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Abstract: Human activity recognition systems (HARSs) are vital in a wide range of real-life ap-
plications and are a vibrant academic research area. Although they are adopted in many fields,
such as the environment, agriculture, and healthcare and they are considered assistive technology,
they seem to neglect the aspects of security and privacy. This problem occurs due to the pervasive
nature of sensor-based HARSs. Sensors are devices with low power and computational capabilities,
joining a machine learning application that lies in a dynamic and heterogeneous communication
environment, and there is no generalized unified approach to evaluate their security/privacy, but
rather only individual solutions. In this work, we studied HARSs in particular and tried to extend
existing techniques for these systems considering the security/privacy of all participating compo-
nents. Initially, in this work, we present the architecture of a real-life medical IoT application and
the data flow across the participating entities. Then, we briefly review security and privacy issues
and present possible vulnerabilities of each system layer. We introduce an architecture over the
communication layer that offers mutual authentication, solving many security and privacy issues,
particularly the man-in-the-middle attack (MitM). Relying on the proposed solutions, we manage to
prevent unauthorized access to critical information by providing a trustworthy application.

Keywords: human activity recognition; security; privacy; sensors; wearables

1. Introduction

Nowadays, technology contributes more and more to healthcare by creating inno-
vative applications. Human activity recognition systems (HARs) are a procedure used
for monitoring patients’ activities as an assistive technology when ensembled with other
technologies such as the Internet of Things (IoT) [1] and machine learning. The worldwide
usage of mobile devices and sensors has made HARSs friendly applications for most people.

In this work, we exploit the security issues in a HARS, based on a real-life operating
system where an IoT cloud platform, named the data collecting mechanism, communicates
with an IoT application sending the data of the user/patient. The main idea of a HARS is to
collect human data with the help of sensor devices, send them to a platform and share them
with an authorized person who could be a doctor, a caregiver, or the patient themself. So,
HARSs can be used not only for medical diagnosis but also for remote treatment. Especially
for older people, where the assistance of a caregiver in many cases is necessary, this system
helps to improve their self-care by keeping them informed about their constitution. In
addition, connected devices that collect data constantly could prevent unpleasant situations
and medical emergencies.

Despite this, HARSs are becoming more and more attractive in healthcare support, and
regardless of their development, the notions of security and privacy remain a challenging
problem. This problem occurs due to the pervasive nature of sensor-based HARSs tracking
people’s activities and locations which raises concerns about privacy violations of individ-
uals [2,3]. These concerns encompass storing data, communicating, and mining sensed
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data [4]. Health monitoring systems (HMSs) collect patients’ healthcare data, helping
doctors to provide better diagnoses and helping caregivers to control patients’ conditions
via mobile devices. Because health data are privacy-related, they should be protected from
illegal access when transmitted over a public wireless channel [5]. In addition, the design of
secure and efficient authentication protocols must fulfill privacy and security requirements
and usability requirements for limited devices such as IoT devices.

In order to prevent privacy leakage, general approaches of adopted anonymity access
control and transparency are presented in [3]. Another parameter that poses a risk to user
privacy is the usage of machine learning technology and the large amount of data needed.
On the one hand, a direct privacy breach could be carried out by unreliable data collectors
that collect personal information, share it, or trade it illegally. On the other hand, an indirect
privacy breach could be caused by insufficient model generalization ability [6]. In any
case, human data could be exploited by malicious entities or even by companies: malicious
entities for stealing personal information and harming users financially or socially, and
companies for learning sensitive, personally identifiable information [3]. Several solutions
that combine data-privacy techniques have been proposed to maintain these properties,
including differential privacy and modern cryptography techniques [6,7].

Smart healthcare systems (SHCSs) are also affected by security and privacy risks,
given the increased number of sensors, devices, and different types of participants such
as doctors, patients, and caregivers. Furthermore, data transmission raises the risk of
hijacking and eavesdropping attacks in communication channels. Recently, blockchain
methodologies have been used towards a more robust and secure system in the Industrial
Internet of Things (IIoT), as seen in [6]. Some risks are also presented in [8], along with
security recommendations. Additional security issues in wearable devices are presented
in [7,8].

After all, HARSs should provide a trustworthy ecosystem to users, releasing them of
security and privacy considerations. This paper presents security flaws and privacy issues
on an already deployed, real-life system. We also provide a brief description of possible
vulnerabilities on each system level. This mapping helps to identify common attacks for
different system components and, therefore, holistic approaches to combat them. As we
shall observe, almost every process in the system could lack security. HARSs are machine
learning applications that lie in a dynamic and heterogeneous communication environment,
and there is no generalized unified approach to evaluate their security/privacy but only
individual solutions, such as smartphone authentication. This work would be helpful for
developers and researchers in wearable system architecture. By presenting the vulnerabili-
ties that may arise in each system layer, the communication protocols, and data handling,
this paper provides a practical guide for developers interested in designing more robust
systems incorporating wearable devices. The proposed solution and thorough methodol-
ogy address existing security and privacy issues in wearable systems and contribute to
the larger research community by setting the stage for future developments. We aimed to
bridge the gap between theory and practice by providing the tools needed to create robust
wearable systems while protecting the notions of security and privacy.

Here, we studied HARSs and tried to extend existing techniques over these systems
considering the security/privacy of all participating components. We mainly focus on
dealing with security gaps in the communication channel between the participating entities,
and we propose an architecture over the communication layer offering mutual authentica-
tion between system components. We focus on secure communication because the system
involves devices with limited capabilities and a lack of authentication mechanisms that
discourage the establishment of mutual authentication. Furthermore, we analyze, in detail,
cryptographic and privacy-preserving techniques to ensure secure communication between
the entities and explain the data transmission and storage procedures. Moreover, we try
to moderate these considerations to thwart a specific and famous attack, the man-in-the-
middle attack (MitM), and we try to configure a communication channel for establishing
mutual authentication.
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2. Related Works

This section presents some of the research conducted during the last seven years
addressing security and privacy aspects in HARSs. Most of them focus on privacy vulnera-
bilities generated through the learning procedure (see Table 1).

The nature of systems such as HARSs, where huge amounts of human data are
collected, transmitted, processed for feature extraction, and stored, generates several
privacy concerns. Consequently, we briefly analyze security and privacy considerations
generated by the devices used and the application processes. The machine learning (ML)
procedure permits the form of predictions found in fed data. It needs enormous datasets
to analyze them and become more accurate. However, the data HARSs use are vital
human signals that could lead to more personal information, such as gender and age. This
phenomenon raises privacy issues, as the ML process could be exploited for estimating
more individual information [9]. Thus, from the point of view of privacy, the fact that the
user/patient shares their private data with a service provider generates concerns about
personal information being revealed. Much research has been conducted studying the
privacy issues that Machine Learning may cause, and many privacy-preserving approaches
have been proposed to eliminate them. Some of these approaches try to ensure privacy by
securing the entire data set and data processing using encryption, anonymity, and isolation
techniques such as differential privacy or defense against attackers who exploit query
answers [10–22].

The solutions that stand out are differential privacy, neural networks, and deep learn-
ing. These solutions refer to data privacy but do not offer security solutions. In addition,
they are not feasible for systems that include wearable devices, such as HARSs. In addition,
studies such as [23,24] refer to authentication protocols via wireless sensor networks and
wearable devices using individual cryptographic solutions, not a holistic approach. Thus,
there is no total assessment to offer protection at all stages of the system procedures. In this
work, we propose a unified approach that tries to mitigate privacy and security issues in
an already deployed HARS.

In addition, the data collection procedure demands the usage of wearable devices,
which also brings new challenges and opportunities for possible attacks [4]. Despite their
auxiliary effects, these devices have many problems, such as their communication capacity,
design constraints, and limited computing and processing power. All these problems make
them inefficient in terms of security and privacy [25]. Some typical vulnerabilities of sensor
networks are presented in [26]. In particular, the MitM attack that we mainly deal with
involves monitoring communication between two entities by a malicious third party, which
either intercepts (eavesdropping) the communication channel or modifies the transmitted
information. For example, in applications such as HARSs, an adversary could inject false
information about a patient’s condition and cause harm [26,27]. To defend against this
attack, we present our proposals in the following sections.

A different approach that we propose in order to defend against privacy leakage is the
use of privacy-enhancing technologies (PETs) [28–32]. PETs offer the user an awareness
of the stored data, its processing, and the related data flows [32] and promise individuals’
insurance by providing an identity-based management scheme via Internet providers,
smartphones, and the cloud. Despite these benefits, there are still some limitations to their
application. PETs include additional processing steps, such as encryption or obfuscation
techniques, which may reduce the accuracy of the underlying system. This constraint
is crucial for HAR applications, whose performance depends on accurate data process-
ing. Additionally, their application may require significant changes to the underlying
infrastructure, which could result in substantial costs and complexity. Moreover, improper
PETs deployment could result in new security concerns, compromising privacy/security
parameters. Furthermore, their adoption may require significant changes in user behavior,
which could limit their adoption and effectiveness.

In addition, privacy-attribute-based management schemes (P-ABCs), which are pro-
posed for enhancing privacy in IoT-based environments [33–35], are also a promising
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technology that could be applied in systems such as HARSs. However, applying P-ABCs
has some limitations that need to be carefully considered. Firstly, P-ABCs can be challeng-
ing to implement, demanding significant technical knowledge and resources. Additionally,
P-ABCs may be difficult to scale to larger systems or networks, rendering them less appli-
cable for large-scale IoT environments. Another drawback is usability, as P-ABCs may be
challenging for end-users to utilize, limiting their adoption and effectiveness. Compati-
bility may also be a challenging problem with current IoT systems and devices, requiring
extensive changes to the underlying infrastructure. Furthermore, improper implementa-
tion may result in new security concerns that could result in privacy violations or other
security events. Moreover, the notion of interoperability must be considered because these
schemes may not operate with other privacy-enhancing technologies, making it difficult
to provide a consistent privacy solution for use across many systems and networks. Thus,
their drawbacks must be carefully considered before being implemented in systems such
as HARSs.

In recent years blockchain technology has gained more and more ground, and there
have been a few attempts that try to combine this technology with other already mentioned
techniques, such as P-ABCs, presented in [36–43]. Lately, blockchain technology has offered
identity management solutions that preserve user privacy in various e-services [44–47],
and we hope to extend the field of applications in HARSs. Using blockchain technology
in HARSs can improve security and privacy; blockchain identity management schemes
offer decentralized storage using multiple nodes and identity providers without a central
authority, making it more difficult for intruders to intercept critical information. In addition,
the nature of blockchain technology and the utilized identity management applications
via the OLYMPUS cryptographic library [46,47] enable users to keep control of their data,
deciding who has access to them and how they might be used, providing improved
protection. Additionally, it provides transparency in the data processing and decision-
making procedures and promotes trust by giving stakeholders access to a tamper-proof
audit record of all data exchanges. Thus, users would be more willing to participate in a
system with strong privacy, security, and trust-related guarantees.

Table 1. Research on privacy issues in HARSs.

Year Research Privacy Issue Countermeasures

2023 [16,48,49]
Information leakage during the

learning procedure and
personalization of the HARS

Differential privacy and secure
multi-party computation

2022 [50,51] Information leakage during the
learning procedure

Optimized prediction
algorithm for

privacy-preserving activity
recognition based on deep
neural networks, and WiFi

state information

2021 [30,52,53] Information leakage during the
learning procedure

Hierarchical
labeling/machine-generated

human activity hierarchy

2021 [31,54,55] The devices’ limitations and
communication channels

Smartphone-based end-to-end
framework and RFID-based

authentication

2020 [56,57]
Private information leakage
(public dataset privacy and

training data privacy)

Homomorphic encryption and
cloud computing
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Table 1. Cont.

Year Research Privacy Issue Countermeasures

2019 [20,21] Information leakage during the
learning procedure

Analyze attacker’s queries and
defense against attacks

2019 [14] Information leakage from
databases Differential privacy

2018 [58] Information leakage during the
learning procedure

Analyze ML algorithms’
vulnerabilities and defense

against attacks

2017 [59] Information leakage during the
learning procedure Differential privacy

As mentioned, we focus on security gaps in the communication channel. Address-
ing these vulnerabilities is crucial to maintaining privacy and trustworthiness, because
sensitive information, such as health, location, and personal data are transmitted over
a public, insecure channel. Therefore, attacks on the communication channel, such as
the man-in-the-middle attack we have discussed, lead to unauthorized access and data
violation. Accordingly, by dealing with security issues in the communication channel,
we could indirectly prevent information leakage during the learning procedure by pre-
cluding any chance of unauthorized access to sensitive data that could be exploited to
identify individuals. Thus, we try to implement cryptographic and privacy-preserving
techniques to ensure secure communication between the system components aimed at
mutual authentication. HARSs are machine learning applications that lie in a dynamic and
heterogeneous communication environment, and from the literature, there is no generalized
unified approach to evaluate their security/privacy but only individual solutions, such
as smartphone authentication. Here, we studied HARSs in particular and tried to extend
existing techniques for these systems considering the security/privacy of all participating
components.

3. Human Activity Recognition System

HAR technology analyzes and recognizes several human activities from input data
sources, such as sensors [60,61]. The analysis of the user’s activity provides information
about their health status, assisting medical caregivers in providing better treatment. In
addition, continuous monitoring in real-time gives the ability to medical professionals to
react quicker in cases of emergency [62]. Additionally, the long-time data collected could
lead to the diagnosis and prevention of diseases.

There are two types of HARSs: vision-based HARSs and sensor-based HARSs, accord-
ing to the nature of the data that are being monitored [60,63,64]. Despite the widespread
adoption of sensor-based HAR systems, there is a lack of comprehensive assessments
regarding their privacy and security aspects. Our methodology for evaluating the security
issues and proposing a solution for making a HAR system more robust was based on an
existing HAR system developed in the TrackMyHealth project [65]. Our HAR system uses
wearable devices, and just like their name implies, these are wearable sensors that collect
vital signals directly from the human body. We selected to study the TrackMyHealth project
to fill this gap because by analyzing the security aspects of this HAR system, we could
identify possible vulnerabilities that may occur in real-world circumstances. Furthermore,
our decision to focus on this project stems from the wide usage of these systems in the
healthcare industry. In addition to improving the security of HAR systems and contributing
to the larger research community, our research also facilitates the health industry’s use of
HAR systems by guaranteeing that users can take advantage of their functions without
being constrained by privacy concerns.
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Our HAR system relies on a combination of components and functionalities to achieve
accurate activity recognition. It utilizes sensor devices to capture data related to human
movements, especially since the system incorporates a three-axial accelerometer and gy-
roscope. The wearable device is placed on the wrist, and the IoT system collects data on
various human activities. The data collected from the wearable device undergo prepro-
cessing to enhance their quality by removing outliers, synchronizing data, and applying
signal filtering techniques. For the data collection, a MetaMotionR (MMR) device was
used [4], and for the collection of heart rate data, OH1 Polar was used [5,66]. The collected
data represent three-dimensional acceleration and angular velocity measurements along
the x-axis, y-axis, and z-axis and follow the preprocessing stage, including empty records
elimination, data synchronization, signal filtering, and standardization. The next step
involves segmenting the data using overlapping sliding windows for processing by the
classifier. Feature extraction is performed manually, extracting features from the time and
frequency domains to effectively describe the characteristics and behavior of the signals [66].
Feature detection involves identifying distinctive information in data, while classification
assigns predefined labels based on the features. The machine learning module is utilized
to detect six users’ activities: downstairs, upstairs, sitting, standing, walking, and jogging.
Two classification algorithms were applied, k-nearest neighbours and random forests. The
description of the machine learning module can be found in [66]. These procedures are
illustrated in Figure 1 below.
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Figure 1. The TrackMyHealth system [67].

Next, we present the generic architecture of a HARS, including the participating
entities, the communication channel, and the data flow, which will help us locate the
HARS’s security vulnerabilities. The overall architecture among the participating entities
of our deployed system is given in Figure 2, which was developed and utilized via the
TrackMyHealth project [65]. Within the framework of the TrackMyHealth project, we
developed our research on the security and privacy vulnerabilities in a HAR system. The
figure depicts the patient/user selecting and creating a new connection to the caregiver.
The system consists of a mobile application (for Android smartphones) that collects data
from a wearable device via a Bluetooth communication protocol. The smartphone acts
as a bridge to transfer the data to the data collecting mechanism, which operates a data
storage environment built in MongoDB [65]. The system uses Retrofit technology for
data transfer, a library for accessing REST Web APIs [68]. The data collecting mechanism
also communicates with machine learning software (ML service) to analyze the data and
accomplish the procedures of Figure 1.
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As we can observe, there are two main databases for gathering and storing data. The
first one belongs to the mobile application. As mentioned, the mobile device acts as a
bridge to collect data from wearable devices via Bluetooth and transmit them to the mobile
application’s remote database. The second one is a database that has been built into a
cloud server that collects data and makes it available for additional processing, utilizing
the MongoDB management system that also handles HTTP for communication between
entities [65].

4. Security and Privacy Issues in HARSs

In this section, we briefly review the security and privacy considerations that we
attempt to ensure in our real-life application. We also introduce the vulnerabilities that give
birth to these issues perturbing fundamental security properties.

4.1. Security and Privacy Considerations

As previously mentioned, HARSs rely on accurate data to recognize and analyze
behavior patterns. The system may produce false results if the data are tampered with,
making data integrity a critical security issue. Additionally, intruders may be able to
gain access to a HARS without authorization, endangering both system security and user
privacy. Thus, to maintain the security properties, we have to ensure that the system is
robust to unauthorized access and critical data. Furthermore, the HARS communicates
with a cloud server for additional computations which is also susceptible to attacks [69].

Our proposal deals with this by providing a signature-based model offering mutual
authentication to all system entities, authorization procedures, data encryption, and secure
data storage. We especially focus on mutual authentication because, as far as we know,
there is no implementation that satisfies this attribute. Access control mechanisms restrict
what an authorized user can do by regulating who is carrying out what in the system, and
they limit access to various system resources (such as data, services, hardware, etc.) by
identifying who can access which resources. This mechanism is required to ensure that
authorized entities can only access the resources to which they are granted access and to
prevent unauthorized entities from accessing the system’s resources. Therefore, preventing
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actions that result in a security breach in the IoT requires solid access control regulations.
The security quality attributes of access control are identification, authentication, and
authorization. Non-repudiation must also be incorporated into the architecture of the
proper transport protocol to deal with network failures and prohibit fraudulent parties
from lying about their true identities, cheating, or canceling transactions [70].

In addition, these systems undermine flaws that intruders could exploit to obtain
private information or interfere with the system. Insiders that may have access to sensitive
information and misuse or steal it for personal benefit are also a privacy concern discussed
above. In order to deal with privacy issues, we proposed technologies such as PETs,
P-ABCs, and blockchain technology that we aim to apply in future work [62].

In general, to address these security and privacy concerns and secure the system,
data, along with protecting individuals from potential dangers, it is crucial to acquaint the
possible threats with an adversary. The following outlines the security and privacy risks that
are listed in the next section: obtaining administrator access credentials, altering data stored
in a system’s storage system or interfering with data flow between system components, and
attacking communication links (i.e., data sent over the Internet) by preventing data flow or
imposing a denial of service. Modifying the data collected, attacking the network’s data
flow through a “Man-in-the-Middle” attack, spoofing, altering the data collected, attacking
services and system resources (e.g., deleting the file system and sending unwanted traffic),
etc. [70].

4.2. Vulnerabilities in Each HARS Layer

Here, we list possible vulnerabilities of each system level/layer and provide some
examples of attacks that can occur. The attacks focus on specific security properties, such
as data integrity, confidentiality, and authentication [4,71,72].

• The application layer: The application layer is the user’s main interface with the appli-
cation and, thus, the network. This layer is an attractive attack target because the data
reside within the application. Some of the main attacks that can occur in this layer are
clock desynchronization attacks, malicious code injection, and eavesdropping attacks.

• The transport layer: The TCP transport protocol (transmission control protocol) aims
to reliably send and receive data and transfer them without errors between the network
and application layers. However, TCP is vulnerable to attacks that could degrade
network performance. The most basic attacks against network performance are SYN
Flood, ACK message flooding, and hijacking.

• The data link layer: The data link layer is defined by protocols regulating data trans-
mission between entities and aimed at reliable communication. The data frames, head-
ers, and queues help in error detection. Then, the errors are corrected, or retransmission
of the data is requested. When securing communication between parties against unau-
thorized access, it would be prudent to use encryption protocols. Sniffing and MAC
spoofing (media access control) are common data link layer attacks.

• The network layer: the Internet protocol (IP) defines forwarding and addressing.
Therefore, deals with the network’s topology and the participating entities’ identity.
A problem that could create a security gap is that the communicating entities do not
know the path the data follow or whether malicious entities are monitoring them. For
this reason, attacks such as IP spoofing, PingFlood, ARP spoofing (MitM), sinkhole,
wormhole, and sybil attacks could occur [73–75].

• Data collecting mechanism and remote databases: Because our application han-
dles sensitive data, it is crucial to secure the processing, storage, and transmission
procedures. Data integrity and confidentiality between parties are essential for the
security of the above processes. However, these properties are shaken when the
system faces denial of service (DoS) attacks, man-in-the-middle (MitM) attacks, and
cryptanalysis attacks.

In this work, we attempt to deal with the security/privacy issues in the communication
channel, aiming to maintain substantial notions of integrity and confidentiality. Although
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we focus on dealing with a specific attack, the MitM, our proposal could further deal with
DoS attacks by involving shadow edge servers. Deploying multiple shadow edge servers
could deflect attacks away from the target servers. Developing a machine-learning-based
software system could also recognize and block malicious connections to the target servers
based on several input parameters such as IP address, packet volume, connection session,
and network traffic patterns. In addition, support vector machines (SVMs) could be used
to accurately classify connections as malicious or normal. The proposed system aims to
blacklist malicious connections and shield the central server by deploying shadow servers
at various points on the edge of the network.

5. Technical Details

This section deals with the identity management procedures in the hash, access control,
and authentication mechanisms and supports the cryptography algorithms in constrained
devices. We present these operations in order to build secure end-to-end communication
between all the participating entities in HARS. In particular, we indicate how we establish
mutual authentication between the data collecting mechanism and the ML service by
supporting key distribution mechanisms All our system components follow the same
technique (see Figure 3), so we do not iterate the procedure for the mobile application.
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We use X.509 certificates (X.509 V3) via the OAuth2.0 protocol generated by a certificate
authority (CA) utilized in authserver. The authserver’s role is to issue access tokens to the
mobile application, the data collection mechanism, and the ML service, authenticating the
resource owner and obtaining authorization. Downstream of the protocol, the authserver
issues access tokens to the data collection mechanism, embedding its certificate. The data
collection mechanism uses the access tokens to gain access to the ML service’s information
after authenticating with the ML service via mutual TLS 1.3. The ML service finally contacts
the authserver to verify the access token presented by the data collection mechanism.

Figure 4 below indicates our proposed solution’s architecture, including the security
flow steps. The following is a step-by-step description of the process involved in secure
communication between the data collection mechanism (DCM), the authorization server
(authserver), and the machine learning service (ML service):

1. Initially, in step 1 there is key generation. Unlike the public key, the private key is
never transferred between entities. We should store the specific key in each entity and
ensure its security.

2. Step 2 involves creating a certification that validates the authenticity and integrity of
entities within the system. This certification serves as a digital signature, providing
assurance of the entity’s identity and ensuring secure communication.

3. In step 3, the auth server certificate registration takes place, and the data collection
mechanism sends registration information to the authserver. This registration process
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verifies the server’s authenticity and establishes it as a trusted authentication and
access control authority.

4. In step 4, the registration information is sent to the authserver by the data collecting
mechanism. This information enables the auth server to identify and authenticate the
data collection mechanism.

5. Step 5 involves registering the data collection mechanism by the authserver. Once
registered, the authserver assigns a unique ID to the data collection mechanism,
establishing a recognized identity for future interactions.

6. Step 6 establishes a secure communication channel between the data collection mech-
anism and the auth server using mutual transport layer security (TLS). Both entities
present their X.509 certifications and public keys, ensuring the integrity and confiden-
tiality of their communications.

7. The data collection mechanism requests an access token from the auth server in step 7.
This token is proof of authentication and authorization to access protected resources
within the system.

8. The auth server generates the access token in step 7, including the hashed certification
presented by the data collection mechanism. In step 8, this token combines the
authentication information and integrates it with the data collection mechanism’s
certification hash.

9. Step 9 involves the registration of the data collection mechanism’s certification within
the system. This registration process validates the authenticity and integrity of the
data collection mechanism.

10. Step 10 establishes a secure communication channel between the data collection
mechanism and the ML (machine service) using mutual TLS. The data collection
mechanism presents its certification and public key, while the ML service presents its
X.509 certification and public key.

11. The data collection mechanism presents the access token from the auth server in
step 11. This token serves as proof of authentication and authorization for accessing
protected resources.

12. In step 12, the ML service communicates with the auth server to verify the certification
hash presented by the data collection mechanism. This verification ensures the
integrity and authenticity of the data collection mechanism.

13. Step 13 involves the retrieval of token information by the ML service. This information
is necessary to determine the authentication and authorization status of the data
collection mechanism.

14. Finally, in step 14, the ML service returns the requested information, such as the
recognized activity, to the data collection mechanism. This retrieval is only allowed if
the hash of the certification within the access token aligns with the hash presented
during the mutual TLS process, ensuring the integrity and authenticity of the data.

5.1. Key Generation

First, we should generate public and private keys for each entity, the patient, the
caregiver, the authserver, the data collecting mechanism, and ML service. Figure 4 presents
all the participating entities and their interactions. We used the elliptic curve algorithm
(ECC), which offers optimal security such as RSA (Rivest–Shamir–Adleman) but utilizes
shorter key lengths. Additionally, it requires less computing power and bandwidth than
RSA, making it more beneficial for mobiles and IoT devices. Indeed, a public RSA key of
2048-bit offers a security level of 112 bits, while RSA provides a key length of 224 bits.

Even though symmetric encryption is one of the most efficient schemes, for a stronger
SSL/TLS handshake, it would be necessary to add some form of asymmetric encryption.
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5.2. Certificate Generation

Our procedure is based on the OAuth2.0 protocol, which defines a shared-secret
method for client authentication [76], where the patient and the caregiver input a password
(client_secret) and a unique identity (client_id) to a mobile device that has our application,
storing this information in its database. Then, it transmits these credentials to the data
collecting mechanism, which sends them with identification to the CA of the authserver.
Then, the authserver validates this information and returns an access token to the data
collecting mechanism. Finally, the data collecting mechanisms use the access token to access
the resource server. This process is shown in the following schematic diagram (Figure 5):
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In addition, we describe an additional mechanism for client authentication using X.509
certificates which provide higher security features than shared-secret methods. We use
cross-certificates in which the issuer and the object for which the certificate is issued are
different entities.

Every patient or caregiver must send the CA a certificate signing request (CSR). The
authserver (Figure 4) plays the role of the CA. We created our own CA, which generates
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certificates for our entities, so we must also generate a pair of public and private keys for
the CA. A certification request follows public-key cryptography standards as the main
format [77]. The authserver checks this bid of the received CSR, and if it is successful, the
CA sends the patient/caregiver an X.509 certificate digitally signed using its private key.

Briefly, the patient/caregiver creates a certificate following the requested steps:

• They create a certificate signing request (CSR). The CSR contains the entity’s (patient
and caregiver) public key and some data collecting mechanism’s identity information,
such as name, organization, and email.

• They sign the CSR with their private key and send it to the CA.
• The CA will verify them by sending the CSR.
• The CA then uses the public key in the certificate to verify their signature, ensuring

that the data collecting mechanism owns the private key paired with the certificate’s
public key.

• If everything is valid, the CA will sign the certificate with its private key and send it to
the data collecting mechanism.

Thus, if the request is valid, an X.509 certificate is generated consisting of the distin-
guished name (DN) and public key of the entity, the name of the CA and a serial number
issued by the CA, the validity period, and the signing algorithm used by the CA [78].

5.3. Data Collecting Mechanism’s Registration in the Authserver

Before initiating the protocol, the data collecting mechanism must register with the
authserver. We follow a manual registration process for registration, entering information
through the command line. We create an identifier (client_id) and register the entity in the
authserver. Additionally, this identifier passes to the ML service (both through the token
and further when the ML service requests information from the authserver about the token)
to be used in their subsequent communication.

To perform the above procedure, we established a TLS 1.3 connection between the
data collecting mechanism and the authserver using the X.509 certificates mentioned in
the previous step. The procedures start with the data collecting mechanism verifying the
digital signature of the authserver’s certificate using the CA’s public key. After successful
verification, the data collecting mechanism sends its certificate to the authserver. The
authserver verifies the digital signature of the data collecting mechanism’s certificate using
CA’s public key. Then, the data collecting mechanism requests an access token to the token
endpoint. Therefore, the authserver prepares a token endpoint, as shown in Figure 4.

In addition, it must be a client registration endpoint. The client registration endpoint
allows an application to register to an authorization server and accepts an initial access
token as an OAuth 2.0 access token. The client registration endpoint must accept HTTP
POST messages with request parameters encoded in “entitybody” and using the “appli-
cation/json” format [41]. The OAuth2.0 Dynamic Client Registration Protocol RFC [41]
allows dynamic registration of a client (the data collecting mechanism). The client (the data
collecting mechanism) must also register for TLS authentication.

The following is an example of client registration: the client registers for TLS au-
thentication to the server and provides its own DN and the DN of the CA issuing the
X.509 certificate. Then, the authserver returns an identifier (client_id) to the data collect-
ing mechanism and all of the metadata that data collecting mechanism have sent during
registration.

5.4. Authentication through the TLS 1.3 Protocol

At this stage, we should authenticate the data collecting mechanism to the authserver
and vice versa. The process will be carried out by exchanging the certificates through
the TLS protocol. Especially as we use mutual authentication, both the data collecting
mechanism and the authserver present their certificates, and the protocol is called mutual
TLS. When the data collecting mechanism uses mutual TLS on the connection to the token
endpoint (see Figure 4), the authserver is able to bind the issued access token to the data
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collecting mechanism’s certificate. Such a binding is accomplished by associating the
certificate with the token in a way that can be accessed by the protected resource, such
as embedding the certificate hash in the issued access token directly through the token
introspection endpoint (see Figure 4) [79].

The TLS procedure includes the following protocols: the handshake protocol that
allows the entities to authenticate each other and establish a key, and the record protocol
that provides confidentiality and integrity for the communication of application data [80]
In addition, there are three modes of TLS 1.3 handshake: the full 1-RTT handshake, the PSK
handshake (with optional 0-RTT mode), and the PSK- (EC)DHE handshake (with optional
0-RTT mode) [80]. Since we follow the encryption procedure of PKI, we use the first mode,
which uses public key certificate exchange for authentication between the authorization
server and client (mobile application, data collecting mechanism, and ML service) and
key exchange via Elliptic Curve Diffie–Hellman Ephemeral (ECDHE), inspired by the
“SIGn-and MAc” method (SIGMA) by Krawczyk [81].

The handshake protocol is essentially used to negotiate and establish a secure, en-
crypted channel between the client and the server. This helps achieve confidentiality and
authenticity between the two parties, allowing them to verify each other and negotiate
cipher suites and other parameters required to establish a secure connection. It consists
of three phases: (1) key exchange messages, (2) server parameters, and (3) authentication
messages. The key exchange phase consists of the exchange of ClientHello (CH) and Server-
Hello (SH) messages, where various parameters are negotiated, and master key exchange
takes place using Diffie–Hellman key exchange. Specifically, the key pair generation process
is performed using curvex25519 (curvex25519). The private key is generated by choosing
an integer between 0 and x256−1. This is carried out by generating 32 bytes (256 bits) of
random data. The public key is chosen by multiplying the point x = 9 on the x25519 curve
with the private key. In cryptography, Curve25519 is an elliptic curve and is designed for
use with the elliptic Diffie—Hellman (ECDH) curve [82,83].

Moreover, at the handshake phase, our protocol sends all the necessary features of
the utilized cryptographic tools. More precisely, the ClientHello message includes the
type and the characteristics of the used cipher tools (TLS_AES_128_GCM_SHA256 or TLS
CHACHA20_POLY1305 SHA256), the hash functions (RSA-PSA), the signature schemes,
the key exchange algorithms (Finite-field Diffie–Hellman Ephemeral and Elliptic Curve
Diffie–Hellman Ephemeral) and the type of the random nonce (AHEAD—authenticated
encryption with associated data). In addition, ClientHello includes the critical parameter of
the CA specifying the CAs that the client supports. The authserver uses the same parameter.
Essentially, entities declare to each other which CAs they will accept certificates from. If a
corresponding certificate is not presented, communication between them stops. The DN of
the CA is used to check the certificate presented to either the data collecting mechanism or
the authserver. Thus, the data collecting mechanism and the authserver must send the DN
of the CA (or the list of DNs of all CAs) they trust to this message.

Before responding with the ServerHello message, the server will perform the key
generation process for exchange (as the client did). This action by the server is called server
key exchange generation. The response of the authserver with a ServerHello message is
presented in detail in Appendix A.

Calculating the secret key can also be performed by the Diffie–Hellman Ephemeral
method and the Elliptic Curve Diffie–Hellman Ephemeral method. A significant problem
arises here: suppose two parties use the same private (static) keys for each communication.
In that case, an attacker could intercept the parties’ private key and generate the secret
number (input to the key generation function) used in the communication and thus decrypt
the entire communication. To solve this problem, we propose the usage of ephemeral keys,
i.e., a different private key for each execution of a key establishment process. Thus, even
if an attacker finds the secret key (the symmetric key) for a single communication, they
cannot use it for others. In TLS, this is called perfect forward secrecy.
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5.5. The Data Collecting Mechanism/Authserver Configuration

All messages sent from here on are encrypted. The authorization server sends the
following requests:

1. Encrypted extensions: The authserver must send this message immediately after
the ServerHello message. This is the first message that is encrypted with the hand-
shake_traffic_key from server_handshake_traffic_secret. The client should check
the message for unacceptable extensions, if there are any, the handshake should
be aborted.

2. Certificate request: Asking for the client’s certificate for authentication so that the
requirement for mutual authentication is satisfied.

3. CA: Declaring the CA it trusts and accepts certificates from. It essentially indicates
the DNs of the CAs.

4. Signature algorithms: This indicates which signing algorithms can be used in Certifi-
cateVerify messages.

5.6. The Update of the Authentication Certificate

After sending these messages, we move to the third and final phase of the handshake
protocol, the authentication phase. The data collection mechanism presents the X.509
certificate and proves possession of the corresponding private key to the authserver during
the TLS process. In TLS version 1.3, the Data collection mechanism sends the certificate
and CertificateVerify message on the handshake and for the authserver to verify the
CertificateVerify and Finished messages. Since the process is mutual TLS, the same will be
followed by the authserver. The last three messages that the authorization server and data
collecting mechanism send to each other are:

• Certificate: for authentication
• CertificateVerify: for key verification
• Finished: for the integrity of the handshake process

The information included in the above messages is presented in Appendix B, while
the process of the CertificateVerify and Finished messages is describes in Appendix C.

The previous three messages are sent to the data collecting mechanism. The data
collecting mechanism (after receiving the authserver’s ServerHello message) will perform
the following actions:

• First, it checks the validity period of the authserver certificate. If the current date and
time are outside the specified range, the server certificate has expired. Therefore, the
authentication process does not continue.

• Then, the data collecting mechanism validates the authserver’s certificate with the CA
that issued it. The data collecting mechanism also has the DN of the trusted CA stored
and checks the DN of the certificate sent by the authserver, and if the two DNs match,
it will continue the authentication process. As we have mentioned, the certification
of the authserver is signed with the private key of the CA that the data collecting
mechanism trusts. The data collecting mechanism owns the CA’s public key so that
they can verify the signature. If the content of the certificate has changed since the CA
signed it, or if the CA certificate’s public key does not match the private key used by
the CA to sign the authserver’s certificate, the authserver’s authentication will fail. If
the CA’s digital signature can be verified, the data collecting mechanism can confirm
that the authserver’s certificate is valid.

• Then, it verifies the certificate’s signature and the message using the authserver’s pub-
lic key (known by the certificate). The data collecting mechanism using the certificate
and the certificate verification message can authenticate the identity of the authserver.

• Finally, the data collecting mechanism checks the finished message, and the MAC of
the entire handshake using server_handshake_traffic_secret to ensure it has not been
compromised. More specifically, it will try to check the verified data value sent in the
finished message.
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Since our system supports mutual authentication, these three authentication messages
must also be sent from the data collecting mechanism to the authserver. Before sending
the certificate, the data collecting mechanism checks if it has the DN of the CA that the
authserver has already sent. If it does not, the data collecting mechanism will not send
its certificate to the authserver. The authserver performs the same message verification
process that the data collecting mechanism has performed. The authserver should also
check the DN value registered for the data collecting mechanism against the one presented
in the data collecting mechanism’s certificate. The mobile application and ML service carry
out a similar process.

5.7. Issuance of Access Tokens to Data Collecting Mechanism

Previously, the data collecting mechanism was authenticated to the authserver. After
successful authentication, the data collecting mechanism is able to request an access token
from the authserver to gain access to the ML service. There are four types of authorizations:
authorization grand, implicit, resource holder password credentials and client credentials.
In our implementation, we used the fourth method.

During the request for an access token, the authserver should verify that the entity
owns the identifier (client_id) which has been registered in its database. Previously, we
registered the data collecting mechanism in the authserver giving a client_id. The data
collecting mechanism should therefore present the client_id to the authserver. To obtain
an access certificate, the data collecting mechanism should address a specific point on the
authserver named the tokenendpoint [76]. The client must use the HTTP “POST” method
when requesting an access token.

When mutual TLS is used by the client when connecting to the tokenendpoint the
server embeds the hash of the client’s certificate in the token it is about to issue. This
process is referred to as certificate-bound access token, and the token type is holder-of-key,
proof-of-possession, or sender-constrained tokens. This ensures that only the client with
the private key corresponding to the certificate can use the access token to access protected
resources. Once a traditional access token is leaked, an attacker can access a protected API
(application programming interface). Therefore, to mitigate this vulnerability, we must
check if the one who tries to gain access matches the legitimate owner of the access token.

Since the resource server (ML service) validates the hash contained in the access token
as proof of the client’s certificate, the client must use the same certificate for requesting an
access token from the server authorization and when accessing the protected resources.
However, this means that access tokens are invalid when clients update their certificates.

In the following example, the client addresses the tokenendpoint to request an access
token by including its certificate in the request and the client_id that was given during
registration in 4.3:

$ curl—request POST \
- cacert AMServer.cer \
- data “client_id = myClient” \
- data “grant_type = client_credentials” \
- data “scope = write” \
- data “response_type = token” \
- cert myClientCertificate.pem \
- key myClientCertificate.key.pem \

It is important to note that there are two ways to implement an access token. RFC
6749 [76] states that the “token may denote an identifier used to retrieve authorized in-
formation or may self-contain the authorization information in a verifiable manner (i.e., a
token string consisting of some data and a signature)”.

Our implementation follows the first way, i.e., the token will have the form of an
identifier. The following example of returning an access token includes an access token
identifier in the access_token property, which identifies the access token data stored on
the server:
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{
“access_token”:f08f1fcf-3ecb-4120-820d-fb71e3f51c04”,

“refresh_token”:”IwOGYzYTImM2YxOTQ5MGE3YmNmMDFkNTVk”

“scope”:”profile”

“token_type”:”Bearer”,

“expires_in”:3599
}

5.8. Refresh Tokens

In the above example, there is a value named refreshtokens. Refresh tokens are
credentials used to obtain access tokens. They are issued to the client by the authorization
server, and they are used to receive a new access token when the current access token
becomes invalid or to obtain an additional access token for the same purpose (e.g., to access
protected information). The procedure for obtaining token access is as follows [76]:

• The client requests a new access token from the authorization server by presenting the
refresh token.

• After authenticating the client and validating the renewal token, the authorization
server issues a new access token (and, optionally, a new renewal token).

Finally, we can distinguish the following steps:

• The client is being authenticated to the authorization server using certificates.
• Following a specific authorization flow, the client requests an access token (only the

client_id is used).
• The authorization server returns the access token to the client with the client’s certifi-

cate hash embedded. As our implementation stores the various elements of the access
token in the server’s database, an identifier will be returned to the client identifying
the set of contents of the access token.

The hash value of the client’s certificate is stored in the confirmation key named cnf of
type x5t#S256. It contains the base64URL-encoded SHA-256 hash of the) DER-encoding
(distinguished encoding rules) of the full X.509 certificate. The hash value of the certificate
is stored in the server database, and an identifier is added to the access token. The process
of storing the certificate is called introspection response. An additional option would be
storing the hash value in the payload of a JSON web token (JWT).

5.9. Data Collecting Mechanism Access Request in ML Service’s Protected Information

In this step, the data collecting mechanism communicates with the ML service to
request information, presenting the access token that was created in the previous step. The
data collecting mechanism and ML service must also authenticate each other. The ML
service has a certificate from the CA we created, and the data collecting mechanism has the
certificate, which was also used for communicating with the authserver.

Specifically, as mentioned in the previous step, when an access token is generated
for the data collecting mechanism, it obtains its certificate’s hash value. This is performed
through a standard confirmation assertion called cnf. Since the data collecting mechanism,
when communicating with the ML service, uses the same certificate, it allows the ML
service to verify that the certificate used when mutually authenticating between them is the
same as the certificate encoded in the cnf assertion, and consequently, the data collecting
mechanism can use the access token. The ML service does not accept the certificate if a
malicious user intercepts the access token, as there will be a certificate mismatch in the
verification process. Even if the malicious user steals the certificate without having the
certificate’s private key, the mutual authentication process will terminate.

An insightful comment is that the ML service does not need to validate the data
collecting mechanism’s whole certificate chain like the authserver does, as only the data
collecting mechanism’s certificate hash must be computed to validate the access token.
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5.10. ML Service–Authserver Communication for Access Token Confirmation

In the previous step, we stored the access token details in the authserver database. The
data collecting mechanism received an opaque token and presented it to the ML service.
The ML service should now communicate with the authserver to confirm the access token.
Among the other important elements of an access token (the expiration date, etc.), the
ML service needs the hash value of the data collecting mechanism’s certificate (which is
embedded in the access token) to compare with the hash value of the certificate used by
mutual authentication.

6. OAuth2.0 Infrastructure

A man-in-the-middle (MitM) attack involves the interception of the communication
channel between two entities by a third malicious entity, which either intercepts (eaves-
dropping) the communication or modifies the information transmitted. This attack exploits
vulnerabilities in any communication channel that lacks authentication or encryption.

The problem is that the public keys of the data collecting mechanism and the ML
service could be intercepted by an attacker. Next, the attacker could send a message to
the data collecting mechanism, including their fake public key. Still, the data collecting
mechanism is unaware of it and encrypts the message with the attacker’s key, who could
then decrypt or modify it with the ML services’ key and sends it back to them. Finally,
the ML service receives the modified message and decrypts it with its private key, and the
attacker takes control of the communication.

To deal with the above problem, we required mutual authentication of the parties and
encryption of the data exchanged between them. We proposed the HTTPS protocol because
it is a promising protocol for protecting communication against these kinds of attacks,
providing encryption and authentication mechanisms and data integrity. As mentioned,
the key exchange phase consists of the exchange of ClientHello (CH) and ServerHello
(SH) messages, where various parameters are negotiated, and master key exchange takes
place using Diffie–Hellman key exchange [84]. This method requires that the messages
exchanged are signed with the private keys of the communicating entities and the use
of certificates for acquiring the proper public keys. Thus, even if a certificate has been
forged to imitate a legitimate entity, the signature cannot be verified, and the request will be
rejected (Figure 6). Therefore, this method ensures that in case a third entity intercepts the
communication, it cannot be decrypted by that entity. The HTPPS protocol along with the
Diffie–Helman key exchange achieve confidentiality between the communicating parties,
and the digital signature achieves data integrity, identifying the identity of the signing
entity and linking to the data to which it refers, enabling the detection of subsequent
modification or alteration of the data.
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To further deal with this attack, we used authorization servers and made our own
CA to ensure the validity of the credentials. In addition, the use of the OAuth2.0 protocol
complements the services provided by the HTTPS protocol. It is a framework for assigning
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user authentication authority to the service that manages the accounts so that the service
can provide access to third-party applications (see Figure 5). The use of access tokens
instead of the user’s credentials prevents a man-in-the-middle attacker from stealing the
user’s credentials and evolving into an impersonation attack. As we have mentioned, the
entities’ authentication is carried out through the TLS protocol, which uses certificates
and explicitly uses the TLS handshake protocol. The authserver follows the following
procedure: first, it authenticates the client (data collecting mechanism) and then presents
its certificate. It is supposed to be a unique password (client_secret) along with a unique
identity (client_id), which the client transfers to a CA. Thus, the authserver acts like a trusted
authority, validating credentials, issuing access tokens, and validating them when accessing
protected sources by the OAuth2.0 protocol (Figure 4). This accounts for an additional
layer against unauthorized access and man-in-the-middle attacks by ensuring that only
authenticated and authorized clients (the data collecting mechanism) can communicate
with the ML service (Figure 6).

However, traditional access tokens suffer from various vulnerabilities. In a typical
token-based architecture, presenting a token to access a protected resource is sufficient.
Thus, anyone with a valid token can access protected resources. Mutual authentication can
improve security when a client requests an access token from a token service allowing the
token service to issue a token that is assigned exclusively to that client (to its certificate)
and cannot be used by anyone else. This operation can be securely validated when that
client requests access to resources in another entity. The entity verifies that the certificate
embedded in the token is the same one used when mutually authenticating between them.
Practically, a check as to whether the hash value of the certificate contained in the token
matches the hash value of the certificate presented by the data collecting mechanism during
the mutual authentication process (step 14, Figure 4).

Despite the benefits our proposal offers, we have to admit the requirement of addi-
tional work to implement and the existence of some limitations. Due to the large number of
clients and servers, it is difficult and expensive for the server to keep track of all client cer-
tificates, validate each client, and check each client for each session. At this scale, managing
and verifying certificates is not feasible. TLS is faster and more computationally expensive
than mutual TLS. A mutual TLS handshake involves additional motions/round trips. It is
not suitable in situations where reduced latency is more important than zero trust security
because it is orders of magnitude slower than TLS. Only an environment where you have
control over the clients and can specify what level of security each client must have in order
to connect to the server may be used to implement it [28–45].

7. Conclusions

In this work, we present a typical architecture of a medical IoT application using
wearable devices, whereby the data flow across all the entities is identified. We propose a
combination of authentication mechanisms to ensure communication between the mobile
application and the data collection mechanism IoT cloud platform, providing a method
for defending against security flaws, such as MitM attacks. Incorporating the TLS protocol
and certificates into a HARS is novel since it strengthens the security of the channels used
for communication between the HARS components. We ensure that the communication
channels are encrypted and that only authorized components can access the system using
the TLS protocol and certificates. This maintains the integrity of the data exchanged
between the components and prevents unauthorized access to sensitive data. A relatively
unexplored topic is the use of the TLS protocol and certificates in HARSs, and this study
offers insights into their potential use and efficiency in raising the security of HARSs.

In future work, we aim to apply blockchain technology in our scheme and enhance
security and privacy measures. While technologies such as PETs and P-ABCs, mentioned
above, are effective in protecting users’ privacy, we choose blockchain technology because
it offers additional properties essential for the healthcare domain. The decentralized and
tamper-proof infrastructure of the blockchain provides immutability, transparency, data
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integrity, trustable data exchange, and verifiability, which are significant properties in
HARSs that involve multiple kinds of users and handle sensitive information.

In subsequent work, we intend to investigate how blockchain technology might im-
prove the security and privacy of our suggested HARS. We want to further address any
of the security weaknesses found and assess our application against multiple assaults
by utilizing the advantages of blockchain, such as better security, data integrity, privacy
protection, and transparency. We will also examine any limits or difficulties related to its
implementation and potential use cases for blockchain in HARSs. For example, certain
obstacles need to be overcome when integrating blockchain technology in such systems,
including high computational power needs, high storage needs, and the possibility of cen-
tralization. Furthermore, our study may help future research that examines how blockchain
can be utilized to fix other security flaws in HARSs and how other blockchain implementa-
tions may affect the functionality and security of HARSs. Overall, we believe that adding
blockchain technology to our work could provide the field of HARSs with considerable
benefits and open the door for additional innovation and development.
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Appendix A

Key Generation Details: The mobile application and the authserver must generate
the keys required by the registration layer to enable the exchange of application layer
data, protected using authenticated encryption [39]. The authserver uses the following for
generating the keys:

• The handshakesecret key that was generated during the handshake key generation.
• The hash value SHA256 of every handshake message from hello to serverfinished.

Next, the key and the hash value are fed into an HKDF function, and the following
keys are generated:

- empty_hash = SHA256(“”)
- derived_secret = HKDF-Expand-Label(key = handshake_secret, label = “derived”,

context = empty_hash, len = 32)
- master_secret = HKDF-Extract(salt = derived_secret, key = 00 . . . )
- client_application_traffic_secret = HKDF-Expand-Label(key = master_secret, label =

“c ap traffic”, context = handshake_hash, len = 32)
- server_application_traffic_secret = HKDF-Expand-Label(key = master_secret, label =

“s ap traffic”, context = handshake_hash, len = 32)
- client_application_key = HKDF-Expand-Label(key = client_application_traffic_secret,

label = “key”, context = “”, len = 16)
- server_application_key = HKDF-Expand-Label(key = server_application_traffic_secret,

label = “key”, context = “”, len = 16)
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- client_application_iv = HKDF-Expand-Label(key = client_application_traffic_secret,
label = “iv”, context = “”, len = 12)

- server_application_iv = HKDF-Expand-Label(key = server_application_traffic_secret,
label = “iv”, context = “”, len = 12)

Appendix B

Before responding with the ServerHello message, the server generates keys for ex-
change (as the client did). This action by the server is called server key exchange generation.
Then, the server processes the ClientHello message, determines the appropriate crypto-
graphic parameters for the connection, and responds with a ServerHello message, which
includes the following:

• Key parameters: For example, the method of Diffie–Hellman key exchange.
• The cipher suites that support: i.e., TLS_AES_128_GCM_SHA256.
• The TLS edition: i.e., 1.3.
• Client random data: The client provides 32 bytes of random data, which will be used

later in the session.

Now, the server is able to compute the keys which encrypt the rest of the handshake
process with the aim of protocol integrity. The server uses the following information for
calculating the keys:

• The client’s public key (known from the ClientHello message).
• The server’s private key (generated in the server exchange key generation message).
• The hash value SHA256 of the ClientHello and ServerHello messages.

First, the server computes the shared secret, which is the result of the key exchange
and allows the client and the server to agree on a number. The server multiplies the client’s
public key with its private key using the curve25519 algorithm. The SHA256 hash value
of all handshake messages up to this point (ClientHello and ServerHello) is calculated.
The resulting hash and the shared secret are fed into a set of key derivation functions (key
derivation function, KDF) to generate various keys. In TLS 1.3, the HMAC (hash-based
message authentication code) key derivation function requires the cryptographic hash
algorithm specified in the cipher suite (SHA256 or SHA384).

In more detail, the following details are generated:

- early_secret= HKDF-Extract(salt = 00, key = 00 . . . )
- empty_hash= SHA256(“”)
- derived_secret= HKDF-Expand-Label(key = early_secret, label = “derived”, context =

empty_hash, len = 32)
- handshake_secret= HKDF-Extract(salt = derived_secret, key = shared_secret)
- client_handshake_traffic_secret= HKDF-Expand-Label(key = handshake_secret, label

= “c hs traffic”, context = hello_hash, len = 32)
- server_handshake_traffic_secret= HKDF-Expand-Label(key = handshake_secret, label

= “s hs traffic”, context = hello_hash, len = 32)
- client_handshake_key = HKDF-Expand-Label(key = client_handshake_traffic_secret,

label = “key”, context = “”, len = 16)
- server_handshake_key = HKDF-Expand-Label(key = server_handshake_traffic_secret,

label = “key”, context = “”, len = 16)
- client_handshake_iv= HKDF-Expand-Label(key = client_handshake_traffic_secret,

label = “iv”, context = “”, len = 12)
- server_handshake_iv = HKDF-Expand-Label(key = server_handshake_traffic_secret,

label = “iv”, context = “”, len = 12)

The above key generation process is fundamental as the client_handshake_traffic_secret
and server_handshake_traffic_secret generate the handshake traffic keys (client&server)
that protect (encrypt) the rest of the handshake messages until the finished message (either
from the client side or from the server side).
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Appendix C

The certificate message obtains the certificate of the authserver (created in Section 5.2).
The CertificateVerify message is the process of signing the entire handshake up to this
point. All data from the beginning of the handshake to the certificate request sent by the
authserver are called handshake content. As mentioned, this message is used by some
entities to prove the existence of the private key, which is related to the public key present
in the certificate. The CertificateVerify message is generated as follows:

• We combine the content of the handshake and the certificate of the authserver into
a value;

• We apply a hash function;
• We sign the hash value with the private key of the authserver using one of the signature

algorithms supported by the data collecting mechanism.

The server computes the verification data to verify that the handshake was successful
and has not been tampered with, and the client must agree to it. Verification data are
generated from hashing all handshake messages. The finished message is created by
combining:

• The resulting value from the handshake’s encrypted (e.g., SHA256) content up to that
moment.

• The resulting key after inputting the server_handshake_traffic_secret value in an
HKDF function.

• The resulting value and key are entered into an HMAC algorithm.

The message is encrypted along with the server_handshake_key (see Appendix A). The
key generation process is vital as client_handshake_traffic_secret and server_handshake_
traffic_secret are used to generate the handshake_traffic_keys (client&server) that protect
(encrypt) the rest of the handshake messages up to the finished one (either from the client
side or from the server side). With the authserver’s certificate, the certificate verifies the
message, and the finished message is called an authentication message because it is used to
authenticate the authserver. With the signature and MAC of the entire handshake, TLS 1.3
is secure against various types of attacks (for example, a -man-in-the-middle attack).
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