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Abstract: Device identification is a fundamental issue in the Internet of Things (IoT). Many critical
services, including access control and intrusion prevention, are built on correctly identifying each
unique device in a network. However, device identification faces many challenges in the IoT. For
example, a common technique to identify a device in a network is using the device’s MAC address.
However, MAC addresses can be easily spoofed. On the other hand, IoT devices also include dynamic
characteristics such as traffic patterns which could be used for device identification. Machine-
learning-assisted approaches are promising for device identification since they can capture dynamic
device behaviors and have automation capabilities. Supervised machine-learning-assisted techniques
demonstrate high accuracies for device identification. However, they require a large number of
labeled datasets, which can be a challenge. On the other hand, unsupervised machine learning can
also reach good accuracies without requiring labeled datasets. This paper presents an unsupervised
machine-learning approach for IoT device identification.
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1. Introduction

The Internet of Things (IoT) is a term used to describe the interconnection of comput-
ing devices embedded in everyday objects to the Internet through the home, business, or
institutional networks [1]. IoT devices and applications present significant security chal-
lenges, including limited device capabilities, lack of standardization, insufficient trust and
integrity, and software vulnerabilities [2]. As a result, device identification is challenging in
the IoT. Many critical services, such as access control and intrusion detection, are built on
correctly identifying each unique device [3].

As users are identified in a digital network by their unique identities, IoT devices
also require their unique identities when connecting to a network. Identities of Things
(IDoT), a general term, has been adopted to describe IoT entities (e.g., users and devices).
Four primary authentication factors could be used to identify users: something you know
(e.g., username and password), something you possess (e.g., a physical token or a smart
card), something you are (e.g., fingerprint or face recognition), and something you do (e.g.,
voice or sign). IoT devices can only be identified by something they have. A common
technique to identify a device in a network is using the device’s MAC address. However,
MAC addresses can be easily spoofed.

Identity in IoT devices consists of attributes and dynamic values along with the
member in varying contexts [4]. It can be a collection of things, should have a purpose,
and should be treated uniformly across platforms. There are many representations of
identities, and they can rely on globally unique identifiers [5,6], a combination of user
characteristics [7], a set of attributes of the users [8], or a set of claims [9]. These approaches
all possess a commonality based on the fact that they link an identity unique to a particular
entity [4].
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Machine-learning (ML)-assisted approaches attract many research interests because
they can capture dynamic characteristics from the devices for device identification [10–17].
ML-assisted approaches fall into two general categories, i.e., supervised ML-assisted ap-
proaches [10,11] and unsupervised ML-assisted approaches [12–15,17]. Supervised ML-
assisted approaches demonstrate great accuracy when used for device identification. How-
ever, they often require a large number of labeled datasets, which could be a challenge.
On the other hand, unsupervised ML can reach reasonable accuracies without labeled
datasets [12–15,17]. Additionally, the unsupervised method allows for greater flexibility
regarding dynamic IoT networks where devices may join or leave at any time. Therefore,
this paper focuses on unsupervised ML approaches for device identification.

The unsupervised approach presented in the paper utilizes an ensemble-based ap-
proach for device identification. A K-Nearest Neighbors classifier is used to identify each
IoT device. The dataset proceeds through four steps: preprocessing, outlier removal, feature
selection, and clustering before a device prediction is made. The key contributions of this
paper include, but are not limited to, (1) demonstrating how to use unsupervised ML for
device identification; (2) evaluating the performance of supervised ML and unsupervised
ML using the same dataset; (3) discussing possible benefits that unsupervised ML may
bring to the field of device identification.

The remainder of this paper is structured as follows. Section 2 introduces related
work. Section 3 presents the proposed unsupervised ML-assisted approach for IoT device
identification. The evaluation results are presented in Section 4. Finally, the conclusion and
discussion for future research are discussed in Section 5.

2. Related Work

The surveys in [18,19] show that supervised, unsupervised, semi-supervised, and
deep-learning approaches could all be used for device identification. Supervised ML is
used in [10,11,20–22]. The authors in [20] proposed a supervised ML-assisted approach for
identifying known IoT devices. A proprietary tool developed in [23] was used in [20] to
extract features from captured network traffic. Using the same feature extraction tool, a
two-stage meta classifier for IoT device identification was studied in [10]. The first stage
classifier differentiates IoT and non-IoT devices. The second stage classifier identifies a
specific IoT device class. The classifier considered in [20] is Random Forest-based. Other
classifiers considered in the supervised ML include Decision Trees, Logistic Regression
models, Support Vector Machines (SVM), GBM, and XGBoost models [10,11]. These papers
show the utmost accuracy in identifying devices in the IoT. However, supervised ML
requires labeling to train the models, which may be expensive or impossible to acquire.

In [12], authors used unsupervised clustering to identify IoT device types in network
flow traffic. Network traffic was broken up into time granularities of 1–8-min packet flows
for each device on the network. Depending on the device, the final clustering used K-Means
with 128 or 256 clusters. This research takes a heuristic approach to identify flows in a
packet capture by taking the data in 1–8-min intervals of packets. In [13], authors used data
captured directly from the devices to identify cycles in the flow data relating to how often
and how predictable the transmission of data is. They then use K-Nearest Neighbors and
arbitrary labeling to cluster devices. This approach is much slower than other algorithms.

Unsupervised deep learning is used in [14,15], where ML autoencoders are combined
with clustering algorithms to identify arbitrary device types. Work in [14] focused on
identifying compromised devices using packet statistics, whereas [15] considered how
variational autoencoders arbitrarily identify devices on a network using a combination of
periodic features such as those in [13] and flow statistics [15].

As discussed in [12–15,17], unsupervised learning can reach accuracies as good as or
better than those in supervised approaches, while having much higher accuracy in both
unseen and compromised devices.
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3. Unsupervised Machine-Learning-Assisted Approach for IoT Device Identification

The unsupervised process detailed in this paper utilizes an ensemble-based approach
to device identification, where each base model that comprises the ensemble network is a
one-class classifier. Figure 1 details the various steps that comprise the one-class classifiers
implemented in this paper. These steps will be discussed more thoroughly later in this
section.

Figure 1. An overview of a one-class classifier.

The combined results from each base model will ultimately decide what a given
sample will be classified as, as seen in Figure 2. The goal of a one-class classifier is to
distinguish which samples do and do not belong to the class it represents. In the discussion
of IoT device identification, the class would be an IoT device. This approach differs from a
one-vs-rest scheme for two reasons. The first reason is that introducing a new device or
removing an existing device from the network will require the entire ensemble network to
be retrained in the one-vs-rest scheme. In the one-class scheme, however, introducing a
new device will only require a new model for that device to be trained, whereas removing
an existing device will only require that the existing model for the said device is discarded.
The second reason this approach differs from a one-vs-rest scheme is that this approach
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allows a sample to be considered to be an unknown sample, such as the case where the
sample belongs to a device not in the network. In many one-vs-rest schemes, this unknown
sample would have been predicted as one of the devices in the trained model network.
As a result, the approach used in this paper allows for better scalability as the number of
devices increases in a given network.

Figure 2. An overview of a one-class ensemble network.

3.1. Pre-Processing

The first step of the training stage is to process the data to augment the model’s ability
to capture information from the dataset. One such method of processing is through one-hot
encoding. To include nominal features, such as the network protocol used in a flow, said
features must be encoded to remove any inferred order between values. Additionally, since
the proposed model utilizes distance-based algorithms in both the training and predicting
stages of its lifespan, it is imperative to properly scale the raw data the model takes as
input. Without scaling, features with inherently larger ranges will dominate features with
inherently smaller ranges in Euclidean-based distance comparisons. Furthermore, the
information found in these features with smaller ranges can be overlooked without scaling.
In the implementation of the model in this paper, standardization is performed on each
feature, where each feature is independently scaled to fit a normal distribution.

3.2. Feature Selection

The second step in the training stage is the selection of relevant features that will be
used for analysis. The first portion of this step is using Feature Agglomeration (FA) [24]. A
total of 100 clusters from the FA algorithm were used in the model. The second portion of
this step is the use of Principal Component Analysis (PCA) [25]. All 100 features extracted
from the PCA were also used in the model.

3.3. Clustering

The third step in the training stage is clustering the processed data. Clustering allows
for more effective capture of each device’s traffic patterns and reduces computation time in
predicting. The model in this paper utilizes K-Means clustering [26]. A low K value would
result in the K-Means algorithm overgeneralizing the data, creating centroids that are
insignificant to the traffic patterns of each device. Alternatively, a K value too high would
result in the K-Means algorithm overfitting on the data, creating centroids that are fitted
extremely well to sampled noise in the training data, leaving little room for generalization
in unseen data. As with [12], the K value for each model was determined by testing an
incrementally larger K to a maximum of 1000. The sum of averaged squared distances of
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each sample to its closest centroid, or inertia, was recorded for each value of K tested. An
elbow point was then identified where an increase in K would not substantially reduce the
inertia of the data points, and this K value was chosen for the model. Additionally, each
centroid will be assigned a corresponding training distribution value based on the total
training samples assigned to the centroid. This will be used as a tie-breaking metric in the
predicting stage of the model’s lifespan, detailed in Section 3.5.

3.4. Threshold Creation

The final step in the training stage is to create the threshold that decides classification
behavior. This threshold defines whether an input sample is or is not predicted as the
device of a given model. As with [12], each centroid created with the K-Means algorithm
has an assigned set of samples that belong to it. The distance between each point and its
centroid is then calculated, and the threshold for the centroid is defined as the distance that
includes no more than 99% of the samples that belong to it. As a result, each centroid will
have a corresponding threshold distance value that will exclude 1% of the samples that
belong to it from the training dataset. Another method of identifying a distance threshold
was explored utilizing DBSCAN [27].

3.5. Predicting

From the training stage of the model, a series of centroids, as well as their respec-
tive training distribution values and distance thresholds, are stored. Additionally, the
preprocessing models, FA, and PCA models are stored after being fitted from the training
dataset. The model is given the sample as input to predict a new test sample, where the
preprocessing models transform its feature values. Next, the sample’s features are selected
based on the FA and PCA models, which ultimately reduce the number of features that
will be observed. To make the prediction, the model implements a K-Nearest Neighbors
classifier fitted with the centroids defined by the K-Means algorithm in the training stage.
The centroid closest to the transformed test sample is then considered the centroid to which
the testing sample belongs. However, if the distance between the centroid and the testing
sample is greater than the distance threshold set for the centroid, the testing sample will
be considered a negative sample. Conversely, if the distance between the centroid and the
testing sample is equal to or smaller than the distance threshold set for the centroid, the
testing sample would be considered a positive sample, as seen in Figure 3.

Figure 3. Example of a distance threshold and its effect on predicted samples in a 2-dimensional
space.

This model could effectively act as a classifier for the device it represents in a single-
device environment. However, in environments with more than one device, any given
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sample can be predicted positively for multiple device models. Consequently, the network
must distinguish which positive sample will be assigned to which device. This final tie-
breaking comparison utilizes the training distribution value assigned to each cluster in the
clustering step. The training distribution value for each centroid of these device models is
compared to all the devices considered sample positive. The device model whose centroid
has the highest training distribution value will ultimately claim the sample as its own.

3.6. Testing Dataset

As shown in Figure 4, a testing network was established to generate a testing dataset.
A total of 16 IoT devices are connected to the testing network. The network traffic is
collected through nTAP and RaspAP [28]. nTAP is a passive, full-duplex monitoring device
that provides visibility into the network regardless of traffic. nTAP collects network traffic
before it reaches the firewall. RaspAP provides Internet access for IoT devices and is used
to collect network traffic at the Wi-Fi access point. tcpdump is used to collect network traffic
in nTap and RaspAP.

Figure 4. Experimental network testbed.

Data were collected between 31 March 2022 and 9 May 2022. Multiple datasets were
collected during different periods during the experiment. tcpdump was used on both the
RaspAP and the nTAP data to collect network traffic. Data collected through RaspAP is
used for ML training. Furthermore, data collected through nTAP is used to validate the
ML classifier on the network perimeter. Approximately 150 GB and 200 GB of data were
collected from RaspAP and nTAP, respectively.

3.7. Feature Extraction

Network traffic from IoT devices is collected through tools such as tcpdump and
Wireshark. The network traffic is saved in pcap files. An open-source tool, CICFlowMeter,
extracts network features from pcap files [29,30]. CICFlowMeter can generate bidirectional
flows and calculate time-related features in both the forward and backward directions.
Originally, CICFlowMeter was created to identify malicious traffic that might contain
malware. The features that could be extracted from each traffic flow include flow duration,
total forward packets, and total backward packets. In addition to the flow features, flow
ID, source IP, source port number, destination IP, destination port number, protocol, and
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timestamps are also recorded for each flow. After feature extraction, CICFlowMeter creates
a CSV file with all the features for each pcap file. In this study, we have developed a tool,
CICFlowMeter++ by enhancing the original CICFlowMeter. CICFlowMeter++ can extract
233 features from a TCP flow and includes many new features from [10] for comparison. In
addition to these 233 features, 9 more features, including source device, destination device,
source medium, destination medium, source state, destination state, source manufacturer,
destination manufacturer, and flow device, are also added to the CSV file. A total of
242 features are available in the CSV file.

Our preliminary testing and results indicated that ML was ineffective in identifying
a device if the device did not generate sufficient data for training. Furthermore, similar
devices, e.g., Amazon Echo, Amazon Echo Dot, and Amazon Echo Show, or the same type
of devices, e.g., K Smart Plug 1 and 2, also present challenges for device identification.
After removing three devices that did not meet the criteria and combining similar devices,
eight devices remained in the dataset. Table 1 shows the number of TCP flows for each
device in the dataset.

Table 1. Datasets generated by the devices in the experiments (* combined TCP flows from similar
devices).

Device Dataset

Amazon Echo Show 47,804
Lenovo Chromebook 9307
Google Nexus Tablet 9388

K Smart Plug * 79,160
Raspberry Pi * 19,481

ZMI Smart Clock 7185
Amazon Smart Plug 5227
Samsung Smart TV 94,976

4. Results and Discussions

Using the approach presented in Section 3, the performance of the unsupervised
ML approach for device identification is studied. We also compare the supervised ML
approaches for device identification using the same dataset. For the unsupervised approach,
a maximum of 10,000 samples for each of the eight devices are selected for training from the
training subset. Exactly 1000 samples for each of the eight devices are selected for testing
from the testing subset.

4.1. Feature Selection

A total of 242 features are available after data processing. Using FA and PCA, the
number of features used by the model decreased from 242 to 100. Since the PCA model has
transformed these 100 features, these features can be seen as combinations of the original
features. Thus, the 100 features used for unsupervised ML are not directly mapped to any
original features.

4.2. Clustering

Based on the elbow point method for identifying K values for K-Means clustering,
each device had varying values of K used. Table 2 shows the number of clusters used for
each device in the clustering step.
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Table 2. K values identified for each device’s model for K-Means clustering.

Device Number of Clusters

Amazon Echo Show 400
Lenovo Chromebook 100
Google Nexus Tablet 300

K Smart Plug 60
Raspberry Pi 300

ZMI Smart Clock 70
Amazon Smart Plug 70
Samsung Smart TV 100

4.3. Device Identification

Two approaches, DBSCAN, and 1% Dropoff, are used for threshold creation. Table 3
shows the accuracies from both approaches. As shown in Table 3, the testing accuracy from
using 1% Dropoff for threshold creation is slightly higher than when using the DBSCAN
method.

Table 3. Distance threshold methods and their results.

Metric DBSCAN 1% Dropoff

Macro Precision 0.821 0.828
Macro Recall 0.777 0.799

Macro F1 Score 0.797 0.813

Figure 5 shows the confusion matrix for device identification. As shown in Figure 5,
unsupervised ML shows excellent accuracy values when identifying the Smart TV, K Smart
Plug, and Amazon Smart Plug devices. The accuracy for identifying the Nexus Tablet
device is not ideal.

Figure 5. Confusion matrix utilizing 1% dropoff.
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4.4. Unsupervised ML vs. Supervised ML

We evaluate the supervised ML approach for device identification using the same
dataset, as shown in Table 1. The testing dataset is divided into two datasets, i.e., the
training dataset and the testing dataset, using an 80/20 split. The Random Forest classifier
is used to evaluate the importance of the features for device identification. We further
evaluate six supervised ML classifiers for device identification, including AdaBoost, Deci-
sion Tree, K-Nearest Neighbor, Logistic Regression, Random Forest, and LinearSVC. Our
evaluation shows that the AdaBoost with 200 features achieves the best testing accuracies
for device identification. Table 4 shows the accuracy values for the eight IoT devices from
the AdaBoost with 200 features. Furthermore, Table 5 shows the precision, recall, f1 score,
and accuracy values from the proposed unsupervised approach.

Table 4. Supervised ML vs. Unsupervised ML.

Device Supervised ML Unsupervised ML

Amazon Echo Show 92.4% 88.5%
Lenovo Chromebook 87.5% 84.9%
Google Nexus Tablet 100.0% 79.3%

K Smart Plug 91.0% 96.5%
Raspberry Pi 97.5% 89.7%

ZMI Smart Clock 98.8% 88.3%
Amazon Smart Plug 90.4% 96.4%
Samsung Smart TV 99.1% 95.2%

Table 5. Unsupervised ML.

Device Precision Recall F1 Score Accuracy

Amazon Echo Show 0.87 0.89 0.88 88.5%
Lenovo Chromebook 0.89 0.85 0.87 84.9%
Google Nexus Tablet 0.90 0.79 0.84 79.3%

K Smart Plug 1.00 0.96 0.98 96.5%
Raspberry Pi 0.85 0.90 0.87 89.7%

ZMI Smart Clock 0.98 0.88 0.93 88.3%
Amazon Smart Plug 0.97 0.96 0.97 96.4%
Samsung Smart TV 1.00 0.95 0.97 95.2%

As shown in Table 4, supervised ML generally provides better accuracies in device
identification than unsupervised ML. For certain devices, e.g., K Smart Plug and Amazon
Smart Plug, the unsupervised ML performs better than the supervised ML approach.

Our results show that both supervised and unsupervised ML could be used for
device identification. Although supervised ML methods provide better accuracy values
for device identification in this environment, the supervised paradigm requires labeled
datasets that may not be attainable. In scenarios where labeling is not possible, our results
further indicate that an unsupervised approach to device identification may still be a viable
option. Additionally, the one-class nature that is inherent to our method allows for separate
device classifiers to be added and removed from an ensemble model without the need for
retraining the entire model. This modular property suggests that an unsupervised approach
may be preferred in dynamic networks where devices frequently join and leave a network.
Consequently, a hybrid approach including both supervised ML and unsupervised ML can
be considered.

5. Conclusions and Outlook

This paper studies unsupervised ML for device identification. Our unsupervised ML
approach employs a series of one-class classifiers that each includes five steps, i.e., prepro-
cessing, feature selection, clustering, threshold creation, and predicting. The presented
approach was applied to a dataset that includes eight devices. The obtained results show
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reasonable accuracies for these eight devices during our testing. Our analysis indicates
that unsupervised ML may have similar challenges as supervised ML in identifying similar
devices or devices of the same type. However, an unsupervised approach may provide
additional benefits, such as scalability in dynamic networks and the removal of labeling
processes not found in supervised methods, to the challenge of IoT device classification.
Potential avenues for future work include utilizing a hybrid approach, including both
supervised ML and unsupervised ML approaches for device identification, and studying
how ML-assisted approaches perform in untrusted environments and in real-time traffic
environments.
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