on medical image semantic segmentation performed
binary segmentation for each image [3,14] or two-stage multi-class segmentation for image
stacks [15] to overcome such image-level variations. In this work, we present a novel single-
stage variant of the Unet model, as shown in Figure 1, that propagates image features
across scans, which results in faster network convergence with few training images for
volumetric medical image stacks. The proposed NUMSnet model requires training images
to be in order, but not necessarily subsequent images in a sequence. The training set is
shown in Figure 1 for the image stack [T0 to Tn]. Once trained, the test set of images can be
ordered or randomized per stack, as represented by sets Sm and Sm′ in Figure 1.

The novel multi-class semantic segmentation NUMSnet model presented in this paper
achieves multi-class semantic segmentation with only 10% of frames per 3D image stack. It
is noteworthy that the proposed model has significantly less computational complexity than
the 3D Unet model and its variants that perform 3D convolutions across image stacks but
has a comparable volumetric segmentation performance [16]. We investigated three main
analytical questions regarding the multi-class semantic segmentation of 3D medical image
stacks. (1) Does the transmission of image features from some of the layers of a Unet variant
model enhance the semantic segmentation performance for multi-class segmentation tasks?
(2) Is the order of training and test frames significant to segmentation tasks for 3D volumes?
(3) How many layers should be optimally propagated to ensure model optimality while
working with sparse training data? The key contributions of this work are as follows:
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1. A novel multi-scan semantic segmentation model that propagates feature-level infor-
mation from a few nested layers across ordered scans to enable feature learning from
as few as 10% of annotated images per 3D medical image stack.

2. The transfer learning performance analysis of the proposed model compared to
existing Unet variants on multiple CT image stacks from Lung-CT (thoracic region)
scans to Heart-CT regions. The NUMSnet model achieves up to 20% improvement in
segmentation recall and 2–16% improvement in Dice scores for multi-class semantic
segmentation across image stacks.

3. The identification of a minimal number of optimally located training images per
volumetric stack for multi-class semantic segmentation.

4. The identification of the optimal number of layers that can be transmitted across scans
to prevent model over- or underfitting for the segmentation of up to seven ROIs with
variables shapes and sizes.

Figure 1. An example of the proposed NUMSnet system on a Lung-CT image stack. The training
images (T) are selected in order or in sequence, while test images (S) can be random or in sequence.

This paper is organized as follows. The existing literature and related works are
reviewed in Section 2. The datasets under analysis and the NUMSnet model are explained
in Section 3. The experiments and results are shown in Section 4. A discussion regarding
the limiting conditions is presented in Section 5, and the final conclusions are presented in
Section 6.

2. Related Work

Deep learning models have been highly popular for computer-aided detection in the
past decade and preferred over the signal processing methods in [17,18]. This is primarily
due to the ability of deep learning models to automatically learn features that are indicative
of an ROI if a significant volume of annotated data is provided. Signal processing models,
on the other hand, rely on hand-generated features that may lead to faulty detections due
to the high variability across imaging modalities and storage and transmission formats.
The prior work in [19] demonstrates a two-path CNN model that can take filtered Lung-CT
images followed by fuzzy c-means clustering to segment the opacity in each Lung-CT
image. While such feature-based works have low data dependence, the models often do
not scale across datasets.

Unet models with the default 2D architecture have been used extensively for medical
image segmentation applications since 2015 [3]. While other deep learning models, such as
MaskRCNN [20] and fully convolutional neural networks (FCNs) [21], are more popular
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in non-medical domains, Unet and its variants have continued to be the preferred deep
learning model for medical image segmentation tasks. The 2D Unet model and its variants
apply long and short skip connections that ensure that the number of trainable parameters
is low, thereby leading to quicker training with fewer images. Over the last few years,
several Unet model variants have been applied for dense volumetric scan segmentation. In
instances where high volumes of annotated data are readily available, such as anatomical
regions in Heart-CT scans in [15], multi-stage Unet variants have been introduced. The
works in [15,22] trained two separate Unet models with separate loss functions, with
the objective of zooming into the foreground regions in the first network, followed by
separating the foreground into various ROIs. Other variants of multi-2D-Unet models, such
as the work in [23], implement trained Unet models at different resolutions, i.e., one Unet
model trained on images with dimensions of [256 × 256], another trained at a resolution of
[512 × 512] and so on for lung segmentation. However, these methods require significantly
high volumes of annotated data to train multiple Unet models.

Other recent works in [13,24] applied variations to the 2D Unet model to achieve the
segmentation of opacity and lung regions in chest CT scans to aid in COVID-19 detection.
Additionally, in [25], Inf-net and Semi-Inf net models are presented that can perform binary
segmentation for lung opacity detection with Dice scores in the range of 0.74–0.76. Most
of these existing methods require several hundred annotated training images across scans
and patients and can efficiently be trained for binary semantic segmentation tasks.

Some of the well-known 2D Unet model variants used in the medical imaging domain
are the wide Unet (wU-net) and Nested Unet (Unet++) [14]. While a typical Unet model
with a depth of 5 will have filter kernel widths of [32, 64, 128, 256, 512] at model depths
of 1 through 5, the wUnet model has filter kernel widths of [35, 70, 140, 280, 560] at
model depths of 1 through 5. Thus, wUnet has more parameters and thus can enhance
segmentation performance when compared to Unet. The Unet++ model, on the other
hand, generates dense connections with nested up-sampling layers to further enhance the
performance of semantic segmentation, as presented in [26,27]. In this work, we propose
an enhanced Unet++ architecture called the NUMSnet, where the features from the nested
up-sampling layers are transmitted across scans for increased attention to smaller regions
of interest (such as opacity in Lung-CT images). This layer propagation across scans enables
multi-class semantic segmentation with only 10% of annotated images per 3D volume stack.

Another major family of Unet models that have been applied to volumetric image
segmentation tasks in the medical imaging domain is the 3D Unet model variants, as
shown in [16]. These models have significantly higher computational complexity when
compared to the 2D Unet model and its variants due to the 3D convolutions in each layer,
but they achieve superior segmentation performance for pathological sites in 3D image
stacks. Another work in [28] combined the Resnet backbone with the 3D Unet model to
improve the resolution of segmentation for small ROIs in Lung-CT images. As additional
variants of the 3D Unet model, the encoder architecture can be modified with the VGG19,
3D ResNet152 or DenseNet201 backbone to achieve 80–98% Dice scores for multi-class
semantic segmentation tasks [16]. However, these 3D Unet models are difficult to train
and may need around 1700 epochs and 1.8 h to train on single-GPU systems. Besides 3D
Unets, another recent work that implemented a 3D fully convolutional neural network
model for volumetric segmentation is shown in [29], where MRI stacks are segmented
with about an 86% Dice score with over 48 h of training time. It is noteworthy that 3D
Unet models have been preferred for cardiac CT segmentation so far, with the work in [15]
applying a two-stage 3D Unet model for voxel-level segmentation of the heart. Another
work in [30] implemented a deeply supervised 3D Unet model with a multi-branch residual
network and deep feature fusion along with focal loss to achieve 86–96% Dice scores for the
semantic segmentation of small and large ROIs. Our work aimed to perform 2D semantic
segmentation and achieve a comparable segmentation performance to 3D model variants
with under 10 min of training time on a single GPU system.
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3. Materials and Methods
3.1. Data: Lung-CT and Heart-CT Stacks

In this work, we analyze two kinds of single-plane volumetric CT image stacks. In the
first category, Lung-CT image stacks were collected from the Italian Society of Medical and
Interventional Radiology. The first Lung-CT (Lung-med) volumetric stack [31] contains
829 images from a single 3D image stack with [512 × 512]-dimension images. Out of these
829 scans, 373 are annotated. The second dataset (Lung-rad) contains 9 axial volume chest
CT scans with 39–418 images per stack. All Lung-CT images are annotated for 3 ROIs,
namely, ground-glass opacity (GGO), consolidations and the lung region as the foreground
and can be downloaded from [32].

In the second category, the Heart-CT image dataset is from the MICCAI 2017 Multi-
Modality Whole Heart Segmentation (MM-WHS) challenge [15,30], from which we selected
the first 10 training CT image stacks of the heart region for analysis. This dataset contains
coronal volumetric stacks with 116–358 images per volume and multi-class semantic seg-
mentation annotations for up to 7 heart-specific ROIs represented by label-pixel values of
[205, 420, 500, 550, 600, 820, 850], respectively. These pixel regions represent the left ventri-
cle blood cavity (LV), myocardium of the left ventricle (Myo), right ventricle blood cavity
(RV), left atrium blood cavity (LA), right atrium blood cavity (RA), ascending aorta (AA)
and pulmonary artery (PA), respectively. It is noteworthy that for the Heart-CT dataset,
only 10–15% of the images per stack contain annotated ROIs. Thus, when selecting the
ordered training dataset, it was ensured that at least 50% of the training samples contained
annotations. Some examples of the Lung-CT and Heart-CT images and their respective
annotations are shown in Figure 2.

Figure 2. Examples of multi-class segmentation datasets used in this work. Row 1: Lung-med dataset.
Row 2: Lung-rad dataset. For Row 1 and Row 2 the regional color coding is as follows. Blue: lung
region; Red: GGO; Green: consolidation regions. Row 3: Heart-CT dataset. The ROIs are color-coded
as follows. Red plane: label pixels 205 and 420. Blue plane: label pixels 500 and 550. Green plane:
label pixels 600, 820 and 850.
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3.2. Image Data Pre-Processing

Each image from the data stacks under analysis here was pre-processed for the Unet
and variant models. First, each input image was resized to [256 × 256 × 1] for ease of
processing. Next, the resized image I was re-scaled to the range [0,1], thereby resulting
in image I′, using min–max normalization, as shown in (1), where minI and maxI refer
to the minimum and maximum pixel values in I. This is followed by the generation of
multi-dimensional label vectors [256 × 256 × d] per image, where d represents the number
of classes that each pixel can be classified into. These label vectors are generated as binary
images for each class. For example, the Heart-CT stack images contain up to 7 different
annotated regions depicted by a certain pixel value pixi, ∀i = [1:7]. Thus, the ground-truth
label vector (G′) generated per image contains 7 planes, where each plane G′i is generated
as a binary mask from the label masks (G), as shown in (2). This process defines the ground-
truth G’ such that the Unet decision-making function ( fi) proceeds to analyze whether each
pixel belongs to a particular class i or not. Finally, the output is a d-dimensional binary
image (P), where each image plane (Pi) is thresholded at a pixel value τ = 0.5, as shown
in (3).

I′ =
I −minI

maxI −minI
. (1)

∀i ∈ [1 : d], G′i = [G == pixi], (2)

and, Pi = [ fi(I′) > τ]. (3)

Once the datasets are pre-processed, the next step is to separate the data stacks into
training, validation and test sets. There are two ways in which the training/validation/test
datasets are sampled for each volume stack. The first is the random sampling method,
where 10% of the scans per volume are randomly selected in ascending order for training,
1% of the remaining images are randomly selected for validation, and all remaining images
are used for testing. The second is the sequential sampling method, which starts from a
reference scan in the volumetric stack. This reference scan can either be the first or middle
scan in the stack. We sample 10% of the total number of images in the stack starting from
the reference scan in sequence, and these become the training set of images. From the
remaining images, 1% can be randomly selected for validation, while all remaining scans
are test set images in sequence. Using these methods, we generated training sets with the
sizes [82 × 256 × 256 × 1], [84 × 256 × 256 × 1] and [363 × 256 × 256 × 1] for the Lung-med,
Lung-rad and Heart-CT stacks, respectively.

3.3. Unet Model Variant Model Implementation

To date, Unet and its variants, such as wUnet and Unet++ models, have been applied to
improve foreground segmentation precision for small ROIs, as shown in [14,30]. One major
difference between the Unet++ and Unet models [3] is the presence of nested layers that
combine the convolved and pooled layers with the up-sampling (transposed convolutional)
layers at the same level. Thus, for a Unet with a depth of 4, a Unet++ model results in 6
additional nested layers, shown as [X(1,2), X(1,3) X(1,4), X(2,2), X(2,3), X(3,2)] in Figure 3.
These additional layers increase the signal strength at each depth level and amplify the
segmentation decisions around boundary regions of ROIs [14]. We selected an optimal
depth of 4 for our analysis of Unet and variant models based on the prior work in [33], which
showed superior semantic segmentation at a depth of 4 when compared to shallower Unet
models. Additionally, depth-4 Unet and variant models are preferred for an appropriate
comparative analysis with previous works.
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Figure 3. Example of a Unet++ model with a depth of 4. The global feature layer is X(5,1), and the
depth is associated with the distance of each layer from the global feature layer. The blue layers
correspond to convolved and pooled layers. The green layers correspond to merged transposed
convolutions, followed by convolution outcomes from the same depth layers. The 6 additional nested
color-coded layers (purple, cyan, red, gray, orange, dark and blue, corresponding to [X(1,2), X(1,3),
X(1,4), X(2,2), X(2,3), X(3,2)], respectively) contain spatial pixel neighborhood information, that can be
transmitted temporally across images/scans for an increased accuracy of semantic segmentation.

A Unet model comprises encoder and decoder layers, where the encoder layers
perform convolution followed by a max-pooling operation, while the decoder layers
perform concatenation followed by up-sampling and convolution operations. Starting with
the input image I′, the encoder layers are [X(1,1), X(2,1), X(3,1), X(4,1)], respectively. The
output of each encoder layer results in an image with half the input dimensions but with
additional feature planes. For example, the input to layer X(1,1) is an image with the size
[256 × 256 × 1], while the output has dimensions of [128 × 128 × 32] due to convolution
with a [3 × 3] kernel with a width of 32 and max-pooling with a [2 × 2] kernel. Thus, at
the final level (X(5,1)), a global feature vector with the size [16 × 16 × 512] is generated. At
this point, the decoder layers [X(4,2), X(3,3), X(2,4), X(1,5)] convert the dense features back
to the segmented image planes. The decoder layers concatenate the up-sampled features
with the encoder layer outputs from the same level to promote a better distinction between
foreground pixels (scaled value of 1) versus background pixels (scaled value of 0). For
example, at depth level 1 from the global feature layer, the output from layer X(4,1) is
concatenated with the up-sampled image from layer (5,1), resulting in image features with
dimensions of [32 × 32 × 512] that are then subjected to convolutions in layer (4,2), thereby
resulting in image features with dimensions of [32 × 32 × 256].

The Unet++ model, on the other hand, was developed to enhance the boundary
regions for relatively small ROIs by introducing nested decoder layers at each depth level,
as shown in Figure 3. The 6 additional nested/hidden decoder layers that are introduced in
the skip connection pathway are [X(1,2), X(1,3), X(1,4), X(2,2), X(2,3), X(3,2)] in Figure 3. The
2D weights for each decoder layer X in image n with encoder layer index i′ and decoder
layer index j′ (i.e., xn(i′, j′)) are generated using Equation (4), as shown in [14]. Here, ζ(.)
refers to the convolution operation, υ(.) refers to the up-sampling operation and [.] refers
to concatenation.

xn(i′, j′) =

{
ζ(xn(i′ − 1, j′)) j′ = 1

ζ([[xn(i′, k′)j′−1
k′=1], υ(xn(i′ + 1, j′ − 1)]) j′ > 1.

(4)
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For example, the decoder layer outcome xn(4, 2) = ζ[[xn(4, 1), υ(5, 1)]] using Equa-
tion (4). This ensures additional skip connections that lead to improved region boundary
detection.

The primary parameters that need to be tuned to ensure the optimal training of the
Unet or variant model are the following: data augmentation methods, batch size, loss
function, learning rate and reported metric per epoch. In this work, we applied image
data augmentation using the tensorflow keras library by augmenting images randomly
to ensure a rotation range, width shift range, height shift range and shear range of 0.2
and a zoom range of [0.8, 1] per image. Since the training dataset has few samples, we
implemented a training batch size of 5 for the Lung-CT images and a batch size of 10 for
Heart-CT images. It is noteworthy that the batch size should scale with the number of
detection classes; thus, we used additional images per batch for the Heart-CT stack. For all
Unet and variant models, we used the Adam optimizer with a learning rate of 10−4. Finally,
the metrics under analysis are shown in (5)–(8) based on the work in [34]. For each image
with l pixels and d image planes for the ground-truth (G′i ), the intersection over union (IoU)
or Jaccard metric in (5) represents the average fraction of correctly identified ROI pixels.
Precision (Pr) in (6) and recall (Re) in (7) denote the average fraction of correctly detected
ROI pixels per predicted image and per ground-truth image plane, respectively. The Dice
coefficient in (8) further amplifies the fraction of correctly classified foreground pixels. The
Dice coefficient can also be derived from the precision (Pri) and recall (Rei) metrics per
image plane, as shown in (8).

IoU =
d

∑
i=1

l

∑
j=1

|Pi(j) ∩ G′i(j)|
Pi ∪ G′i

, (5)

Pr =
d

∑
i=1

l

∑
j=1

Pi(j) ∩ G′i(j)
Pi(j)

, (6)

Re =
d

∑
i=1

l

∑
j=1

Pi(j) ∩ G′i(j)
G′i(j)

, (7)

Dice =
d

∑
i=1

l

∑
j=1

2 ∗ |Pi(j) ∩ G′i(j) + 1|
Pi(j) + G′i(j) + 1

=
d

∑
i=1

2 ∗ Pri ∗ Rei
Pri + Rei

. (8)

The loss functions under analysis are shown in (9)–(11). The Dice coefficient loss
(DL) in (9) is the inverse of the Dice coefficient, so it ensures that the average fraction of
correctly detected foreground regions increases for each epoch. The binary cross-entropy
loss (BCL) in (10) is a standard entropy-based measure that decreases as the predictions
and ground-truth become more alike. Finally, the binary cross-entropy-Dice loss (BDL) in
(11) is a combination of BCL and DL based on the work in [14].

DL = −D, (9)

BCL = −
d

∑
i=1

l

∑
j=1

[Pi(j)log(G′i(j))], (10)

BDL =
BCL

2
+ DL. (11)

Finally, we analyze the loss function curves per epoch using the deep-supervision
feature from the Unet++ model [14] in Figure 4. Here, we assessed convergence rates for
outputs at each depth level. In Figure 4, we observe that the curves for the convergence of
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outputs from depths 4 and 3 (i.e., layers X(1,5) and the resized output of X(2,4)) are relatively
similar and better than the loss curves at depth 1 (resized output of layer X(4,2)). This
implies that as the transposed convolutions move farther away from the global feature layer
X(5,1), additional local feature-level information gets added to the semantic segmentation
output. Thus, for a well-trained Unet++ model, the initial transposed convolution layers
closer to the global feature layer X(5,1) add less value to the semantic segmentation task
when compared to the layers farther away from it. This variation in loss curves at the
different depth levels, based on the work in [35], demonstrates the importance of the
additional nested up-sampling layers to the final multi-class segmented image.

Figure 4. Example of loss functions per depth layer in Unet++ model using the deep-supervision
feature on the Lung-med training dataset. The resized image outcome from X(4,2) achieves lower
segmentation resolution when compared to the outcome from X(1,5). Thus, nested layers enhance
local boundary-region-specific features for segmentation.

3.4. The NUMSnet Model

While the Unet and variant models are efficient in the 2D segmentation of each
scan, segmenting volume stacks requires further intervention wherein pixel neighborhood
information can be transmitted to the next ordered scan, thereby allowing better resolution
of semantic segmentation while training on few images. The NUMSnet model is a 3D
extension of the Unet++ model, wherein the outcomes of the nested Unet++ layers are
transmitted to subsequent scans. As a first step for an image n, the 2D weights for the
decoder layers are computed using Equation (4). Next, the 2D weights of the nested
layers are transmitted using Equation (12), where the final 3D weight for each hidden
layer (Xn(i′, j′)) is computed by concatenating the weights of the same layer (i′, j′) from
the previous scan, followed by the convolution operation. For the first image in each stack,
the hidden layers are concatenated with themselves, followed by convolution, as shown in
Equation (12).

Xn(i′, j′) =

{
ζ([xn(i′, j′), xn(i′, j′)]) n = 1
ζ([xn−1(i′, j′), xn(i′, j′)]) n > 1, ∀i <= j.

(12)

From the implementation perspective, for the NUMSnet model, we applied batch
normalization to encoder layers only and dropout at layers X(4,1) and X(5,1) only (GitHub
code available at https://github.com/sohiniroych/NUMSnet, accessed on 12 June 2023).
In addition, the widths of kernels per depth layer for the NUMSnet model are [5, 70,
140, 280, 560], similar to those of the wUnet model. This process of transmitting and
concatenating layer-specific features with those of the subsequent ordered images generates
finer boundaries for ROIs. This variation in the Unet++ model to generate the NUMSnet

https://github.com/sohiniroych/NUMSnet
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model is shown in Figure 5. The additional layers generated in this process are shown in
the model diagrams in Appendix A Figure A1.

Figure 5. The proposed NUMSnet, which propagates the image features from the 6 nested layers
across scans. The outcome of each nested layer is concatenated and convolved with the equivalent
layer of the subsequent ordered image in the 3D stack.

The NUMSnet model has two key hyper-parameters. First, the relative location of the
training scans in the 3D volume stack impacts the training phase. Since layer information
is transmitted to the subsequent ordered scans, selecting training scans that contain ROIs
in several subsequent scans is important. We analyze this sensitivity to the training data
location in a 3D stack by varying the location of the reference training frame from the
beginning to the middle of the stack, followed by selecting the subsequent or randomly
selected frames in order. For example, this ensures that in the Heart-CT stacks, if an aortic
region is detected for the first time in a scan, the ROI first increases and then decreases in
size as training progresses. The second hyper-parameter for the NUMSnet model is the
number of decoder layers that can be transmitted across scans. If all 10 decoder layers
[X(1,2), X(1,3), X(1,4), X(1,5), X(2,2), X(2,3), X(2,4), X(3,2), X(3,3), X(4,2)] in Figure 3 are
transmitted to the subsequent scans, this would incur high computational complexity
(14.5 million trainable parameters). Thus, we analyze the segmentation performance using
this NUMSnet variant (called NUMS-all), where features from all 10 up-sampling layers
are transmitted. The primary reason for transmitting only up-sampling layers is that up-
sampling generates image feature expansion based on pixel neighborhood estimates. Thus,
information added during the up-sampling process further aids in the foreground versus
background decision-making process per image plane.

4. Experiments and Results

In this work, we analyze the performance of the Unet model and its variants for the
multi-class semantic segmentation of volumetric scans using only 10% of the annotated
data for training. To analyze the importance of nested layer propagation across subsequent
images, we performed five sets of experiments. First, we comparatively analyze the
segmentation performance per ROI for the NUMSnet when compared to the Unet [3] model
and its variants [14] for the Lung-CT image stacks. Second, we analyze the sensitivity of the
NUMSnet model to the relative position and selection of training data for randomly ordered
sampling versus sequential sampling from the beginning or middle of the volumetric stack.
Third, we analyze the semantic segmentation performance of the NUMSnet model when
only nested layer features are transmitted versus when all up-sampling layer features are
transmitted (NUMS-all). Fourth, we assessed the semantic segmentation capability of the
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NUMSnet in comparison with Unet variants for the transfer learning of weights and biases
from segmenting three ROIs (in Lung-CT stacks) to segmenting seven ROIs (in Heart-CT
stacks). Finally, we performed an ablation study, in which we assessed the importance of
each hidden layer to the superior semantic segmentation performance of the NUMSnet
model. We compared the segmentation performance when the selected hidden layers per
level are propagated. We also comparatively analyze the performance of the NUMSnet
with respect to state-of-the-art models that were trained on higher volumes of data.

It is noteworthy that while the training samples are ordered, the test samples may
be out of order, starting at the other end of the stack or starting at a new volumetric
stack. In the testing phase, the nested layer outputs and model layer weights and biases
are collected per test image and passed to the next image. Once the NUMSnet model is
optimally trained, the out-of-order scans in the test stacks do not significantly impact the
segmentation outcomes. All other parameters, including data augmentation, loss functions,
batch size, compiler, learning rate and reported metrics, are kept similar to those of the
Unet model and variants to realize the segmentation enhancements per epoch.

An additional consideration for segmenting medical images is that relative variations in
pixel neighborhoods are significantly less than those in regular camera-acquired images, such
as those used for autonomous driving or satellite imagery [4]. Thus, feature-level propagation
across scans through the NUMSnet model enhances the decision making around boundary
regions, especially for smaller ROIs. However, the additional nested layer transmission
introduces a higher number of parameters in the Unet variant models, which leads to a slower
training time and higher GPU memory requirements for model training. In this work, we
used Nvidia RTX 3070 with 8GB of GPU RAM on an Ubuntu Laptop and tensorflow/keras
libraries to train and test the volume segmentation performance. In instances where models
have a high number of parameters, keeping a small batch size of 5–10 ensures optimal
model training. We collectively analyzed the segmentation performance along with the
computational complexities incurred by each model to demonstrate the ease of use and
generalization to new datasets and use cases.

4.1. Multi-Class Segmentation Performance of Unet Variants

For any multi-class semantic segmentation model, it is important to assess the com-
putational complexity introduced by additional layers in terms of the number of trainable
parameters jointly with the semantic segmentation performance. Table 1 shows the vari-
ations in the number of trainable and non-trainable parameters for all 2D Unet variants
analyzed in this work. Here, we found that Unet is the fastest model, while NUMS-all has
almost twice the number of trainable parameters when compared to Unet. In addition, the
NUMSnet model is preferable to NUMS-all with regard to computational complexity, as it
has less of a chance of overfitting [36]. Since the NUMSnet model performs 2D operations
in encoder and decoder layers, we comparatively analyzed its performance with the 2D
model variants only.

Table 1. Variations in the number of parameters in Unet model variants.

Model Total Params Trainable Params Non-Trainable Params

Unet 7,767,523 7,763,555 3968
wUnet 9,290,998 9,286,658 4340
Unet++ 9,045,507 9,043,587 1920

NUMSnet 11,713,943 11,711,843 2100
NUMS-all 14,526,368 14,524,268 2100

It is noteworthy that the base 3D Unet model, as shown in [16,28], has 19,069,955
total parameters, which increases rapidly with modifications to the encoder–decoder block
backbones. Next, we analyze the multi-class semantic segmentation performance of the
NUMSnet and Unet model variants. In Table 2, the average semantic segmentation across
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five randomly ordered training dataset selections of the three ROIs in the Lung-med dataset
is presented. Here, we observe that the performance of lung segmentation is the best and
similar across all Unet variants, with a Dice score ranging between 92 and 96%. This is
intuitive since the lung is the largest region that is annotated in most images. The Unet and
variant models preferentially extract this ROI with minimal training data. We also observe
that for the segmentation of opacity (GGO) and consolidation (Con) regions, the NUMSnet
model has the best combination of Pr and Re, thereby resulting in 2–8% higher Dice scores
than all Unet variants. The Unet++ model, on the other hand, achieves superior overall
Pr metrics but low Re metrics, which leads to lower Dice and IoU scores. Some examples
of Unet and variant model segmentation are shown in Figure 6. Here, we observe that
for small as well as large ROIs, the NUMSnet has better segmentation resolution when
compared to all other Unet variants.

Figure 6. Example of Lung-CT segmentation by the Unet variant models. Row 1 represents poor
segmentation results. Row 2 represent good segmentation results since the major ROI is the lung.
The color coding is as follows. Blue: lung regions; Red: GGO regions; Green: consolidation regions;
Magenta: over-detection of consolidation regions.

For all Unet variants under analysis, the number of epochs is 60, and the optimal
loss function is the BDL with the Dice coefficient as the reported metric. We observe poor
convergence with the DL loss function since the large lung regions are weighted more by
the DL, thereby resulting in the high accuracy of lung segmentation but poor performance
for GGO and consolidation segmentation.

Next, we analyze the segmentation performance on smaller Lung-CT stacks from ra-
diopedia (Lung-rad), and the results are shown in Table 3. For the lung region segmentation,
we have similar observations on this dataset to those on the Lung-med dataset. All Unet
variants models achieve 95–96% Dice scores for the segmentation of the large lung region.
However, for segmenting GGO and Con regions, the NUMSnet model achieves higher
Re and up to 10% improvement in Dice coefficients over the other Unet variant models.
Examples of good and bad selected segmentation on this dataset are shown in Figure 7.
Here, we observe that the lung region is well detected by all Unet model variants, but Unet
misclassifies the GGO as consol (in row 2, red regions are predicted as green), while the
NUMSnet under-predicts the GGO regions. The reason for the lower performance for the
Lung-rad stacks when compared to the Lung-med stack is that the number of frames in the
sequence for training per stack is lower when compared to the Lung-med stack. Thus, for
denser volumetric stacks, the NUMSnet has better multi-class segmentation performance
when compared to shorter stacks with few images.
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Table 2. Comparative performance of Unet and variant models on the Lung-med stack averaged
over 5 runs. The best values for each metric are highlighted.

Task Pr Re IoU Dice

NUMSnet, Con 82.06 65.86 57.43 61.25
NUMSnet, GGO 89.86 85.87 78.76 81.29
NUMSnet, Lung 97.35 94.96 92.94 95.9

Unet, Con 91.91 32.48 30.43 33.84
Unet, GGO 90.56 73.69 68.26 70.92
Unet, Lung 91.66 94.31 86.59 92.2

wUnet, Con 64.02 77.85 53.42 53.66
wUnet, GGO 81.92 95.29 78.33 80.43
wUnet, Lung 99.27 91.47 90.94 94.35

Unet++, Con 71.67 57.14 42.21 45.36
Unet++, GGO 92.87 71.54 68.06 71.18
Unet++, Lung 99.61 90.41 90.17 93.89

Table 3. Averaged performance of Unet and variant models on 10 Lung-rad CT stacks across 5 runs.
The best values for each metric are highlighted.

Task Pr Re IoU Dice

NUMSnet, Con 68.22 79.1 57.08 59.42
NUMSnet, GGO 85.1 91.86 80.31 83.0
NUMSnet, Lung 99.36 93.29 92.76 95.22

Unet, Con 64.2 49.93 31.2 31.28
Unet, GGO 92.33 79.11 75.06 77.99
Unet, Lung 98.52 93.75 92.41 95.11

wUnet, Con 83.31 47.68 42.18 46.26
wUnet, GGO 89.41 86.61 79.4 81.99
wUnet, Lung 97.15 95.71 93.22 95.8

Unet++, Con 71.51 62.08 47.27 50.48
Unet++, GGO 94.14 71.92 69.83 73.03
Unet++, Lung 98.36 94.3 92.84 95.4

Figure 7. Example of Lung-CT segmentation by Unet variant models. Row 1: Best-case detection.
Row 2: Worst-case detection. The color coding is as follows. Blue: lung regions; Red: GGO regions;
Green: consolidation regions.
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4.2. Sensitivity to Training Data

In this experiment, we modified the training dataset sequence and observed the seg-
mentation performance variations. We comparatively analyze the performance for three sets
of variations in training and test sequences. The first set comprised a training dataset that
started with the first scan in the image stack as the reference image, followed by 10% of
sequential images extracted per stack for training. All remaining images in the sequence were
considered test samples, while 1% of the images from the test samples were withheld for
hyper-parameterization as a validation dataset. This is called the [Initial, Seq] set. The second
set comprised training images that started with the middle scan per 3D stack. Then, 10%
of the subsequent scans were randomly selected while maintaining the order of images to
generate the training sequence. All remaining images were used as test data, with 1% of the
images randomly removed as the validation dataset. This is called the [Mid, Rand] set. The
third set started with training images from the middle scan per stack, and 10% of the frames
in a sequence were selected as training data. All remaining images were test data, with 1%
of the images separated for validation tasks. This is called the [Mid, Seq] set. The variations
in the multi-class semantic segmentation of the Lung-med and Lung-rad scans for all three
training/test stacks are shown in Table 4.

Table 4. Comparative performance of NUMSnet on Lung-CT stacks when varying the training
dataset, averaged over 5 runs. The best values for each metric are highlighted.

Task Pr Re IoU Dice

Data: Lung-med

Initial, Seq, Con 82.5 35.05 26.1 29.34
Initial, Seq, GGO 85.78 69.13 59.30 62.21
Initial, Seq, Lung 88.85 93.45 82.98 89.90

Mid, Rand, Con 60.38 96.52 57.97 57.97
Mid, Rand, GGO 70.15 99.46 69.75 69.75
Mid Rand, Lung 99.27 89.19 88.62 92.94

Mid, Seq, Con 60.37 97.32 58.91 58.91
Mid, Seq, GGO 70.15 93.17 68.01 68.01
Mid, Seq, Lung 98.73 89.28 88.27 92.59

Data: 10 Lung-rad Stacks

Initial, Seq, Con 87.74 44.24 38.94 43.13
Initial, Seq, GGO 92.23 75.69 72.46 75.19
Initial, Seq, Lung 95.44 96.74 92.87 95.79

Mid, Rand, Con 62.05 99.1 60.91 60.91
Mid, Rand, GGO 72.22 99.0 70.22 70.22
Mid Rand, Lung 99.79 91.74 91.6 94.57

Mid, Seq, Con 59.15 98.51 59.49 59.76
Mid, Seq, GGO 82.22 99.0 80.22 80.22
Mid, Seq, Lung 99.0 90.74 90.6 93.8

Here, we observe that the IoU and Dice scores for segmentation using the [Initial, Seq]
training/test stack are consistently worse than those obtained using training sets that begin
in the middle of each volume stack. This is intuitive since the initial layers often contain
no annotations or minimal ROIs, being a precursor to the intended ROIs. Thus, using the
[Initial, Seq] training dataset, the NUMSnet model does not learn enough to discern the
small ROIs in this stack. We also observe that the performance of the [Mid, Rand] and
[Mid, Seq] training stacks are similar to that of the Lung-med stack. In addition, we observe
a 10% improvement in Pr and D for [Mid, Seq] over [Mid, Rand] for GGO segmentation
only. Thus, selecting training images in the middle of 3D stacks with randomly ordered
selection is important for training the multi-class NUMSnet model.
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4.3. Performance Analysis for NUMSnet Variants

In the third experiment, we analyze the number of up-sampling layers that should
be propagated to subsequent training scans for optimal multi-class segmentation tasks
per volume. In Table 5, we report the segmentation performance of NUMS-all for Lung-
CT stacks, where all 10 up-sampling layers are transmitted. Comparing the Dice scores
for the Lung-med stack for NUMS-all with those of NUMSnet in Table 2, we observe
that NUMS-all improves segmentation Re for the smaller ROIs of GGO and Con, but the
overall segmentation performance across all ROIs remains comparable. We make similar
observations for the 10 Lung-rad stacks when comparing Table 5 and Table 3. Thus, given
that NUMS-all has higher computational complexity without a significant improvement in
the overall segmentation performance, the NUMSnet model can be considered superior to
NUMS-all while training with limited images.

Table 5. Performance of Lung-CT segmentation with NUMS-all model averaged across 5 runs.

Data Lung-Med

Task Pr Re IoU Dice

NUMS-all, Con 66.81 72.63 53.08 54.86
NUMS-all, GGO 83.11 91.06 78.09 81.02
NUMS-all, Lung 99.67 90.93 90.74 94.64

Data 10 Lung-rad Stacks

NUMS-all, Con 64.14 96.04 63.05 63.06
NUMS-all, GGO 86.97 92.34 81.82 84.34
NUMS-all, Lung 99.63 92.89 92.56 95.1

4.4. Transfer Learning for Heart-CT Images

In this experiment, we analyze the transfer learning capabilities of pre-trained Unet
and variant models from the Lung-CT stack to the Heart-CT stack. The trained models
from the Lung-med image stack were saved, all layers before the final layer were unfrozen,
and the final layer dimensions were altered to be retrained on the Heart-CT dataset. The
only difference in the Unet and variant models between the Lung-CT and the Heart-CT
image sets is the final number of classes in the last layer X(1,5). Re-using the weights
and biases of all other layers provides a warm start to the model and aids in faster con-
vergence while training with randomly selected ordered images. For this experiment,
the performance of each Unet variant in segmenting regions with the label pixel values
[205, 420, 500, 550, 600, 820, 850] are represented by the model name and [pix205, pix420,
pix500, pix550, pix600, pix820, pix850], respectively, in Table 6. Here, we observe that the
NUMSnet has superior segmentation performance for the smaller ROIs with the pixel
values [500, 550, 600, 820, 850], respectively, with 2–16% improvements in Dice scores for
these regions over the Unet++ model. Thus, the NUMSnet model aids in transfer learning
across anatomical image stacks and across label types and yields higher precision when
segmenting smaller ROIs.

Table 6. Averaged performance of the Unet and variant models on 10 Heart-CT stacks across 5 runs.
The best values for each metric are highlighted.

Task Pr Re IoU Dice

NUMSnet, pix205 96.2 78.83 75.53 78.01
NUMSnet, pix420 96.89 86.2 83.42 85.04
NUMSnet, pix500 94.84 98.16 93.29 95
NUMSnet, pix550 96.61 86.23 83.4 85.8
NUMSnet, pix600 94.95 80.26 76.03 79.28
NUMSnet, pix820 98.42 96.84 95.55 96.88
NUMSnet, pix850 90.41 81.55 73.03 75.05
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Table 6. Cont.

Task Pr Re IoU Dice

Unet, pix205 95.01 79.17 75.48 79.3
Unet, pix420 95.54 88.39 85.31 87.78
Unet, pix500 94.8 95.08 91.06 93.34
Unet, pix550 92.27 82.5 76.44 80.49
Unet, pix600 90.09 83.1 74.84 79.23
Unet, pix820 97.53 80.95 79.43 81.93
Unet, pix850 88.1 46.81 44.01 46.81

wUnet, pix205 95.93 75.18 72.37 76.02
wUnet, pix420 94.64 91.75 87.37 89.96
wUnet, pix500 94.42 95.05 90.73 93.11
wUnet, pix550 89.27 64.52 57.46 61.54
wUnet, pix600 90.93 80.84 72.93 77.22
wUnet, pix820 95.3 88.77 84.91 87.99
wUnet, pix850 84.37 69.65 60.09 62.74

Unet++, pix205 96.11 67.93 65.01 68.82
Unet++, pix420 94.69 88.92 84.59 86.91
Unet++, pix500 97.06 92.21 89.93 92.46
Unet++, pix550 88.46 73.42 63.44 67.36
Unet++, pix600 94.21 73.17 69.7 73.09
Unet++, pix820 96.07 88.15 85.06 86.96
Unet++, pix850 65.06 99.95 65.07 65.07

Some examples of good and average segmentation using the Unet model variants
on the Heart-CT stack are shown in Figure 8. Here, we observe significant variations for
smaller ROIs across the Unet model variants.

Figure 8. Examples of Heart-CT segmentation by the Unet variant models. Row 1: Good segmenta-
tion. Row 2: Average segmentation. In Row 2, we observe variations in the small ROI across Unet
variants shown by the white arrow.

4.5. Ablation Study and Comparative Assessment

Finally, we analyze the importance of each hidden layer to the superior performance
of the NUMSnet model when compared to the other Unet variant models. In this ablation
study, we compared the performance of NUMSnet, with 11,713,943 total parameters, with
its versions when only one hidden layer from the first level from the global feature layer
(i.e., layer X(3,2) in Figure 3) is transmitted. This NUMSnet version is called NUMSnetl1,
and it has 11,349,628 parameters, of which 11,347,528 are trainable. Next, we generated
a NUMSnet version in which the first two levels from the global feature level, i.e., layers
(X(2,2), X(2,3) and X(3,2) from Figure 3), are transmitted. This is called NUMSnetl12,
and it has 11,614,508 parameters, of which 11,612,408 are trainable. The comparative
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performance of NUMSnetl1 and NUMSnetl12 on the Lung-CT and Heart-CT datasets is
shown in Table 7. Here, we observe that for the Lung-med stack, Re improves as more
hidden layers are transmitted. However, for the shorter Lung-rad stacks, there is a small
significant improvement in segmentation performance when increasing the number of
transmitted layers from NUMSnetl1 to NUMSnetl12. We also observe that for the Heart-
CT stacks, transmitting more hidden layers significantly enhances Re and the overall
segmentation performance. Thus, by comparing NUMSnetl1 and NUMSnetl12 in Table 7
with the NUMSnet performance in Table 2, Table 3 and Table 6 for the Lung-CT and Heart-
CT stacks, respectively, we conclude that the transmission of all six hidden layers in the
NUMSnet model ensures superior segmentation performance across datasets.

Table 7. Comparative multi-class segmentation performance of the NUMSnet model variants.

Data Lung-Med

Task Pr Re IoU Dice

NUMSnetl1, Con 70.48 71.34 51.14 53.1
NUMSnetl1, GGO 91.11 80.6 75.62 78.48
NUMSnetl1, Lung 99.61 90.55 90.24 93.99

NUMSnetl12, Con 66.82 86.12 58.86 60.3
NUMSnetl12, GGO 78.56 97.75 77.56 79.8
NUMSnetl12, Lung 98.5 92.61 91.38 94.61

Data 10 Lung-rad Stacks

NUMSnetl1, Con 67.66 75.28 51.86 53.67
NUMSnetl1, GGO 89.67 88.22 80.63 83.38
NUMSnetl1, Lung 99.51 93.16 92.72 95.2

NUMSnetl12, Con 68.42 75.53 53.51 55.35
NUMSnetl12, GGO 88.76 88.95 80.14 82.88
NUMSnetl12, Lung 99.52 93.42 93.0 95.36

Data Heart-CT

NUMSnetl1, pix205 97.38 67.21 65.51 68.85
NUMSnetl1, pix420 94.92 88.71 84.42 86.03
NUMSnetl1, pix500 97.29 94.56 92.34 94.31
NUMSnetl1, pix550 90.03 87.87 78.95 82.43
NUMSnetl1, pix600 90.9 75.95 68.3 71.9
NUMSnetl1, pix820 97.91 87.58 85.82 87.43
NUMSnetl1, pix850 89.96 75.67 68.12 70.17

NUMSnetl12, pix205 96.63 78.18 75.65 78.36
NUMSnetl12, pix420 95.9 83.1 80.24 81.93
NUMSnetl12, pix500 97.44 90.48 88.44 90.33
NUMSnetl12, pix550 94.49 78.9 74.98 77.97
NUMSnetl12, pix600 93.76 76.93 71.15 74.16
NUMSnetl12, pix820 98.52 90.13 88.84 90.19
NUMSnetl12, pix850 89.07 86.02 76.42 78.34

Finally, the comparative performance of the NUMSnet model and previous works that
trained deep learning models on larger training datasets is shown in Table 8. Here, we
assessed the number of training images and training time on standalone GPU machines
as an indicator of computational complexity, along with the segmentation performance or
Dice scores for each output class category i. In addition, the previous works are identified
as 2D vs. 3D based on the nature of convolutions in the implementations.

We observe that the proposed NUMSnet model achieves comparable or improved
semantic segmentation performance across a variety of anatomical CT image stacks with
only a fraction of the training images. This demonstrates the importance of nested layer
transmission for enhanced boundary segmentation, especially for relatively small ROIs.
For the Lung-CT stacks, the work by Voulodimos et al. [21] introduced a few-shot method
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using a Unet backbone for GGO segmentation only, and while this method achieved high
precision and accuracy, it had low recall and Dice scores. In addition, for the same dataset,
the work by Saood et al. [13] used a small fraction of the images for training and achieved
better binary segmentation performance than multi-class segmentation performance. It
is noteworthy that no prior works have bench-marked the segmentation performance for
the Lung-rad image stacks. For the Heart-CT stacks, most works have trained 3D Unet or
3D-segmentation models for voxel-level convolutions and trained on 20 CT stacks while
testing on another 20 stacks for the high precision of segmentation per ROI. Our work is
one of the few implementations of 2D convolutions on dense Heart-CT scans and the only
work that evaluates the Heart-CT stacks in [30].

Table 8. Comparative performance of NUMSnet with respect to previous works.

Method Data #Training
Images Metrics Epochs/Training Time

Saood et al. (2D) [13] Lung-med 72 Di = [22.5–60]% 160/25 min
Voulodimos (2D) [21] Lung-med 418 Di = [65–85] %(GGO) ∼210 s

Roychowdhury (2D) [35] Lung-med 40 Di = 64% (GGO) 40/∼70 s
NUMSnet (2D) Lung-med 82 Di = [61–96%] 40/224 s

Payer et al. (3D) [22] Heart-CT 7831 Di = [84–93%] 30,000/3–4 h
Wang et al. (3D) [15] Heart-CT 7831 Di = [64.82–90.44%] 12,800/(Azure cloud)

Ye et al. (3D) [30] Heart-CT 7831 Di = [86–96%] 60,000/∼2–4 h
NUMSnet (Ours) (2D) Heart-CT 363 Di = [75–97%] 60/362 s

In Table 8, it is noteworthy that for Heart-CT segmentation, we applied a pre-trained
model on Lung-CT and fine-tuned it on 4.6% of all hHeart-CT images to obtain similar
segmentation performance. Additionally, we observe that the 3D-segmentation models
yield stable Dice scores in a narrower range of 84–96% for Heart-CT data while taking
several thousand epochs and several hours to train when compared to our work, which has
a wider range of Dice scores but comparable performance for smaller ROIs to that in [15,22]
and a training time of seconds. In addition, the work in [15] implemented 3D convolutions
in a virtual machine in Azure cloud, so the training time is not comparable to those of
standalone systems.

5. Discussion

The proposed NUMSnet model aims to reproduce the segmentation performance of
3D encoder–decoder models with 2D encoder–decoder equivalents, with the intention to
scale the method across medical imaging modalities and scan densities. The current imple-
mentation is a NUMSnet model with a depth of 4, based on all the previous comparative
works in Table 8, but the depth can be increased in future works based on the growing
complexity, overlap and number of ROIs in medical image use cases. Additionally, the
NUMSnet only uses 2D concatenations and convolution operations to ensure low addi-
tional computational complexity. However, for future works and specific complex use cases
where the training time and computational complexity are not bottlenecks, some of the
following three enhancements can be made. First, additional skip connections between
scans can be added to combine up-sampled outcomes from previous scans to the current
scans based on the underlying complexities of segmentation. Such skip connections will
still have less training time and complexity when compared to 3D operations. Second, the
encoder and decoder layers can be further enhanced with Resnet, Densenet and Retinanet
backbones for segmentation enhancements in future works. Third, a combination of loss
functions can be used at the block and scan levels for optimal parameterization.

Most existing deep learning models for multi-class semantic segmentation tasks have
been developed at the image level to scale across imaging modalities [37]. However, for
3D medical image stacks, segmentation at a stack level minimizes irregularities related to
varying imaging conditions, thereby resulting in superior region boundaries for small and
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large ROIs. It is noteworthy that one key limiting condition for all semantic segmentation
models is when the medical scans include written text on them. These irregularities can
interfere with the segmentation of the outermost ROIs. In such situations, an overall mask
can be generated and centered around all ROI regions and superimposed on the original
image before passing it to the Unet and variant models, thus eliminating the written text
region. Another alternative for reliable end-to-end segmentation in these cases, if enough
annotated images are available, is to train two Unet or variant models to first detect the
foreground region in the first Unet variant model, followed by segmenting the ROIs in the
second Unet model, as shown in [15].

It is noteworthy that the single-stage Unet model and its variants are easily trainable
with few annotated images, and they typically do not overfit. However, for high-resolution
images, such as whole-slide images (WSI), where the dimensions of the medical images
are a few thousand pixels per side, resizing such images to smaller dimensions to fit a
Unet model or its variants may result in poor segmentation results [38]. In such scenarios,
splitting the images into smaller patches, followed by training the Unet model and its
variants, can improve the segmentation performance, as shown in [21].

A key consideration for multi-class segmentation using Unet variant models is the disparity
between the ROI sizes, which can significantly impact the training stages when only a few
annotated training images are available. For example, in the Lung-CT image stacks, the lung
regions are larger than the GGO and consolidation areas, and because of this, using few training
images and Dice coefficient loss over hundreds of epochs can bias the model to segment the
lung region only. This occurs because the relative variation in pixel neighborhoods for larger
ROIs is smaller than in pixel neighborhoods for smaller ROIs. In such situations, it is crucial to
ensure that more training images are selected that have the smaller ROIs annotated and that the
Unet variant models are run for about 40–60 epochs with region-sensitive loss functions.

Finally, for transfer learning applications, full image network weights transfer better
when compared to Unet model variants trained on image patches, such as in [21]. This aligns
with the works in [39,40], which demonstrate the ability of pre-trained models from one
medical image modality to scale to other medical image stacks. Future efforts can be directed
toward the transfer learning capabilities of the proposed NUMSnet model on WSI and patch
image sets.

6. Conclusions

In this work, we present a novel NUMSnet model, which is a variation of the Unet++
model specifically for the multi-class semantic segmentation of 3D medical image stacks
using only 10% of the images per stack, selected randomly in an ordered manner around
the central scan of the 3D stacks. The novelty of this model lies in the temporal transmission
of spatial pixel and neighborhood feature information across scans through nested layers.
The proposed model enhances Dice scores over Unet++ and other Unet model variants
by 2–9% in Lung-CT stacks and 2–16% in Heart-CT stacks. In addition, the NUMSnet is
the only model that applies 2D convolutions for Heart-CT stack segmentation for the [30]
dataset.

Additionally, in this work, we analyzed a variety of sampling methods to optimally
select the minimal 10% training set. We conclude that the random selection of ordered
scans is the optimal mechanism to select a minimal training set. Further, we analyzed the
optimal number of up-sampling layers that should be transmitted for the best semantic
segmentation performance. Here, we conclude that all six nested layers of a Unet++ model
are significant for transmission, while adding additional up-sampling layers for transmis-
sion increases the overall computational complexity of the NUMSnet model while not
significantly contributing to the segmentation performance for sparse training image sets.

Finally, we assessed the transfer learning capabilities of the NUMSnet model after it was
pre-trained on Lung-CT stacks and fine-tuned on only 5% of available annotated Heart-CT
images. We conclude that the NUMSnet model aids in transfer learning for similar medical
image modalities, even if the number of classes and ROIs change significantly. Future work
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can be directed toward extending the NUMSnet model to additional medical image modalities,
such as X-rays, OCT, MRI stacks and RGB videos from dental to colonoscopy use cases.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Model Graphs

The proposed NUMSnet model layers and interconnections are shown in Figure A1.
The layer interconnections from the NUMS-all model are shown in Figure A2.

Figure A1. The proposed NUMSnet model. The layers highlighted in yellow are the new concatena-
tion layers introduced by NUMSnet. All other layers are from the Unet++ model.
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Figure A2. The NUMS-all model with all up-sampled layer features transmitted. The layers high-
lighted in yellow are the new NUMSnet concatenation layers. The layers highlighted in blue are the ad-
ditional up-sampling layers in the NUMS-all model. All remaining layers are from the Unet++ model.
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