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Abstract: The prompt and accurate identification of the causes of pneumonia is necessary to imple-
ment rapid treatment and preventative approaches, reduce the burden of infections, and develop
more successful intervention strategies. There has been an increase in the number of new pneumonia
cases and diseases known as acute respiratory distress syndrome (ARDS) as a direct consequence of
the spread of COVID-19. Chest radiography has evolved to the point that it is now an indispensable
diagnostic tool for COVID-19 infection pneumonia in hospitals. To fully exploit the technique, it
is crucial to design a computer-aided diagnostic (CAD) system to assist doctors and other medical
professionals in establishing an accurate and rapid diagnosis of pneumonia. This article presents a
robust hybrid deep convolutional neural network (DCNN) for rapidly identifying three categories
(normal, COVID-19 and pneumonia (viral or bacterial)) using X-ray image data sourced from the
COVID-QU-Ex dataset. The proposed approach on the test set achieved a rate of 99.25% accuracy,
99.10% Kappa-score, 99.43% AUC, 99.24% F1-score, 99.25% recall, and 99.23% precision, respectively.
The outcomes of the experiments demonstrate that the presented hybrid DCNN mechanism for
identifying three categories utilising X-ray images is robust and effective.

Keywords: hybrid DCNN mechanism; diagnosis; chest X-ray images; radiography images; lung
opacity; pneumonia; COVID-19

1. Introduction

The COVID-19 pandemic has led to a considerable increase in pneumonia patients
worldwide. The most prominent indications and symptoms of COVID-19 are chest dis-
comfort, cough, sore throat, fever, and shortness of breath, similar to other pneumonia
types. COVID-19 pneumonia presents unique challenges as it can cause severe respiratory
distress, which can advance rapidly to acute respiratory distress syndrome (ARDS) [1].
So, to successfully combat the disease and implement preventative measures, it is neces-
sary to differentiate between COVID-19 infection and other bacterial or viral pneumonias.
A delay in treatment may result in mortality, or other problems, including impaired lung
function and chronic non-communicable respiratory infections, such as asthma or chronic
obstructive pulmonary disease (COPD) [2,3].

In diagnosing a broad range of lung-related disorders, chest X-rays (CXR) are often
used as one of the diagnostic techniques [4]. Chest X-rays are inexpensive, widely available,
and can be performed quickly, making them an effective diagnostic tool for pneumonia. In
contrast, computed tomography (CT) and magnetic resonance imaging (MRI) are higher-
cost techniques and require more time. For this reason, chest radiography has developed
into an important diagnostic technique for COVID-19 infection pneumonia in hospitals.
However, when performing chest X-rays in the early stages of pneumonia, the radiographic
features may not be distinct, making their interpretation more difficult. As a result, es-
pecially during the COVID-19 pandemic, using a CAD system for pneumonia diagnosis
can help to manage the high volume of patients presenting with respiratory symptoms [5].
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Consequently, designing a computer-aided diagnostic (CAD) system has become essential
in supporting medical practitioners in establishing an accurate diagnosis of pneumonia on
time [6,7].

Lately, increased attention has been paid to deep learning (DL) methods, particularly
deep convolutional neural networks (DCNNs), in CAD systems based on computer vision
methodologies so as to identify diseases using chest X-ray images. The use of DCNNs in
chest X-rays for COVID-19 detection has gained significant traction due to its potential
to provide a fast and accurate diagnosis, which is crucial for handling the COVID-19
pandemic [8]. DCNNs are a kind of artificial intelligence (AI) often utilised in image
categorisation tasks because they can extract characteristics from images and categorise
them based on these features. In the medical imaging domain [9], it has been shown that
identifying DCNNs in chest X-rays plays a crucial role in diagnosing bacterial pneumonia,
viral pneumonia, and other chest disorders. Therefore, the development of such models
to identify radiographs contaminated with COVID-19 is urgently required to be able to
make suitable clinical decisions to assist radiologists, medical experts, practitioners and
doctors [10,11].

This work proposes a CAD system with a hybrid identification strategy that uses
chest X-ray image data to categorize three distinct diseases that might cause pneumonia.
The hybrid DCNN consists of a combination of VGG [12] blocks and an inception [13,14]
module. Compared to previous methods that have already been established, our novel
network achieves a higher rate of accurate identification using a large collection. Thus,
by employing X-ray images, this image-based pneumonia disease diagnosis method will
assist medical professionals in the early and rapid identification of pneumonia.

The most significant contributions of this work are as follows:

• The identification of pneumonia is performed using a hybrid DCNN mechanism.
The modified VGG19 model includes two inception blocks to take advantage of
simultaneous feature extraction capabilities. The hybrid DCNN is equipped with
powerful feature extraction capabilities.

• We conducted exhaustive high-level simulations to assess the effectiveness of the
presented hybrid DCNN. The proposed hybrid DCNN mechanism findings were
compared to those obtained from the most current and advanced networks.

The remaining structure of this work is as follows: In Section 2, we address similar
articles on pneumonia and the diagnosis of COVID-19 that have been published in the
literature. Section 3 analyzes the materials and methods used in our experimental work. The
experiment outcomes are discussed in Section 4, along with assessment metrics, and then
the accuracy rate is compared with existing identification techniques. Finally, the study’s
conclusion is in presented in Section 5, which includes some predictions for the future.

2. Related Work

The automated investigation and analysis of an extensive collection of image data
create new and exciting challenges that call for state-of-the-art computational strategies
and classic machine learning (ML), deep learning (DL), or computational intelligence (CI)
approaches that can provide high-performance and specialized medical services [15]. In
the last two years, a significant number of investigators from all over the world have
developed and published many studies to detect and slow the spread of the COVID-19
virus. A substantial number of these researchers have used a variety of AI methodologies
to analyze and diagnose X-ray images to identify various diseases. The capacity of DL
techniques [16] to generate better results than typical ML approaches has made them the
most popular methods for identifying images. In this part, we will concentrate on research
that uses novel methodologies to identify COVID-19 based on DL methods.

COVID-AleXception is proposed in [17], which is a concatenation of the features
from two pre-trained CNN methods, Xception and AlexNet. The dataset comprises
15,153 X-ray images (1345 pneumonia, 3616 COVID-19 and 10,192 normal). Each CNN
method was trained for 100 epochs with the Adam optimisation algorithm. The COVID-



Information 2023, 14, 310 3 of 16

AleXception method achieved an identification accuracy rate of 98.68% over Xception
and AlexNet, which yielded an identification accuracy of 95.63% and 94.86%, respectively.
Hafeez et al. [18] designed a customised CNN prediction system for chest X-rays and
compared it with two pre-trained CNN methods (VGG16 and AlexNet). The accuracy of
the proposed system for the three categories (normal, COVID-19, and virus bacteria) is
89.855%, 89.015% for VGG16 and 89.155% for AlexNet.

In [19], the authors suggested a lightweight CNN technique for COVID-19 identi-
fication utilising X-ray images and evaluated it with seven pre-trained CNN systems
(InceptionV3, Xception, ResNet50V2, MobileNetV2, DenseNet121, EfficientNet-B0, and Ef-
ficientNetV2). The dataset comprised 600 COVID-19, 600 normal, and 600 pneumonia
images. Each CNN method was trained for 50 epochs. The rate of the accuracy of the
proposed method for the three categories is 98.33% and 97.73% from EfficientNetV2. Coro-
Net is proposed in [20], based on the Xception method. The utilised collection comprised
330 bacterial pneumonia, 327 viral pneumonia, 284 COVID-19, and 310 normal X-ray im-
ages. The CoroNet method was trained for 80 epochs, and four categories reached a rate of
accuracy of 89.60%.

Ghose et al. [21] designed a customised CNN automatic diagnosis system. The dataset
comprises 10,293 X-ray images, including 4200 pneumonia, 2875 COVID-19, and 3218 nor-
mal images. The customised CNN was trained for 25 epochs with the Adam optimisation
algorithm. The proposed method attained 98.50% accuracy, a 98.30% F1-score, and 99.20%
precision. In [22], the authors suggested a DL diagnosis system to quickly detect pneumo-
nia using X-ray images. They compare the VGG19 and ResNet50 methods for three distinct
diseases of lung detection. The dataset comprises 11,263 pneumonia, 11,956 COVID-19 and
10,701 normal images. Each CNN method was trained for 180 epochs. The accuracy of the
proposed diagnosis system for the three categories is 96.60% for the VGG19 method and
95.80% for ResNet50.

Furthermore, in [23], the authors compare four DL methods (VGG16, ResNet50,
DenseNet121, and VGG19) to diagnose X-ray images as COVID-19 or normal. The dataset
comprises 1592 X-ray images (802 normal, 790 COVID-19). Each CNN method was trained
for 30 epochs. The VGG16 method for the two categories achieved an accuracy rate of
99.33%, ResNet50 achieved 97.00%, DenseNet121 achieved 96.66%, and VGG19 achieved
96.66%. In [24], the authors suggested a DL model based on MobileNetV2 to identify
COVID-19 infection. The dataset comprises 1576 normal, 3616 COVID-19 and 4265 pneu-
monia X-ray images. Each CNN strategy was trained for 80 epochs. The accuracy rate of
the suggested diagnosis approach for the three categories is 97.61%.

Nayak et al. [25] designed a CNN technique called LW-CORONet. The suggested method
is evaluated by employing two datasets where dataset-1 has 2250 images (750 pneumonia,
750 normal, and 750 COVID-19) and dataset-2 has 15,999 images (5575 pneumonia, 8066 normal,
and 2358 COVID-19). The customised CNN was trained for 100 epochs with the Adam optimi-
sation algorithm. The identification accuracy obtained is 98.67% on dataset-1 and 95.67% on
dataset-2 for three category cases, respectively. In [26], the authors suggested a CNN model for
medical diagnostic image analysis to identify COVID-19. The proposed approach is based on the
MobileNetV2 method. The dataset comprises 10.192 normal, 3616 COVID-19, 6012 lung opacity
and 1345 viral pneumonia images. The proposed diagnosis method achieves an identification
accuracy rate of 95.80%.

Most researchers fed their identification networks with data from relatively small
collections. Consequently, most of the networks reached high levels of accuracy; however,
the prediction results based on those networks cannot be generalised owing to the small
number of image data on which the networks were trained [27]. Table 1 presents a compre-
hensive description of the categorisation of the above systems for identifying COVID-19
and analyzes the model employed and the accuracy rate achieved.

In our work, the collection included 33,920 chest X-ray image data, balanced with
around 10,500 images belonging to each category. Thus, a hybrid DCNN identification
mechanism was created for diagnosing pneumonia and COVID-19 disease based on image
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evidence from a much larger collection. Our suggested design has a primary key goal to
improve disease detection accuracy and reduce the frequency of inaccurate identifications.
The hybrid DCNN network was trained and tested using X-ray image data that included
three distinct types of pneumonia. According to the experiments’ findings, the model’s
categorization accuracy is 99.23%. Since it has a high accuracy rate, the recommended
strategy may be of assistance to those operating in the medical industry.

Table 1. A summary of studies using CNN methods for COVID-19 identification.

Study Best Method Accuracy (%)

[17] COVID-AleXception 98.68
[18] Custom CNN 89.855
[19] Lightweight CNN 98.33
[20] CoroNet 89.60
[21] Custom CNN 98.50
[22] VGG19 96.60
[23] VGG16 99.33
[24] MobileNetV2 97.61
[25] LW-CORONet 98.67
[26] MobileNetV2 95.80

3. Materials and Methods
3.1. Dataset Collection

There are 33,920 chest X-ray image data in the collection COVID-QU-Ex [28], all of
which are available to the public.

The COVID-QU-Ex collection consists of three categories: normal, non-COVID in-
fection, and COVID-19. Patients with normal (healthy) situations represent 32% of the
total collection with 10,701 instances, non-COVID infection situations represent 33% with
11,263 instances, and COVID-19 situations represent 35% with 11,956 instances. These
images represent two different diseases and one healthy state. Each image’s resolution in
the collection, which is in a PNG file format, is 256 pixels per flank. Figure 1 illustrates a
sample of a normal instance and two distinct disorders that may damage the lungs. Since
the collection is already large and relatively well-balanced, as shown in Figure 2, there is
no need to use data augmentation techniques to make it more balanced.

From the radiographic findings in Figure 1, a normal lung X-ray typically shows clear
lung fields without any significant opacities or abnormalities. The lung markings appear
normal, with the blood vessels and airway passages clearly visible. In cases of viral or
bacterial pneumonia, the X-ray image often reveals areas of opacity or consolidation. These
areas appear as dense, cloudy regions within the lung fields, indicating the presence of
inflammation, fluid, or pus. The opacities can be patchy, focal, or lobar, depending on the
severity and extent of the infection. X-ray findings in COVID-19 pneumonia show ground
glass opacities (blurry areas) in multiple areas of the lungs. These opacities often have a
peripheral distribution and can affect both lungs symmetrically [29,30].
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Figure 1. X-ray samples by category from the COVID-QU-Ex collection (the white markers indicate
infected areas).

Figure 2. The allocation of X-ray image data per category from the COVID-QU-Ex collection is
balanced; thus, no augmentation techniques are required.

3.2. Split Collection

In DCNN, a collection is divided into three parts: training/validation/testing. So,
the training set optimizes the network’s weights by reducing the predicted and actual
output differences. The validation set is utilised to estimate the network’s effectiveness on
unknown data during training to enhance the network’s performance. The test set provides
a final, objective assessment of the network’s performance after training on unseen data [31].
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The COVID-QU-Ex collection split ratio is 80:20 for train and test objectives. Ad-
ditionally, 20% of training images were used as validation data for the network during
the training phase. This rate is typically used when there is a large collection, adequate
data is available to train stage the network, and sufficient image data remains for vali-
dation and testing of the network [32]. The number of image data per type utilized for
training/validation/testing is outlined in Table 2.

Table 2. Number of image data per type for training/validation/testing in the COVID-QU-Ex collection.

Category Number of
Images

Training
Images

Validation
Images

Test
Images

Normal (Healthy) 10,701 6849 1712 2140
Non-COVID infections
(Viral or Bacterial Pneumonia) 11,263 7208 1802 2253

COVID-19 11,956 7658 1903 2395
Total 33,920 21,715 5417 6788

3.3. Hybrid DCNN for Diagnosing Pneumonia and COVID-19 Disease

We developed a hybrid DCNN mechanism that is effective in distinguishing between
the three distinct categories that have the potential to have an impact on the lungs. The hy-
brid DCNN network was based on combining VGG blocks and the inception module.
So, combining VGG19 with the inception module increases accuracy, improves feature
extraction, and improves computing efficiency.

The VGG19 [12] network comprises a total of 19 layers, 16 of which are convolutional
layers and 3 of which are completely connected. It was developed specifically to perform
well on image categorization tasks, making it a popular option for various computer vision
applications due to its architecture. The 16 convolutional layers are separated into five
blocks of two or three convolutional layers followed by a max pooling layer. Additionally,
the blocks use small filters (3 × 3) with a stride of 1, and as the network becomes deeper,
the number of filters gradually increases. Each of the three fully connected layers has
4096 neurons and uses a softmax activation function to perform the final categorization.

The inception [13] module is composed of several parallel branches that each have a
different size filter, including: Convolutional layers use filters of varying sizes to extract
characteristics from the input image 224 × 224 × 3. The max pooling layer minimizes
the spatial dimensionality of the feature maps generated by convolutional layers. The
concatenation layer merges the outputs from multiple branches of the inception module
into a single multi-scale representation of the input image. The inception module is widely
employed in modern DCNN designs for computer vision and has demonstrated exemplary
performance in various image category tasks.

The hybrid DCNN mechanism for COVID-19 disease identification has the following
elements: ten convolutional layers for feature extraction, four max-pooling layers for spatial
dimension of the feature maps, two inception modules, a global average pooling (GAP)
layer and a fully connected (FC) layer to conduct the categorization. The hybrid DCNN
mechanism takes an input size image (224, 224, 3) and passes it through the network to
identify the disease categories in the image. The initial VGG block utilizes 64 filters, which
results in a feature map that is (224, 224, 64) in size. The output shape produced as a
consequence of this process is (112, 112, 64). The second VGG block utilizes 128 filters and
produces a feature map that is (112, 112, 128) in size, and the resulting shape of the output
is (56, 56, 128). The following third VGG block utilizes 256 filters and generates a feature
map (56, 56, 256) in size; the output shape this creates is a rectangle (28, 28, 256). The final
VGG block utilizes 512 filters and generates a feature map with dimensions of (28, 28, 512),
and the shape of the output is (14, 14, 512). The first inception module utilizes 512 filters,
and the shape of the output produced as a consequence is (7, 7, 512). The second inception
module utilizes 512 filters, and the shape of the output that this generates is (7, 7, 512).
An output shape is possessed by the GAP layer (1, 1, 512). Finally, the FC layer has an
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output shape that consists of (1, 1, 3). Figure 3 depicts the diagram of the inception module,
whereas Figure 4 illustrates the hybrid DCNN mechanism diagram.

Our hybrid DCNN approach combines the strengths of the VGG19 architecture and the
inception module to achieve improved accuracy and speed while reducing computational
complexity over existing methods. Specifically, the first four blocks of the VGG19 architec-
ture form the backbone of our network, which are highly efficient in extracting low-level
features in images. However, the later blocks of VGG19 are computationally expensive, par-
ticularly when working with large datasets. To address this, we add two inception modules
of the VGG19 architecture to improve the network’s ability to learn more valuable features,
leading to an even higher accuracy. The inclusion of two inception modules provides
additional flexibility and complexity in the network, enabling it to capture a broader range
of image features. So, by combining these two architectures, we leverage both strengths to
achieve improved accuracy and speed while reducing computational complexity.

Figure 3. The block diagram of the inception module.
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Figure 4. The block diagram of proposed hybrid DCNN for COVID-19 disease identification.
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3.4. Implementation Description

All experimentations were performed utilizing a GPU (NVIDIA RTX 3050 with 8 GB
RAM). Python 3, CUDA, the Keras package, CuDNN, Matplotlib and NumPy were the
main libraries used to implement all networks. All networks were optimized using the
Adam [33] optimizer with a learning rate of 0.0001, a number of epochs of 30 and categorical
cross-entropy as a loss function. Table 3 displays the specific training parameters for
all networks.

Table 3. Configurations of the training parameters for all networks.

Name of Parameter Value for Training

Optimizer Adam
Number of epochs 30
Learning rate 0.0001
Mini batch size 32
Loss function Cross-entropy

3.5. Performance Measures

Accuracy, precision (specificity), recall (sensitivity), and F1-score are the most popular
measures to evaluate deep learning networks [34]. In addition, the Kappa score [35]
coefficient is used to assess the level of agreement between the predicted labels and the
actual labels in the test data. Consequently, these measures were selected for this work.
All measures are based on the number of true negative (TN), true positive (TP), false
positive (FP), and false negative (FN) cases. Furthermore, the confusion matrix is used
to evaluate the performance of networks during categorization tasks. Finally, the ROC
curve demonstrates how effectively the network can discriminate between various kinds
of image data; when the indicator is increased, the network can satisfactorily distinguish
between the type with the infection and without infection. The formulas for the measures
above are provided using Equations (1)–(6):

Accuracy = ((TP + TN)/(TP + FN + TN + FP))× 100% (1)

Precision = (TP/(TP + FP))× 100% (2)

Recall = (TP/(TP + FN))× 100% (3)

F1-score = 2 × ((Precision × Recall)/(Precision + Recall))× 100% (4)

Random Accuracy = (((TN + FP)× (TN + FN) + (FN + TP)× (FP + TP))/

((TP + FN + TN + FP)× (TP + FN + TN + FP)))× 100%
(5)

Kappa-score = (( Accuracy − Random Accuracy )/(1 − Random Accuracy ))× 100% (6)

4. Experimental Results

The immediate purpose of our suggested network is to sweeten the identification
accuracy of the COVID-19 disease and reduce miscategorization. Figures 5 and 6 illustrate
the accuracy and loss curves for 30 epochs during the training and validation stages. The
highest training and validation accuracy is shown in the hybrid DCNN with 99.32% and
97.60%, and loss is 0.1062 and 0.9260. On the contrary, the lowest training and validation
accuracy is obtained at 98.97% and 91.57%, and loss is 0.1548 and 0.9157 for the ResNet50
network. Analyzing the accuracy curve, it is seen that the accuracy values of the hybrid
DCNN are statable without showing overfitting over the other networks.
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As can be seen in Figure 5, the Hybrid DCNN outperforms the other popular CNN
architectures, starting from more than 0.85 when epochs are 0. The main reason for
the superior performance is that the proposed approach uses the generic characteristics
of images extracted from the ImageNet [36] dataset by the VGG19. So, our model has
already learned to recognize a great deal of visually valuable elements, such as edges,
textures, and shapes, which can be used for identification, and learns specific features of the
COVID-19 disease identification task due to the two newly added inception modules. On
the other hand, the other CNN architectures are also initialized with pre-trained weights
from ImageNet, but they do not achieve optimal results for the COVID-19 identification
task. Thus, the Hybrid DCNN is a powerful model that combines the advantages of both
generic and specific feature extraction capabilities, resulting in top performance for the
COVID-19 identification task.

Figure 5. Comparison plot of the accuracy curves of the training/validation for each network.

Figure 6. Comparison plot of the loss curves of the training/validation for each network.
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Figures 7–11, demonstrate the confusion matrix and ROC curve plots for all networks.
Among the 6788 instances, 51 were miscategorised by the proposed hybrid DCNN, the VGG19
with one inception module miscategorised 96, the VGG19 network miscategorised 124,
the VGG16 network miscategorised 181, and the ResNet50 network misclassified 241 instances.

Figure 7. Results of the confusion matrix and ROC curve for the hybrid DCNN on the test dataset.

Figure 8. Results of the confusion matrix and ROC curve for the VGG19 with one inception module
on the test dataset.

Figure 9. Results of the confusion matrix and ROC curve for the VGG19 network on the test dataset.
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Figure 10. Results of the confusion matrix and ROC curve for the VGG16 network on the test dataset.

Figure 11. Results of the confusion matrix and ROC curve for the ResNet50 network on the
test dataset.

The performance of the five networks is outlined in Table 4; the standard deviation is
included in parentheses. The proposed hybrid DCNN mechanism has the best performance
with 99.25% accuracy, 99.23% precision, 99.25% recall, a 99.24% F1-score, 99.43% AUC,
and 99.10% Kappa score. On the contrary, a comparatively low performance was obtained
by the ResNet50 network with 96.45% accuracy, 96.41% precision, 96.41% recall, 96.40%
F1-score, 97.32% AUC, and 95.17% Kappa score. Hence, as shown in Table 5, it was revealed
that the proposed hybrid DCNN is superior to other networks.

Figure 12 shows results from the hybrid DCNN mechanism on some sample instances
from the test set. For example, the proper category kind, shown in Figure 12a top/bottom,
is accurately diagnosed with a probability greater than 98.82% as “Normal”. Moreover,
the suggested strategy accurately identifies each instance in Figure 12b (top/bottom images).
The proposed mechanism is accurately identified, as shown in the top image of Figure 12c.
In contrast, the irregular opacity of the lungs affects the feature extraction process. So,
erroneous lung disease identifications may arise, as illustrated in Figure 12c (bottom
image). Considering the outcomes, it can be deduced that the recommended hybrid
DCNN mechanism enhances the accuracy of COVID-19 disease identification. Specifically,
combining the highly effective first four blocks of the VGG19 architecture with the efficient
inception modules allows our network to capture useful features missed by other methods,
thereby reducing the frequency of inaccurate identifications.
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Figure 12. Indicative instances evaluated by hybrid DCNN mechanism.

Table 4. Performance measures of five networks, standard deviation included in parentheses.

Network Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

AUC
(%)

Kappa-Score
(%)

Hybrid DCNN 99.25
(0.0254)

99.23
(0.0270)

99.25
(0.0295)

99.24
(0.0307)

99.43
(0.0354)

99.10
(0.0386)

VGG19 with
one inception

module

98.59
(0.0427)

98.55
(0.0454)

98.59
(0.0458)

98.56
(0.0507)

98.94
(0.0492)

98.45
(0.0471)

VGG19 98.17
(0.0474)

98.13
(0.0432)

98.18
(0.0481)

98.15
(0.0507)

98.63
(0.0531)

97.84
(0.0516)

VGG16 97.33
(0.0706)

97.31
(0.0732)

97.28
(0.0713)

97.30
(0.0634)

97.97
(0.0642)

96.61
(0.0770)

ResNet50 96.45
(0.0552)

96.41
(0.0507)

96.41
(0.0587)

96.40
(0.0602)

97.32
(0.0580)

95.17
(0.0524)
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Table 5. Performance evaluation of five networks.

Network Categories Precision Recall F1-Score

Hybrid DCNN
COVID-19 0.9983 0.9933 0.9958
Non-COVID 0.9902 0.9916 0.9909
Normal 0.9884 0.9925 0.9904

VGG19 with one inception module
COVID-19 0.9972 0.9901 0.9948
Non-COVID 0.9901 0.9734 0.9819
Normal 0.9668 0.9919 0.9802

VGG19
COVID-19 0.9962 0.9833 0.9897
Non-COVID 0.9804 0.9751 0.9777
Normal 0.9675 0.9869 0.9771

VGG16
COVID-19 0.9777 0.9891 0.9834
Non-COVID 0.9727 0.9654 0.9690
Normal 0.9690 0.9640 0.9665

ResNet50
COVID-19 0.9827 0.9737 0.9782
Non-COVID 0.9541 0.9685 0.9612
Normal 0.9554 0.9500 0.9527

5. Conclusions and Future Work

The COVID-19 pandemic has created a global health concern, with millions of indi-
viduals infected worldwide. The rapid spread of the disease has made early detection
and accurate diagnosis crucial to prevent its further spread. This work presents a CAD
system with a hybrid identification strategy that uses chest X-ray image data to categorize
three distinct diseases. The hybrid DCNN identification mechanism consists of a combi-
nation of VGG blocks and three inception modules. Our network mechanism achieves
99.25% accuracy, a 99.10% Kappa score, 99.43% AUC, and 99.24% F1-score. These results
demonstrate that the proposed strategy can effectively distinguish between pneumonia,
COVID-19, and typical chest X-ray images. In further research, the diagnostic accuracy of
large-scale medical datasets has to be investigated, and appropriate experiments must be
conducted to verify our hybrid DCNN identification strategy in specialized services such
as service-oriented networks (SONs).
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