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Abstract: Nowadays, the Internet of Things (IoT) has become widely used at various places and
for various applications. To facilitate this trend, we have developed the IoT application server
platform called SEMAR (Smart Environmental Monitoring and Analytical in Real-Time), which offers
standard features for collecting, displaying, and analyzing sensor data. An edge device is usually
installed to connect sensors with the server, where the interface configuration, the data processing, the
communication protocol, and the transmission interval need to be defined by the user. In this paper,
we proposed an edge device framework for SEMAR to remotely optimize the edge device utilization
with three phases. In the initialization phase, it automatically downloads the configuration file to the
device through HTTP communications. In the service phase, it converts data from various sensors
into the standard data format and sends it to the server periodically. In the update phase, it remotely
updates the configuration through MQTT communications. For evaluations, we applied the proposal
to the fingerprint-based indoor localization system (FILS15.4) and the data logging system. The results
confirm the effectiveness in utilizing SEMAR to develop IoT application systems.

Keywords: Internet of Things; edge device; framework; application server platform; SEMAR

1. Introduction

Currently, the Internet of Things (IoT) is receiving much attention from both industries
and academics as an emerging technology that uses the Internet infrastructure to connect
physical worlds to cyberspaces [1]. The IoT application infrastructure is continuously being
extended to become more ubiquitous around the world and is composed of numerous
physical devices distributed across multiple domains [2]. In this context, the success of
an IoT application system depends on the ability to collect, manage, and analyze the data
easily and flexibly, as well as to distribute it to users and other systems efficiently [3,4].
Nowadays, the amount of data generated by sensor devices is increasing rapidly with the
availability of diverse network connectivity and various protocol services; IoT application
system developers should design and build these systems considering standardizations
with heterogeneous device management.

In an IoT application system, edge computing is often adopted to bring computing
capabilities for data processing to locations closer to sensors or target devices [5]. Some IoT
applications may require low latency and real-time data processing, which cloud servers
cannot provide [6,7]. Due to the diversity of sensor resources, the introduction of edge
computing devices has become a valuable solution to reducing the computational complexity
of data processing in cloud servers [8]. Edge computing devices enable various functions
at the edges of networks before sending data to the server and can increase the efficiency
of data processing [9]. It also offers the data conversion capability to convert raw data
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to the standard data format. It is expected that the edge device framework was introduced
to facilitate application developments in edge computing devices [10]. The framework
interacts with devices in the physical world that may change over time [11]. Therefore, it
should support the dynamic development of edge systems.

Recently, cloud-based solutions have been widely used for IoT application systems [12].
Instead of focusing on the implementation details, the prepared tools allow developers to
focus on the implementation of logic by using functions that efficiently support the design
and implementation of IoT applications [13]. However, most of the existing cloud-based
solutions did not support effective and efficient developments at the edge devices level,
and their technologies have often limited the interoperability with third parties.

Previously, we designed and implemented the IoT application server platform as
a cloud-based solution for integrating various IoT application systems, called SEMAR
(Smart Environmental Monitoring and Analytical in Real-Time) [14]. SEMAR provides standard
features for collecting, displaying, processing, and analyzing sensor data from different do-
mains. It offers built-in functions for data synchronizations, aggregations, and classifications
with machine learning in Big Data environments, and plug-in functions for allowing other
systems to access the data through the Representational State Transfer Application Programming
Interface (REST API).

Unfortunately, the current implementation of SEMAR does not facilitate deployments
and implementations of edge devices within the context of IoT ecosystem application deploy-
ments. As an effective IoT application server platform, SEMAR should be able to control
and manage various IoT devices remotely. It must be capable of reconfiguring IoT devices
to improve their performance and utilization.

In this paper, we proposed an edge device framework and its implementation for SEMAR
to facilitate the development of edge devices for IoT applications. As a popular edge device,
the Raspberry Pi was selected for this implementation, and the image was created in the
SEMAR server. This framework can remotely optimize the utilization of this edge device by
configuring the connectivity of sensor interfaces, a data conversion approach, a data model,
transmitted data, local data storage, local visualization, and the data transmission interval
on the server. Actually, it provides features for downloading configuration files to the
devices using HTTP communications, converting data from diverse sensor resources into
standard data formats before delivering them to SEMAR, processing data using rules and
filter functions, offering multiple output components for utilizing the acquired data, and
enabling remote configuration updates using Message Queue Telemetry Transport (MQTT)
services [15].

For evaluations of the proposal, we applied the edge device framework to the fingerprint-
based indoor localization system (FILS15.4) [16,17] and the data logging system. These integrated
systems were deployed in #1 and #2 Engineering Buildings at Okayama University, Japan.
In addition, we evaluated the effectiveness of the edge device framework by investigating
its computing performance and comparing it with similar research works. The results
confirm the feasibility of utilizing the edge device framework in developing IoT application
systems with SEMAR.

The rest of this paper is organized as follows: Section 2 presents related works.
Section 3 describes the IoT application system architecture. Section 4 briefly reviews
our previous works on SEMAR. Section 5 presents the design and implementation of the
edge device framework. Sections 6 and 7 briefly describe the implementation in two IoT
application systems. Section 8 presents comprehensive performance evaluations and a
comparative analysis with similar related work. Finally, Section 9 concludes this paper
with future works.

2. Related Works

In [18], Mahmood et al. presented a simulation of an edge computing implementation
for resource allocation in IoT applications for smart cities. The result shows the effectiveness
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of the edge computing layer in reducing the energy and computational resources for IoT
networks.

In [19], Sarangi et al. proposed IoT applications for digital farming by using a micro-
controller that connects soil moisture sensors with the mobile system as edge gateways.
The edge device captures and transmits sensor data to the mobile system through Wi-Fi
communications. Then, the mobile system processes the data and sends them to the cloud
server. This approach presented the utilization of the mobile system for collecting and
processing information at edges to reduce computational processes at the cloud level.

In [20], Oueida et al. proposed an integration of the edge computing device and
the cloud service in the smart healthcare system. Edge computing was used to gather
information from smart devices, process it to obtain the necessary data, and transmit it to
the cloud server. The proposed system was suitable for emergency departments and other
types of queuing systems.

In [21], Mach et al. proposed the concept of the mobile edge computing, which
enables IoT applications to perform massive data processing at the device level. However,
developers should consider three key aspects, namely, the computation decision, the
resource allocation for computational processes, and the mobility management. This
approach can reduce the latency of the network in IoT application systems.

In [22], Yousafzai et al. introduced a light-effect migration-based paradigm for manag-
ing computational offloading in edge networks in mobile edge computing. They investi-
gated the impacts of edge networks on IoT applications. The evaluation results showed
that the execution time for data processing and the amount of transmitted data should be
considered to optimize the utilization of edge devices.

In [13], Berta et al. proposed a general end-to-end IoT platform that is composed
of the cloud-based service for managing sensor data and devices of IoT applications
called Measurify, and the tool for facilitating the construction of edge devices called Edgine.
Edgine requests the local configuration and executable scripts. Then, it collects data from
the sensors, processes them using downloadable scripts and stores it in the cloud. The
proposed system has been installed and used for several IoT application systems. The
results demonstrated the efficiency of the system by enabling developers to focus on
application requirements and design decisions to define the edge system rather than on
implementations.

In [23], Yang et al. proposed an edge computing framework suitable for IoT device
development. This framework provides functions to configure the module hardware
security, the data conversion, control, and communication to the server. It also offers
advanced data processing capabilities at the edge computing level, including rule engines,
data analysis, and application integration. By accessing the cloud service, this framework
allows users to update the configuration through MQTT communications. This approach is
similar to our method for updating the configuration remotely.

In [24], Kim et al. proposed plug-and-play in IoT platforms, using a web page to
manage IoT devices. They utilized Arduino boards as edge devices that were connected
to the sensors and actuators. The proposed system allows configuring the device for data
collection or control actions by accessing the platform website. The implementation results
indicate that the system was able to reduce the deployment complexity and increase the
IoT environment dynamicity. However, they only considered the device layer and did not
address the data visualization and analysis at the cloud level.

In [25], Iera et al. introduced the Social Internet of Things (SIoT) architecture paradigm.
This architecture comprises IoT applications in objects that are registered on a social
networking platform, where each object collaborates and interacts with other objects to
provide specialized services. The architecture includes three elements: objects, gateway,
and an SIoT server. Each component may consist of three layers: sensing, network, and
application. It enables IoT objects to conduct high-computational processes, in contrast
to only the server performing these tasks. As a common IoT architecture, the network
layer is only used to connect the server and the objects. However, this architecture allows
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the integration between IoT objects and provides interfaces for IoT objects and humans
through network layers. Thus, it provides the development of IoT applications that interact
with one another. This architecture can be considered a reference with which to improve
the design of the IoT application system architecture proposed in this paper.

In [26], Cauteruccio et al. proposed the Multi-Internet of Things (MIoT) architecture
to improve object communication in the SIoT architecture. In the SIoT architecture, IoT
objects connect and collaborate with one another. It makes the complexity of data trans-
fer increase. Thus, MIoT architecture solves this issue by considering data-driven and
semantics-based aspects of data exchange between objects. Unfortunately, the proposed
communication model is not suitable for dynamic IoT application scenarios, where IoT
devices are dynamically added and removed.

3. Design of The IoT Application System Architecture
3.1. System Overview

In this section, we describe the design of the IoT application system architecture for
generalization. Currently, there are many IoT architecture references that can be considered
for developing IoT application systems. However, each IoT application system has unique
designs and requirements. The common IoT application system architecture consists of
three layers. The perception layer represents the physical devices for sensing and actuating
that interact with the environment. The network layer represents the transport layer for data
communications between layers. The application layer represents the application software
to offer specific services for data processing [27]. There are many IoT application system
architectures that need to be addressed to enhance the development of IoT applications
and platforms.

In [28], Lombardi et al. presented commonly used IoT architectures such as cloud-based
architecture, edge-computing-based architecture, and Social Internet of Things (SIoT) archi-
tecture. Cloud-based architecture utilizes services deployed on a cloud server to generate,
process, and visualize large amounts of data for users. This architecture allows users and
other services to access data at any time. Edge-computing-based architecture offers computa-
tional services close to the device layer by offering data processing, storage, and control
capabilities. It is frequently used for industrial devices and IoT application systems that
demand a quick response as a result of data processing.

In SIoT architecture, IoT applications are comprised of objects registered on a social
networking platform, where each object collaborates and interacts with other objects
to provide specific services [25]. This architecture enables IoT objects to conduct high-
computational processes, as opposed to only the server performing these tasks. It enables
the development of IoT applications that interact with one another. In addition, the MIoT
architecture has been added to the SIoT architecture. In order to reduce the complexity of the
SIoT architecture system, the MIoT architecture considers data-driven and semantics-based
aspects for data exchange between objects [26].

In this paper, the concept of the IoT application system architecture was based on
these references. Figure 1 illustrates the proposed architecture. It is composed of the sensors
and actuators, edge, and cloud layers.
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Figure 1. Design overview of general IoT application system architecture.

3.2. Sensor and Actuators Layer

In the context of the IoT application system, perception devices as IoT objects are
sensors and actuators connected to a controller. Sensors are primarily used to monitor
the environment by converting physical parameters into measurable electrical quantities
(often voltage), while actuators provide physical actions when presented with an electrical
quantity. However, with the rapid development of technologies, Internet-connected devices
have become common and diverse in their application purposes.

For instance, in smart homes, developers have often utilized smart devices to improve
living experiences and reduce energy consumption. These smart devices are controlled by
smartphones and are integrated with cloud services through wireless networks.

The Industrial Internet of Things (IIoT) has been presented to connect IoT technologies
to industrial machines or instruments to analyze the obtained data and optimize existing
industrial processes [29]. It uses smart instrument devices for automatic data collection to
enhance the condition monitoring of industrial instruments. Recently, industrial devices
in the market have contained features to enable Internet-based data access to central
operation management systems through Ethernet and wireless technology. In this paper,
we considered smart devices and smart instruments as components in the sensor and
actuator layers of the proposed architecture.

3.3. Edge Layer

The edge layer addresses the issue of the growing data volume in an IoT application
system by utilizing computing capabilities of edge devices. In this section, we explain the
components of the edge device—input, processing, output, and other components.

3.3.1. Input Components

Input components should consider the connectivity of IoT devices and the method for
collecting valuable data from them. The connectivity component refers to the input/output
(I/O) and the network interfaces of the IoT device for data communications. Currently,
a single-board computer, such as Raspberry Pi, has enabled various interfaces to accept
data from a variety of devices. Among them, General Purpose Input Output (GPIO) is the
standard interface for receiving and sending commands to/from IoT sensors and actuators.
General Purpose Interface Bus (GPIB) is the I/O interface included in the IEEE-488 standard
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for industrial instrumentation data. While GPIO only transmits data in signals, GPIB is
able to handle both text data and numeric expressions.

In the context of IoT data communications, serial communication protocols are often
used to transfer data among IoT devices. Each device may support different serial interfaces
based on its hardware specifications. These include the RS-232 protocol, Universal Serial Bus
(USB), the Serial Peripheral Interface (SPI), the Universal Asynchronous Receiver Transmitter
(UART), and the Inter-Integrated Circuit (I2C). It is necessary to build an edge system that is
able to handle different interfaces.

Various network interfaces, including Bluetooth, Ethernet, and Wi-Fi, have been intro-
duced to connect IoT objects and edge computing devices. Bluetooth is widely applicable
in smart devices due to its capability of low-power communications. Ethernet provides
stability and security by wired connectivity. However, it is difficult to communicate over
long distances. In IoT application systems, IEEE 802.11 wireless LAN (Wi-Fi) is the most
popular network interface used by current smart devices and smart instruments.

Sensor devices usually generate data in different and non-standard formats. It is
challenging to enable the interoperability among sensors from different companies that
have different communication technologies. Therefore, the edge device requires the data
conversion component to generate data in the standard format from various sensor devices.
This component represents the translation process of sensor data. It requires a data model
to define the valuable data structures of sensor data that are used for further processing
in the edge system. JavaScript Object Notation (JSON) format data are frequently used for
this purpose.

3.3.2. Processing Components

As an extension of cloud services, edge computing has similar characteristics to
cloud computing. Edge computing is able to perform local data processing with minimal
computational resources. Processing components in the edge layer are designed to optimize
data collections and enable immediate analysis and decision-making. The filtering and
the rules engine are included in these components. The filtering component reduces data
noise and inaccuracies by applying digital filters to sensor data. Several sensors, such as
the accelerometer and the gyroscope, may produce noisy data. It is necessary to reduce
noises before transmitting data to a cloud server.

The rules engine component makes data-driven decisions in real-time. It applies various
output services when rule patterns are matched. They include delivering notification
messages to users and issuing action commands to actuators. The rules contain basic
operations in the format of “if the specific conditions are fulfilled, then trigger the specific
actions” or defined as IF-THIS-THEN-THAT form—for example, in an IoT application
system for smart homes, “if the temperature is higher than 30 ◦C, then turn on the air
conditioner”. The rules engine in the edge layer can reduce the time required to generate
the response action, compared to waiting for the server response. However, it should avoid
complex rule models due to the limited computational resources of edge devices.

3.3.3. Output Components

The output components concern the ability of edge devices to utilize the collected
data and transmit it to the cloud server or other systems. Several output components, such
as the visualization interface, notification/alert, data transfer, trigger action operations,
and data access API, should be considered for this purpose. The visualization interface
component provides web-based user interfaces to monitor IoT data at the edge continu-
ously. The notification/alert component communicates with users through email or push
notification services.

The data transfer component represents the ability of the edge device to send data
across different networks to its cloud server or other systems. Network interfaces of the
edge device and communication protocols need to be considered. The edge device, such as
Raspberry Pi, has enabled diverse network interfaces. Wi-Fi, Ethernet, and 5G cellular are
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standard network interfaces used to connect edge devices to cloud servers. Communication
protocol services consist of the publish–subscribe and request–response messaging models.
MQTT communication is the most popular publish–subscribe protocol for IoT application
systems. It can operate on an edge device with limited processing power and memory.
HTTP communication is often used for the request–response messaging model. In addition,
the standardization format of data transfer should be addressed for this component. In this
case, the JSON format is utilized.

The action component consists of functions that send commands to actuators through
connectivity interfaces. Due to the complexity of action functions becoming more diverse, it
should be able to execute different action functions in parallel or sequentially. The data access
API is another output component that should be considered in the edge layer. It provides
a function to allow external systems to access local data through HTTP communication,
which is relevant to the current IoT trends of cross-vendor capabilities and interoperability.
Thus, it enables the development of complex IoT systems that utilize multiple vendor
services simultaneously.

3.3.4. Other Components

For developing the edge device, we should consider additional components that
are not included in the input, processing, and output components. These components are
management, scheduling, security, local data storage, remote debugging, and dynamic
configuration. The management component controls and monitors the lifecycle of the edge
device. The scheduling component controls the time cycle for executing data streams in
the edge device. The security component provides privacy and security capabilities of the
edge device.

When sensor data cannot be transmitted to the server, the system must provide the
reliable local data storage service to archive sensor data records. The local data storage
component should consider the battery consumption, latency, and CPU utilization. The
lightweight embedded database engine, such as SQLite, can be the suitable database option
with which to develop this component.

Currently, the edge management system provides dynamic configuration capabilities.
It allows users to modify edge system parameter settings by changing environments.
Parameter settings include connected sensors and actuators, data processing methods, and
data transmission services. However, this component may cause problems and errors if the
configuration does not match the current environment of the edge device. Therefore, the
remote debugging component will be the solution. It allows running and verifying the new
device configuration without affecting the existing system running on the edge device.

3.4. Cloud Layer

The cloud layer components are responsible for processing, analyzing, managing,
storing, and visualizing IoT data using cloud-based services. These components per-
form computations that are not feasible on edge devices. In this paper, we present the
cloud layer components in Figure 1. We organized them into input, processing, output,
and other components.

The input components provide the services to receive sensor data from different de-
vices using different communication protocols. It consists of the IoT gateway and the data
aggregator. The components contain a variety of data processing functions for IoT data
stream processing, filtering, rules engine, data synchronization, and analytics, with plug-in
function capabilities, where each function should be implemented as a standalone one
to prevent system failures. The output part concerns the ability of the cloud system to
provide capabilities for users or other systems to access IoT data. The output components
may include visualization functions, notification/alert functions, REST API services, busi-
ness application integrations, and IoT collaboration capabilities. The other components
provide additional components that will support the main services of the cloud server.
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They include management, data storage, device management, user authentication, and
security components.

Figure 1 shows the components of the cloud layer in the edge device framework.
It consists of the IoT gateway, the data aggregation, and the device management com-
ponent. The IoT gateway provides communication protocol services such as HTTP and
MQTT to receive data from edge devices. The MQTT broker service was implemented to
enable MQTT communication. The REST API service was developed for accepting sensor
data through HTTP POST communications. Additionally, the IoT gateway component
should consider potential utilizations of communication protocols provided by other cloud
service providers.

The data input process at the cloud layer usually starts when the IoT gateway receives
sensor data. It will be followed by data aggregation. Then, data will be forwarded to data
processing functions and be stored in the data storage. The data aggregation component
collects data from several data sources, applies data processing, and reassembles data in a
usable format.

In this paper, we emphasized the importance of the device management component in
the development of the edge device framework. The component manages the devices in
the cloud system. It identifies device specifications, such as sensors that are connected to
the edge device, and handles the integration between edge devices and the cloud server. It
allows the dynamic configuration component of the edge to be triggered remotely from the
cloud server. The device management data are stored in cloud server data storage.

4. SEMAR IoT Application Server Platform

In this section, we introduce SEMAR as an IoT application server platform to facilitate
the development of a cloud layer system. In previous studies, we designed and imple-
mented the SEMAR IoT application server platform in consideration of the cloud layer for
the general IoT architecture described in Section 3. The current implementation of SEMAR
has been used in several IoT application systems [30]. It provides the integration functions
of collecting, displaying, processing, and analyzing sensor data, including built-in and
plug-in functions. Figure 2 shows the system overview of the SEMAR.

Figure 2. Design overview of SEMAR IoT application server platform.
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The built-in function allows the use of new functions without implementing or modify-
ing the original source codes. The components of the built-in function are grouped according
to data input, data processing, and data output that are controlled by the management system.

The data input provides components for gathering sensor data from various IoT re-
sources that accept connection through network interfaces and communication protocols.
It consists of the IoT cloud gateway for communication services through HTTP POST and
MQTT communication protocols, and the data aggregator for gathering and processing
sensor data with the consumable format based on the sensor format stored in the device
management data. It transmits the results to the data processing component and stores them
in the MongoDB data storage [31].

The data processing components consist of the data filter for reducing noises and in-
accuracies in the data obtained, the data synchronization for synchronizing the data from
different devices and storing it in the dynamic database called the schema data storage, and
the data analytics for analyzing large amounts of data.

The last component employs machine learning techniques and real-time data classifi-
cation services. The machine learning techniques enable the user to construct a data model
for the real-time data categorization feature using sample data from the data storage. In
addition, the SEMAR IoT application server platform enables plug-in functions that can be
implemented as system extensions or as the other IoT application systems to access the
data through REST API services.

The SEMAR IoT application server platform includes several output components.
Users can access the sensor and synchronized data through the user interface based on a
website. It enables the data export function to download sensor data in CSV, JSON, Excel,
or text format at a specific time by accessing the user interfaces. The notification function
enables the user to set the threshold for each sensor data point as the message notification
trigger. If the value fulfills the threshold, the system will generate and send an alert to
users. In accordance with the current trend of IoT platforms, we implemented capabilities
that enable IoT collaboration, which allows for the connections and integrations of other
systems. We used the REST API service for data integrations and exchanges through HTTP
POST communications using the JSON format. The REST API retrieved data from storage
and translated it into the JSON format.

The management service has been implemented in the SEMAR to manage user authen-
tications, devices data, and its communication protocol. In this paper, we improved the
device management feature by adding the function to create, update, and delete the edge
configuration file for the edge device. Users are able to operate and monitor the device
remotely. Users can access this service through the user interface.

The procedure for integrating the SEMAR platform with a new IoT application system
is described as follows:

• The user registers the devices and the sensors of the IoT application system on the
SEMAR platform;

• The system prepares the IoT cloud gateway services, including the HTTP POST and
MQTT communication protocols, to receive data;

• The device sends data to the server through the defined communication service in
JSON format;

• The data are received by the IoT cloud gateway, processed by the data aggregator based
on the registered sensors, and are stored in the sensor data storage.

• The SEMAR provides the capability of synchronizing data from several devices by
accessing the sensor data storage and storing the results in the schema data storage;

• The user interface of SEMAR displays the data. The user can integrate their programs
as plug-in functions by utilizing the REST API.

5. Design and Implementation of Edge Device Framework

In this section, we present the design and implementation of the edge device framework.
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5.1. System Overview

The following section presents the edge device framework as a collection of tools that
will make it easier to create edge computing systems. Figure 3 provides the overview of the
integrated system of the edge device framework in SEMAR. It functions in three phases. In
the initialization phase, it offers web services that enable the automatic downloading of the
configuration file to the device via HTTP communications. In the service phase, it transforms
data from various sensors into the standard data format and periodically transmits them
to the server. In the update phase, it remotely updates the configuration through MQTT
communications.

Figure 3. Design overview of the edge device Framework.

5.2. Initialization Phase

In the initialization phase, the framework is installed on the edge device, and the initial
connection is established between the edge device and the SEMAR platform. First, the user
registers a new device and configures the edge device on the SEMAR platform via the user
interface. Then, the user downloads the Raspberry Pi image from the SEMAR platform and
deploys it to the edge devices. The user needs to ensure that the devices are connected to
the Internet. Next, the user accesses the web services of the edge device framework through
the user interface. The system verifies the user account by accessing the REST API services
of the SEMAR platform. If the user account is authenticated, the system retrieves all the
device data of the user from the SEMAR platform, generates the edge ID of the device, and
grants the access to the web services.

In the initialization phase, the user needs to choose the data to be applied to the edge
device from the user interface. Then, the system downloads the edge configuration, saves it
to the JSON file, and runs the main service program. Algorithm 1 illustrates the process flow
of this program for both the initialization and update phases. Figure 4 shows the sample
edge configuration file used in the framework. It includes the device, the device identity,
and the configuration parameters such as the sensor interface, the data conversion method,
the data model, transmitted data, the local data storage, and the local visualization. The
required libraries to run the system have been installed in the edge device framework.
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Algorithm 1 Edge configuration service.
Input :Edge ID (edgeID)
Output :Edge configuration file (EdgeCon f ig)
begin

Set EdgeCon f ig← read EdgeCon f ig from the “config.json”
if EdgeCon f ig not NULL then

Run Main Service program(EdgeCon f ig)
Connect to the MQTT broker in SEMAR
Subscribe for the “edgeID” MQTT topic
while true do

if Message← receive data from server through MQTT communication then
Set EdgeCon f ig← convert Message to JSON format
Save EdgeCon f ig to the “config.json”
Restart Main Service program(EdgeCon f ig)

end
end

end
end

Figure 4. A sample of the edge configuration file in JSON format.

5.3. Service Phase

In the service phase, which is the primary phase of the edge device framework, the
framework collects and transmits sensor data to SEMAR. Figure 3 illustrates the lifecycle
of the edge device framework for this purpose. Based on the general IoT application
architecture illustrated in Figure 1, the functions of the main edge framework services
are classified into data input, data processing, and data output. Algorithm 2 describes the
program flow. To collect the raw sensor data, the edge device must be connected to the
sensor or device. The service program then reads the edge configuration file, which was
downloaded by the edge configuration services. The program can process the raw sensor
data by converting them to the standard data format, reducing inaccuracies in the data
using the filtering function, generating the decisions based on predefined rule models using
the ruling function, saving it to local data storage, and sending it to the server in JSON
format using a defined communication protocol. The communication protocol can be
either MQTT or HTTP POST. The SEMAR platform receives, processes, and analyzes the
sensor data using built-in systems on the server and displays the sensor data as output
in the user interface. Additionally, the system can send notifications/alerts to the user
and trigger actuators based on the rule model results. The program runs periodically at
specific intervals and only transmits the sensor item values defined in the configuration
file. Therefore, the framework enables the user to manage edge devices and optimize their
performance by defining edge configuration files.
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Algorithm 2 Service phase.
Input :Edge configuration(EdgeCon f ig)
begin

Set TimeInterval, CommService, Inter f ace, TransmitData, FilterModel, RuleModels,
LocalData, ActionModels ← read the configuration of time interval, communication
service, resource interface, transmitted data from EdgeCon f ig
Set SensorResource← connect to the network interface of sensor device(Inter f ace)
while true do

Set RawSensor ← read raw data of sensor from SensorResource
Set ConvertData ← convert raw data of sensor to the standard
format(RawSensor, Inter f ace)
if FilterModel not empty then

Set ConvertData ← procces sensor data using digital
filter(ConvertData,FilterModel)

end
if RuleModels not empty then

Set RullingResults← applying rule models(ConvertData,RuleModels)
end
Save sensor data to the local storage(ConvertData,LocalData)
Set Data← select transmitted sensor data(ConvertData, TransmitData)
Send transmitted data to the server through communication service
(Data, CommService)
if RullingResults not empty then

Send commands to control actuators(RullingResults,ActionModels)
end
sleep(TimeInterval)

end
end

One difficulty in inputting data into the edge device framework involves the connec-
tivity of the sensor interface. The aim of the edge device framework is to create a versatile
edge computing device that can automatically gather and transmit sensor data to the server.
Therefore, it is essential to establish connectivity services and data models that can support
multiple sensors. Currently, our system can capture and transform sensor data through the
GPIO, USB serial, and wireless interfaces. We have created multiple functions with which
to collect data from the GPIO interfaces. To use the system, the user must first specify the
GPIO ports and modes in the configuration file. Then, the system periodically reads the
port value, converts it into a JSON object based on the configuration file, and returns the
results to the data processing components.

To use the USB serial interface, the user needs to specify the serial port, the timeout
time, and the baud rate that determines the data transmission speed. The user also needs
to define the delimiter that the system will use to extract the relevant information when
it receives a line of serial communication data. Algorithm 3 shows the data conversion
process for serial communications.
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Algorithm 3 Data conversion procedure for serial communication.
Input : Raw sensor data (RawSensor), Edge configuration(EdgeCon f ig)
Output :Converted sensor data (ConvertData)
begin

Set Delimeter, ObjectUsed ← read configuration of delimiter and object used, from
EdgeCon f ig
Initialize ConvertedData, Result← empty JSON object
Set DataList← SPLIT(RawSensor,Delimeter[0])
for each item in DataList do

Set Bu f f er ← SPLIT(item,Delimeter[1])
Set Result[Bu f f er[0]]← Bu f f er[1]

end
for each sensor in ObjectUsed do

if sensor in Result then
Set ConvertData[sensor]← Result[sensor]

end
end
return ConvertData

end

To use the wireless interface, the user needs to provide the URL of the web service to
receive the HTML data through HTTP GET communications. The web scraping technique
is used to extract the necessary information from the HTML data and to transform it into
an array format. The user needs to define the index array that includes the channel name
and sensor value. The data conversion process for the wireless interface data is shown in
Algorithm 4, which illustrates the data conversion procedure for the wireless interface data.

Algorithm 4 Data conversion procedure for wireless interface.
Input : Raw sensor data in HTML format (RawSensor), Edge configuration(EdgeCon f ig)
Output :Converted sensor data (ConvertData)
begin

Set ChannelIndex, ValueIndex, MaxSequence, ObjectUsed ← read configuration from
EdgeCon f ig
Initialize ConvertedData, Result← empty JSON object
Set DataList←WEBSCRAPING(RawSensor)
for i← 0 to length(DataList) do

if i % MaxSequence == ChannelIndex then
Set ChannelName← DataList[i]

end
if i % MaxSequence == ValueIndex then

Set SensorValue← DataList[i]
end
if i % MaxSequence == ( Maxsequnce - 1 ) then

Set Result[ChannelName]← SensorValue
end

end
for each sensor in ObjectUsed do

if sensor in Result then
Set ConvertData[sensor]← Result[sensor]

end
end
return ConvertData

end

The data transfer system has been implemented to enable the transmissions of sensor
data to not only the SEMAR platform but also to any other IoT gateway service the user
prefers for the cross-vendor capability in edge computing. It currently supports HTTP
POST and MQTT communications using the standard JSON format. The data transfer
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function uses the "time_interval" configuration to regulate the data transfer frequency, the
"data_transmitted" configuration to determine the output data to be transferred, and the
"communication_protocol" configuration to describe the destination and communication
service. While developing edge devices, the communication network is the critical factor
for avoiding the unsuccessful data transfer. The data caching function is implemented by
using SQLite and Python to store sensor data locally, with the "local_data" configuration
specifying which data are saved in the local data storage.

The current implementation allows the user to visualize data in the forms of tables
and graphs. It is accomplished using the "visualization" setting, which retrieves sensor data
from an SQLite database. The user can access these data through the web interface or the
REST API service. To make IoT application system developments more flexible, we suggest
the use of the REST API service at the edge layer to integrate edge device frameworks with
other systems.

5.4. Update Phase

In the update phase, the user has the ability to remotely modify the edge configuration
file on the edge device using the SEMAR user interface. This process involves modifying the
edge configuration and utilizing the deploy button to initiate the remote update function.
The device management service transmits the updated edge configuration in the JSON format
to the relevant edge device using MQTT communications with the edge ID as the topic. The
edge configuration service connects to the MQTT broker within SEMAR and subscribes to
the same topic with the edge ID. After receiving the new edge configuration through MQTT
communications, the service saves it in the designated folder and triggers the function
to restart the service program. As a result, the user can easily add new sensor devices or
modify device configurations by making adjustments through the user interface. Figure 5
illustrates the flow process of the update phase.

Figure 5. Flow diagram of update phase.

6. Application for Fingerprint-Based Indoor Localization System

As the first application, we integrated the FILS15.4 into the SEMAR IoT application
platform [30]. This system is used to detect the user locations in indoor environments based
on the fingerprints of the target location. The procedure consists of a calibration phase and a
detection phase [16,17].

6.1. System Architecture

Figure 6 illustrates the overview of the FILS15.4 architecture. The FILS15.4 system
utilizes the transmitting and receiving devices produced by Mono Wireless that operate on
the IEEE802.15.4 standard at 2.4 GHz [32]. The transmitter Twelite 2525 has the dimensions
of 2.5× 2.5 cm, and is powered for a long time by a coin battery. The receiver Mono Stick is
connected to the Raspberry Pi through a USB connection.
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Figure 6. System overview of FILS15.4.

Raspberry Pi collects the data from a transmitter by receiving data at the Mono Stick
through USB serial communications. It determines the link quality indication (LQI) for
each transmitter and sends the data consisting of the LQI value and the transmitter ID
to the server through the MQTT communication protocol. The server receives the data,
synchronizes the data from all the receivers by calculating the average LQI with the same
transmitter ID, and stores the results in one record in the database.

6.2. Calibration Phase

The calibration phase produces and records the fingerprint dataset. Each fingerprint
consists of n LQI values, where n represents the number of receivers. It indicates the
features of LQI values when a transmitter is placed at the specified location (room in
FILS15.4).

6.3. Detection Phase

The detection phase identifies the current location of the transmitters by measuring
the Euclidean distance between the current LQI values from the receivers and the finger-
print dataset for each room stored in the database and selecting the fingerprint with the
shortest distance.

6.4. Evaluation of Implementation

The implemented edge device framework for FILS15.4 was deployed on two floors
in the #2 Engineering Building at Okayama University for evaluations. Our evaluations
intended to verify the adaptability and the validity of the edge device framework in SEMAR.
Table 1 presents the device and software specifications for this evaluation.

Table 1. Device and software specifications of FILS15.4.

Components Items Specifications

Edge Device Model Raspberry Pi 4B
Operating System Linux Raspbian

Sensor Device

Model Twelite Mono Stick
Sensor Interface USB

Communication Method Serial Communication
Collected Data id, lqi, accelero x, y and z

We evaluated the ability of the edge device framework to automatically install the
edge configuration built on SEMAR to the edge device, collect sensor data, convert them,
and send them to the server by following the configuration file. In addition, we evaluated
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the configuration update feature by modifying the edge configuration setting and remotely
deploying it to the edge device through the user interface of SEMAR.

Figure 7 shows the initial configuration file for FILS15.4. The interface includes the
configuration of the serial communication for collecting data from a USB receiver and the
parameter for obtaining the necessary data by converting them to the standard format.
According to the edge configuration, the system sends sensor data that consist of ID,
LQI, and accelerometer x, y, z, to the server at every 0.5 s (500 ms) through the MQTT
communication.

Figure 7. Edge configuration for receiver device of FILS15.4.

Figure 8 illustrates the updated edge configuration for FILS15.4. It is changed from
the initial configuration. The configuration was modified by removing the accelerometer
data from the result of the data converter process, and only transmitting ID and LQI data
to the server. The data transmission interval is similar to the previous configuration.

Figure 8. Updated edge configuration for receiver device of FILS15.4.

Figure 9 shows the data visualization of FILS15.4 through the SEMAR user interface.
The initial configuration part indicates that the edge device can collect data from the USB
receiver, convert them, and send them to the server by following the initial configuration
in Figure 7. The updated configuration part represents the edge device when it collects,
processes, and transmits data by following the updated configuration in Figure 8.

Figure 9. Data visualization of the FILS15.4 receiver device.
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7. Application for Data Logging System

As the second application, the data logging system is integrated to enable real-
time monitoring of the temperature data of some materials during the quenching heat
treatment process.

7.1. System Overview

Figure 10 illustrates the overview of the data logging system architecture. This system
uses midi Logger GL240 with WLAN B-568 that is provided by Graphtec [33] to capture the
temperature data during the quenching heat treatment process by attaching the sensor to
the material. The treatment process is used for hardening steel by putting the material into
the heater machine to improve metal performances. WLAN B-568 provides the HTML web
service for displaying the data collected by the data logger. The integration of the data
logger with the IoT application server platform is as follows:

• The edge device for the data logging system captures raw sensor data in the HTML
format by accessing the data logger web services through wireless communications;

• It reads the input HTML data, extracts the temperature value using web scraping
techniques, and transforms it into JSON format;

• It transmits the JSON data to the SEMAR platform through the MQTT communication
protocol;

• The SEMAR platform receives, processes, and saves the sensor data in the database;
• The SEMAR platform displays the sensor data through the user interfaces.

Figure 10. System overview of data logging system.

7.2. Evaluation of Implementation

We evaluated the implementation of the edge device framework for the data logging
system by running it in the #1 Engineering Building at Okayama University. Our evaluations
intended to verify the adaptability and the validity of the edge device framework in SEMAR.
Table 2 presents the device and software specifications for this evaluation.

Table 2. Device and software specifications for data logging system.

Components Items Specifications

Edge Device Model Raspberry Pi 4B
Operating System Linux Raspbian

Sensor Device

Model midi Logger GL240 and
WLAN B-568

Sensor Interface Wireless Connection
Wireless LAN Mode Access Point

Wireless LAN IP 192.168.230.1

Web Services URL
http://192.168.230.1/digital.
cgi?chgrp=0 (accessed on 19

December 2022)
Communication Method HTTP Communication

Collected Data temperature

http://192.168.230.1/digital.cgi?chgrp=0
http://192.168.230.1/digital.cgi?chgrp=0
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Figure 11 shows the initial configuration file for the data logging system. The edge
configuration indicates that the edge device collects data from the data logger through the
wireless network. It transmits the measured temperature data from channels 1 and 5 to the
server every five seconds through the MQTT communication.

Figure 11. Edge configuration for edge device in the data logging system.

Figure 12 shows the updated edge configuration of the data logger monitoring system.
It was modified from the initial configuration. In this configuration, the transmitted data
were changed by only sending the temperature data from channel1 every 2 s through the
MQTT communication.

Figure 12. Updated edge configuration for edge device of data logging system.

Figure 13 illustrates the data visualization of the data logging system. The initial con-
figuration part represents the edge device for collecting, processing, and transmitting data
according to the initial configuration in Figure 11. Additionally, the updated configuration
part shows the data sent by the edge device when the configuration is modified according
to Figure 12.

Figure 13. Data visualization of the data logging system.

8. Evaluations

In this section, we evaluated the implementation of the SEMAR IoT server platform.



Information 2023, 14, 312 19 of 25

8.1. Performance Analysis

The first evaluation of the edge device framework’s performance involved investigat-
ing the average CPU and memory usage of the main service program while collecting and
transmitting sensor data at various time intervals. This evaluation was crucial for assessing
the computational performance of the framework during the main phase. To carry out this
evaluation, we employed the data logging system application and measured the average
memory and CPU usage during the experiment time as shown in Figures 14 and 15. We
tested different time intervals ranging from 0.1 s to 10 s for three minutes each and utilized
the feature described in Section 5.4 to modify the time interval configuration.

Figure 14. Average CPU usage rate of main services with different time intervals.

Figure 15. Average memory usage of main services with different time intervals.

The second evaluation involved examining the average response time of the web
services when accessed by multiple users simultaneously via HTTP POST communications.
The edge device framework was installed on a Raspberry Pi, and a considerable amount of
sensor data were stored. To simulate multiple users, we developed a simulation program
that generates virtual users, and ran it on personal computers connected to the Raspberry Pi
via Ethernet in the local area network. During the experiments, we increased the number
of user accesses from 5 to 150, with each virtual user representing an actual user or system
using the device data. All the virtual users used similar parameter requests to access sensor
data stored in local data storage.

To measure the response time, we calculated the time difference between the case
where a virtual user sends a request to the web services and the case where it receives
the response message. The response message is the 56 KB JSON message containing
500 records of data. During the experiment, we also evaluated the throughput of web
services, which was 2.3 MB/s. It can handle 41 requests per second. Figures 16 and 17
illustrate the average response time and the average CPU usage rate, respectively, when
the number of virtual users increased from 5 to 150.
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Figure 16. Average response time of web services with different numbers of users connected.

Figure 17. Average CPU usage rate of web services with different numbers of users connected.

8.2. Comparative Analysis

We compared features of the edge device framework with eight research works taking
similar approaches in the literature. We compiled a list of features to be considered for
comparing different edge computing systems frameworks. They were used to characterize
each proposal, and included the following:

• The main purpose was to identify the issue that the proposed system intends to address
and the key reason for selecting it to run edge IoT applications.

• Edge devices represent devices that installed an edge computing framework system.
• Dynamic deployment shows the ability to allow users to dynamically configure the

flow system to run their own edge applications based on hardware and process
requirements (Yes or No).

• Remotely update indicates the capability to remotely update the system (Yes or No).
• Data conversion implies the capability to preprocess data across several devices into a

standard format (Yes or No).
• Scalability demonstrates the ability to expand their applications and to execute the

number of data processing requests simultaneously (Yes or No).
• Interoperability indicates the capability to connect through several widely adopted and

supported protocols provided by multiple devices (Yes or No).
• Cross-vendor capabilities illustrate the capacity of edge computing to collaborate with

multiple vendors to develop complex IoT application platforms (Yes or No).

Table 3 compares the fulfillment of the eight features among the eight related works
and our proposed edge devices framework.
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Table 3. The comparative evaluation between the proposed framework and the existing related
studies.
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[34] Data stream process-
ing and task manage-
ment

Wi-Fi Home
Gateway

X 7 7 X X 7

[35] Edge devices gate-
ways and support
tool

Personal Com-
puter and
Server

X X 7 X X X

[36] Edge devices for
smart manufacturing

Single-Board
Computer

X X X X X 7

[37] Edge framework for
smart farming

Personal Com-
puter

X 7 7 X X 7

[38] Edge computing gate-
ways

Server X 7 7 X X X

[39] Edge computing
framework

Personal Com-
puter

X X X X X 7

[40] Edge devices for
smart home

Personal Com-
puter

X 7 7 X X 7

[13] Edge computing
framework

Single-Board
Computer

X X 7 X X 7

Our
Proposal

General edge comput-
ing framework

Single-Board
Computer

X X X X X X

8.2.1. Overview

Sajjad et al. in [34], Banerjee et al. in [35], and Ullah et al. in [38] developed systems
that are consistent with the main objective of the edge computing framework by collecting
data from diverse devices. Moreover, Rong et al. in [39] and Berta et al. in [13] created
an edge computing framework that can gather data and connect to the actuator as the
system output, which is similar to our edge device framework. Our framework is a general
framework for edge computing and has the ability to connect with several IoT networks
and to offer multiple output components that utilize the acquired data.

8.2.2. Edge Devices

Multiple works have used personal computers for installing and operating the frame-
works. Nevertheless, they do not support the GPIO connectivity that is commonly used in
sensor devices. Chen et al. in [36] and Berta et al. in [13] have implemented framework
systems using single-board computer devices, such as the Raspberry Pi, which has signifi-
cant benefits. Hence, we chose to deploy the proposed framework on these devices. This
approach enables sensors to connect directly to the single-board computer devices for data
collections, making the development of IoT application systems more straightforward.

8.2.3. Framework Features

In terms of framework features, all the related works offer capabilities for gathering
data from IoT devices and sending them to a cloud server. However, as in our proposal, the
works by Chen et al. in [36] and Rong et al. in [39] included the feature to process sensor
data by converting them based on user-defined configurations.

All the works examined provided the capability to dynamically set up and deploy the
framework using the connected devices as the main requirement. Some works required
direct access to the devices for operations. Notably, Banerjee et al. [35], Chen et al. [36],
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Rong et al. [39], Berta et al. [13], and our proposed framework allow users to remotely
update the configuration from the cloud server.

8.2.4. Scalability, Interoperability, and Cross-Vendor Capabilities

All the works that have been reviewed focus on incorporating the scalability and inter-
operability in the functionality. However, some of them have the limited methods of connec-
tivity for linking IoT devices to the edge framework. For instance, Sajjad et al.’s work [34]
only allows the connectivity via Wi-Fi communications, whereas Zamora et al. [37] and
Sharif et al.’s works [40] only permit connections from control unit devices to receive sensor
data. Some works consider the cross-vendor capabilities of edge computing frameworks,
particularly regarding data output components. Banerjee et al. [35], Ullah et al. [38], and
the proposed framework allow the user to access to sensor data from edge devices using
the REST API. However, only the proposed framework provides the additional features
that allow data transmissions to various cloud computing vendors through MQTT and
HTTP POST communications.

8.3. Discussions

This sub-section outlines the performance evaluation outcomes of the proposed edge
device framework in this paper. The framework was developed for the universal edge
computing device with the primary objective of enhancing the effectiveness of building IoT
application systems. The framework provides the flexibility to specify system configura-
tions, such as time intervals for collecting and transmitting data to the server periodically.
As the optimal time interval may vary depending on the purpose, we assessed the comput-
ing performance of the edge device framework across various time interval settings.

Figures 14 and 15 exhibit the mean CPU and memory usage during the execution
of the main services across different time intervals. The results indicate that shorter time
intervals require higher percentages of the CPU usage, where all the experimental results
fall below 25%. Moreover, the amount of the memory usage remains relatively stable across
time intervals, suggesting that the proposed system operates without demanding excessive
computational resources.

The advent of SIoT has increased the complexity and universality of IoT application
systems by enabling other services to access to sensor data beyond merely transmitting
them to the server. As a result, it is crucial to include features that simplify data accessi-
bility. To this end, we integrated web services that enable users to access sensor data via
HTTP communications. Furthermore, we evaluated the communication and computing
performance of the edge device framework when multiple users access it simultaneously.

Figures 16 and 17 illustrate the average response time and the CPU usage rate when the
number of virtual users increases from 5 to 150. The average response time is 824 ms, and
the CPU usage rate is 55% for 100 devices with the response message containing 500 data
records. These results indicate that the proposed edge device framework can accommodate
hundreds of users with the reasonable response time and the CPU usage rate.

To illustrate the latest developments in edge computing frameworks, we evaluated
several comparable models and extracted relevant information from their published papers.
Our analysis results, presented in Table 3, lead us to believe that the edge device framework
offers advanced features and functionality that are highly valuable, especially given the
growing trend towards developing more complex and general IoT application systems.

Furthermore, the evaluation results for the fingerprint-based indoor localization sys-
tem and the data logging system demonstrate that the edge device framework can auto-
matically retrieve the edge configuration file from the server. It can execute the service
program by following the configuration file, gather data from the sensor, convert it to
the standard format, and send it to the server within the pre-defined time frame using
the communication protocol service. In addition, Figures 9 and 13 indicate that it allows
users to remotely update the device configurations through the web interface of SEMAR.
Hence, the implemented edge device framework in this paper can enhance the usage of
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device sensors and contribute to the efficient development of IoT application systems
utilizing SEMAR.

8.4. Generalization

According to the results of this paper, the edge device framework can improve utilizations
of IoT devices by enabling users to remotely configure the parameters, including the
connectivity of sensor interfaces, data conversions, data models, local data storage, local
visualizations, and data transmission intervals to the server. All of the configuration
parameters will be stored in the database to be used as templates for future use of similar
sensors.

This framework was built on Python and can be utilized on any single-board com-
puter supporting Python. It includes NVIDIA Jetson Nano [41], BeagleBone Black [42],
UDOO X86 [43], and Odroid XU4 [44].

The SIoT architecture [25] was considered to develop a general edge computing device.
Each IoT object in the SIoT architecture provides the computation and communication
capabilities. The framework functions can be classified as data input, data processing, and
data output. In data input, the functions to handle various sensor connectivities and data
converters are implemented, including GPIO, GPIB, serial, and wireless communications.
It offers multiple data output components to utilize the sensor data obtained. REST API data
access is included for data transmissions to cloud services.

In the MIoT architecture [26], the function to manage the data communication model
between IoT objects in static scenarios was implemented. This framework architecture
includes the function that allows data communications in dynamic scenarios. It is possible
to add new interactions between sensors and edge devices using data input components,
and to manage data communications between the edge layer and the cloud layer through
data output components, allowing cross-vendor data communications in the standard
JSON format.

9. Conclusions

This paper presented the design and implementation of the edge device framework in
the SEMAR IoT application server platform. It can remotely optimize device utilizations by
configuring it through the SEMAR interface. The framework defines the connectivity of
sensor interfaces, the data processing, the transmitted sensor elements, the communication
protocol, the local data storage, the local visualization, and the data transmission interval
on the server. It enables connection to a variety of sensor interfaces, transforms the data
into a standard format, and provides multiple output components for data utilization.

Our evaluation results through applications with two IoT application systems verified
the adaptability and validity of the proposed framework. IoT edge systems were developed
in dynamic scenarios by allowing users to add or remove sensor devices flexibly.

In future works, we will continue enhancing the proposed framework, including
implementations of the edge configuration validation function and the remote debugging
function in SEMAR. They are necessary to prevent errors and guarantee consistency and
reliability, and to find and fix problems in the edge systems. Then, we will continue to
evaluate it through applications to other IoT application systems.
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