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Abstract: The paper presents the results of a correlation analysis between the information trends
in the electronic media of Kazakhstan and indicators of the epidemiological situation of COVID-
19 according to the World Health Organization (WHO). The developed method is based on topic
modeling and some other methods of processing natural language texts. The method allows for
calculating the correlations between media topics, moods, the results of full-text search queries,
and objective WHO data. The analysis of the results shows how the attitudes of society towards
the problems of COVID-19 changed from 2021–2022. Firstly, the results reflect a steady trend of
decreasing interest of electronic media in the topic of the pandemic, although to an unequal extent
for different thematic groups. Secondly, there has been a tendency to shift the focus of attention to
more pragmatic issues, such as remote learning problems, remote work, the impact of quarantine
restrictions on the economy, etc.

Keywords: natural language processing; COVID-19; mass media; topic modeling

1. Introduction

The healthcare systems of almost all countries face numerous problems caused by
increased demand for medical services and high expectations of the population in the peri-
ods of pandemic, and these factors entail higher costs [1]. It also should be noted that social
and medical efficiency as well as economic one are important for the healthcare system
since, as it was mentioned in [2], the medical activities of a therapeutic and preventive
nature may be economically unprofitable, but the medical and social effect requires their
implementation. This statement is especially true in the context of a pandemic. On the other
hand, the COVID-19 pandemic is an appropriate example of how rumors and incomplete
knowledge affect society. People rely on mass media as a source of information and feel
uncertainty when threats arise in the environment [3]. According to the authors in [4], the
pandemic provoked a surge of rumors and misinformation, which hindered the rational
behavior of the population and, to some extent, facilitated the acceleration of the spread of
the virus. The media reports significantly affected people’s emotions and psychological
resilience in the course of the COVID-19 pandemic, [5]. More than 51% of news headlines
in English-language media were negative in this period, and only about 30% of them were
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specific asymmetry parameters, regularized estimation is employed. The usefulness of the proposed
model is illustrated through simulations and empirical examples for dichotomous and polytomous
item responses.
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1. Introduction

Item response theory (IRT) models [1–4] are a popular statistical method for analyzing
dichotomous and polytomous random variables. IRT models can be classified into the area of
multivariate statistics, which summarize a high-dimensional contingency table with a few
latent factor variables of interest. Of particular interest is the application of IRT models in
educational large-scale assessment (LSA; [5]), such as the program for international student
assessment (PISA; [6]), which assesses the ability of students on test items in different cognitive
domains, such as mathematics, reading, and science, across a wide range of countries all over
the world.

In this article, we focus on unidimensional IRT models. These models are used for scaling
cognitive test data to obtain a single unidimensional summary score [7]. Let X = (X1, . . . , XI)
be the vector of I polytomous random variables (i.e., items) Xi ∈ {0, 1, . . . , Ki}with Ki ≥ 1. A
unidimensional IRT model [4] is a statistical model for the multivariate probability distribution
P(X = x) for x = (x1, . . . , xI), where

P(X = x; γ) =
∫ ∞

−∞

I

∏
i=1

[Pi(θ, xi; γi)]φ(θ)dθ . (1)

The unidimensional latent variable θ follows a standard normal distribution with a
density function φ, although this assumption can be weakened [8,9]. Conditional item response
probabilities are defined as P(Xi = x|θ) = Pi(θ, x; γi), where γi is a vector of the unknown
item parameters of item i. Note that a local independence assumption is imposed in (1), which
means that item responses Xi and Xj are conditionally independent for all item pairs i 6= j
given the latent ability variable θ. This property justifies the statement that the multivariate
contingency table P(X = x) is summarized by a unidimensional latent variable θ.

The item parameters γi of the unidimensional IRT model in Equation (1) can be
estimated by the (marginal) maximum likelihood (ML) using an expectation maximization
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(EM) algorithm [10,11]. The estimation can also involve a multi-matrix design in which
only a subset of items is administered to each student [12,13]. In the likelihood formulation
of (1), non-administered items are skipped in the multiplication terms in (1).

For dichotomous items, one often uses the abbreviated notation Pi(θ; γi) = Pi(θ, 1; γi).
The function Pi is also referred to as the item response function (IRF). A popular choice
of Pi is the two-parameter logistic (2PL; [14]) model defined by Pi(θ) = Ψ(ai(θ − bi)),
where Ψ denotes the logistic link function, ai is the item discrimination parameter, and
bi is the item difficulty parameter. A simplified version of the 2PL model is the Rasch
model [15,16], which constrains the item discriminations across items, leading to the IRF
Pi(θ) = Ψ(a(θ − bi)). A further alternative is the two-parameter probit (2PP; [2]) model
Pi(θ) = Φ(ai(θ − bi)) that employs the standard normal distribution function Φ (i.e., the
probit link function).

There is increasing interest among researchers to use more flexible IRFs. In particular,
the 2PL and 2PP models employ symmetric link functions. A variety of IRFs with asymmet-
ric link functions have been proposed [17–28]. These kinds of models might be desirable
if items do not follow the simple 2PL or 2PP models. In this article, we focus on item
response modeling based on the generalized logistic link function [29]. This link function
has been previously applied in [30] utilizing ML estimation, while [31] proposed a Markov
chain Monte Carlo (MCMC) estimation approach. In this article, we thoroughly study ML
estimation for the generalized logistic IRT model for dichotomous and polytomous item
responses. Moreover, we also propose a regularized ML estimation approach aiming to
stabilize the item parameter estimates.

The rest of the article is structured as follows. In Section 2, we introduce the IRT model
based on the generalized logistic link function. Moreover, we propose the regularized
estimation approach and discuss the application of this link function to polytomous items.
Section 3 includes two simulation studies investigating the performance of estimating the
generalized logistic IRT model for dichotomous items. Section 4 contains two empirical
examples of datasets with dichotomous and polytomous items, respectively. Finally, the
paper closes with a discussion in Section 5.

2. Item Response Modeling Based on the Generalized Logistic Link Function

The generalized logistic IRT model relies on the generalized logistic link function
Ψα1,α2 proposed by Stukel [29]. For the real-valued asymmetry parameters α1 and α2, the
link function Ψα1,α2 is defined by

Ψα1,α2(x) = Ψ(Sα1,α2(x)) , (2)

where Sα1,α2 is defined by

Sα1,α2(x) =



α−1
1 (exp(α1x)− 1) if x ≥ 0 and α1 > 0

x if x ≥ 0 and α1 = 0

−α−1
1 log(1− α1x) if x ≥ 0 and α1 < 0

−α−1
2 (exp(−α2x)− 1) if x < 0 and α2 > 0

x if x < 0 and α2 = 0

α−1
2 log(1 + α2x) if x < 0 and α2 < 0

(3)

The logistic link function is obtained with α1 = α2 = 0. The probit link function is
approximately obtained with α1 = α2 = 0.12. More generally, symmetric link functions are
obtained for α1 = α2, while asymmetry is introduced by imposing α1 6= α2. The cloglog
and loglog link functions [32] can also be well approximated by particular parameter values
of α1 and α2 [31].

Figure 1 displays the generalized logistic link function Ψα1,α2 for different values of α1
and α2. It can be seen that α1 governs the upper tail of the link function (i.e., x > 0), and
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α1 values different from 0 indicate deviations from the logistic link function. For positive
values (i.e., α1 > 0), the link function Ψα1,α2 more quickly reaches the upper asymptote of
one compared to the logistic link function Ψ = Ψ0,0, while there is slower convergence
to the upper asymptote for negative values of α1. Moreover, the α2 parameter models
the deviations from the logistic link function in the lower tail of the link function (i.e., for
x < 0).
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Figure 1. Generalized logistic link function for different combinations of asymmetry parameter
values α1 and α2.

The generalized logistic link function defined in (3) can be used to define an IRF for a
dichotomous item Xi by

Pi(θ; γi) = P(Xi = 1|θ; γi) = Ψαi1,αi2(ai(θ − bi)) , (4)

where γi = (α1i, α2i, ai, bi) is the vector of item parameters for item i. In (4), it is assumed
that the shape parameters α1 and α2 are item-specific, but it might be desirable for parsi-
mony reasons to constrain them to be equal across items.

Zhang et al. [31] proposed an MCMC estimation approach. In this approach, the
factor variable θ must also be sampled, and parameter estimation can sometimes become
computationally tedious. Therefore, ML estimation is always a viable alternative and
computationally efficient for unidimensional IRT models, which is the reason for pursuing
the ML estimation approach in this paper.

In [31], it was argued that a lower bound of −1 must be imposed for α1 and α2 in
order to ensure proper posterior distribution. To ensure a sufficiently stable estimation
from experiences in previous research [30], we also bounded the α1 and α2 parameters by
one. To this end, we transformed the bounded asymmetry parameters αh for h = 1 and
h = 2, which lie in the interval (−1, 1), into an unbounded parameter space using the
Fisher transformation F [33]

α∗h = F(αh) =
1
2

log
1 + αh
1− αh

for h = 1, 2 , (5)

where α∗h denote the unbounded transformed parameters of the generalized logistic link
function. The inverse Fisher transformation F−1 maps unbounded parameters α∗h to
bounded parameters αh by means of the transformation

αh = F−1(α∗h) =
exp(2α∗h)− 1
exp(2α∗h) + 1

for h = 1, 2 . (6)

In ML estimation of the generalized logistic IRT model for dichotomous item responses,
the vector of item parameters for item i is defined as γi = (α∗i1, α∗i2, ai, bi). For the item
response data {xpi | p = 1, . . . , N; i = 1, . . . , I} for N persons and I items, we define the
log-likelihood function l based on (1) by
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l(γ) =
N

∑
p=1

log
∫ ∞

−∞

I

∏
i=1

[
Pi(θ, xpi; γi)

]
φ(θ)dθ (7)

for item responses xp = (xp1, . . . , xpI) of person p, and γ is the vector that collects the
item parameters γi of all items i = 1, . . . , I. The log-likelihood function can be numerically
maximized to obtain the item parameter estimates γ̂. In IRT software, the EM algorithm is
frequently utilized [11,34].

2.1. Regularized Estimation

Estimating the shape parameters α1 and α2 (or α∗1 and α∗2 in the transformed parameter
space) item by item might require large sample sizes and harms the precision of the
estimated item parameters. On the other hand, constraining all shape parameters to be
equal across items might be too restrictive, and this assumption might be violated by
real-world item response data. As a compromise, the variability in shape parameters
can be reduced by employing regularized ML estimation with fused ridge-type penalty
functions [35].

Battauz proposed such a regularized estimation approach for the three-parameter [36]
and four-parameter [37] logistic IRT models. In this paper, we propose the same approach
for regularizing the α∗1 and α∗2 parameter estimates. The fused ridge penalty function P is
defined by

P(γ; λ) = λ

[
I

∑
i=1

I

∑
j=1

(α∗i1 − α∗j1)
2 +

I

∑
i=1

I

∑
j=1

(α∗i2 − α∗j2)
2

]
. (8)

In regularized ML estimation, one maximizes the penalized log-likelihood function
lpen defined by

lpen(γ; λ) = l(γ)−P(γ; λ) . (9)

Using the penalty function in (8) implies that normal priors for α∗hi with a common
mean νh and a variance τ2 are imposed for h = 1, 2 (see [37]). Importantly, by only consid-
ering the differences in pairs of item parameters, the means νh are not explicitly estimated.

It is evident that the optimization of lpen also involves the unknown regularization
parameter λ. The k-fold cross-validation approach is used for obtaining the optimal
regularization parameter λopt. The dataset is divided into k groups, and the parameters of
the model are estimated on k− 1 folds leaving one fold out to evaluate the cross-validation
error. This is performed by leaving one fold out in turn for each value of the regularization
parameter λ. In this article, the error was evaluated using the negative log-likelihood
function [37]. The smallest cross-validation error determines the choice of λopt. In practice,
k = 5 or k = 10 is frequently chosen.

2.2. Polytomous Items

The estimation approach based on the generalized logistic link function can also be
applied to polytomous items with values k = 0, 1, . . . , Ki [38]. We model conditional item
response probabilities for which a score of at least k is obtained by

P(Xi ≥ k|θ; γi) = Ψαi1,αi2(ai(θ − τik)) for k = 1, . . . , Ki . (10)

The item response probabilities for a category k are defined by

P(Xi = k|θ; γi) = P(Xi ≥ k|θ; γi)− P(Xi ≥ k + 1|θ; γi) (11)

using the probabilities defined in (10) and P(Xi = 0|θ; γi) = 1− P(Xi ≥ 1|θ; γi). Note
that (10) includes item-specific intercept parameters, while the item discrimination ai and
the shape parameters αi1 and αi2 are constrained to be equal for all categories k = 1, . . . , Ki
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of item i in (10). Additionally, note that (10) and (11) can be interpreted as a generalization
of the graded response model [39].

3. Simulation Studies
3.1. Simulation Study 1: Estimation of Common α1 and α2 Asymmetry Parameters
3.1.1. Method

First, in Simulation Study 1, the performance of ML estimation of the generalized logistic
IRT model for dichotomous items is investigated when the data-generating model (DGM)
assumes the common shape parameters α1 and α2 across the items. In the simulation, I = 20
items were chosen. The item discrimination parameters ai and item difficulty parameters bi
can be found in Table A1 in Appendix A. For the shape parameters, four different DGMs
of combinations of α1 and α2 were studied. In the first condition (DGM1), we assumed
α1 = α2 = 0, which corresponds to the logistic link function. In this case, applying the
generalized logistic IRT model in favor of the 2PL model would not be necessary. The second
condition (DGM2) corresponded to α1 = −0.13 and α2 = 0.21, while the third condition
(DGM3) resulted by choosing α1 = −0.30 and α2 = 0.21. Obviously, the deviation from the
logistic link function was more severe in DGM3 than in DGM2. In the fourth DGM (DGM4),
we chose α1 = 0.21 and α2 = −0.30 to accommodate the guessing effects in IRFs.

Four different sample sizes, N, were chosen (i.e., 500, 1000, 2000, 4000) to represent the
typical conditions in small-scale and large-scale studies that involve cognitive items. The
latent variable θ was simulated using a standard normal distribution.

We estimated item parameters with two models. First, in Model M3 (we start with
M3 for notational consistency with Simulation Study 2 and the empirical examples), we
estimated the nonregularized generalized logistic IRT model with an equality constraint of
αi1 and αi2 across all items i = 1, . . . , I; that is, αi1 = α1 and αi2 = α2 for all i = 1, . . . , I. In
the second model (Model M4), we used the 2PL model, which employs the logistic IRF that
can be obtained by setting α1 = α2 = 0 in the generalized logistic link function.

In total, 1500 replications were conducted in each simulation condition. We assessed
the performance of parameter estimates for biases and the root mean square error (RMSE).
To provide simple summary statistics across the parameter groups, we averaged the abso-
lute biases and RMSE values across items for the same item parameter groups (i.e., the α1,
α2, a, and b parameters). For a fair comparison between the misspecified 2PL model (Model
M4) in DGM2 and DGM3 with the more complex generalized logistic IRT model, we em-
ployed the root integrated squared error (RISE; [40,41]) between an estimated IRF Pi(θ; γ̂i)
and a true data-generating IRF Pi(θ). The RISE statistic for item i is defined by

RISEi =

√∫
(Pi(θ; γ̂i)− Pi(θ; γi))

2φ(θ)dθ . (12)

The statistical software R [42] was employed for all parts of the simulation and analysis.
The estimation of both IRT models was carried out using the sirt::xxirt() function in the
R package sirt [43].

3.1.2. Results

Table 1 displays the (average) absolute bias (Bias) and (average) RMSE of the estimated
model parameters. Overall, biases in the parameter estimates were very small and practically
vanished in large sample sizes, such as N = 4000. Moreover, the RMSE decreased with
the increasing sample size, which is empirical evidence for the consistency property of ML
estimates. The results turned out to be similar across the four different data-generating models.
Notably, the RMSE values were larger for more asymmetric IRFs in DGM3 compared to DGM2.
DGM4 performed similarly to DGM3 when the roles of the α1 and α2 were reversed.

In Table 2, the average root integrated square error (RISE) between the estimated item
and true item response function is displayed as a function of the sample size N for IRT
models using the generalized logistic link (Model M3) and the logistic link (Model M4)
functions, respectively. It turned out that there are minor efficiency losses in terms of the
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RISE when the logistic link function (Model M4) corresponds to the data-generating model
DGM1, which did not involve asymmetric item response functions. In contrast, in the
data-generating models DGM2, DGM3, and DGM4, the symmetric logistic link function
is misspecified, and the RISE for estimates based on the generalized logistic link function
(Model M3) was smaller across all sample sizes. From these results, it can be concluded
that the additional cost to the efficiency loss when applying the more complex generalized
logistic IRT model is compensated for by less biased item response function estimates.
For large sample sizes, the bias in the 2PL model outweighs the smaller variability in the
estimated IRF.

Table 1. Simulation Study 1: (Average) absolute bias and (average) root mean square error (RMSE) of
parameter estimates from Model M3 (M3: joint α1 and α2) as a function of sample size N and for four
different data-generating models DGM1, DGM2, DGM3, and DGM4.

DGM Par

Bias RMSE

N N

500 1000 2000 4000 500 1000 2000 4000

DGM1: α1 = 0, α2 = 0

α1 0.019 0.008 0.004 0.002 0.094 0.060 0.038 0.026
α2 0.025 0.012 0.004 0.003 0.145 0.091 0.061 0.040
a 0.008 0.004 0.003 0.001 0.268 0.181 0.126 0.086
b 0.021 0.009 0.005 0.003 0.175 0.117 0.080 0.056

DGM2: α1 = −0.13, α2 = 0.21

α1 0.005 0.006 0.002 0.000 0.089 0.061 0.042 0.029
α2 0.044 0.025 0.010 0.003 0.177 0.116 0.073 0.051
a 0.012 0.003 0.003 0.003 0.264 0.179 0.123 0.087
b 0.020 0.009 0.005 0.002 0.169 0.113 0.078 0.055

DGM3: α1 = −0.30, α2 = 0.21

α1 0.007 0.002 0.000 0.002 0.112 0.077 0.053 0.037
α2 0.056 0.024 0.012 0.007 0.195 0.123 0.083 0.056
a 0.011 0.007 0.006 0.002 0.282 0.197 0.136 0.094
b 0.022 0.010 0.005 0.003 0.173 0.117 0.081 0.056

DGM4: α1 = 0.21, α2 = −0.30

α1 0.057 0.024 0.011 0.006 0.169 0.104 0.069 0.046
α2 0.027 0.009 0.004 0.003 0.189 0.128 0.085 0.060
a 0.011 0.006 0.003 0.002 0.313 0.215 0.149 0.104
b 0.032 0.013 0.008 0.003 0.202 0.130 0.088 0.061

Note. DGM = data-generating model; Par = parameter.

Table 2. Simulation Study 1: Average root integrated square error (RISE) between estimated item and
true item response function as a function of sample size N for the generalized logistic link (Model M3)
and the logistic link (Model M4) function and for four different data-generating models DGM1,
DGM2, DGM3, and DGM4.

DGM Model
N

500 1000 2000 4000

DGM1: α1 = 0, α2 = 0 M3: joint α1 and α2 0.027 0.019 0.014 0.010
M4: logistic link (2PL) 0.026 0.018 0.013 0.009

DGM2: α1 = −0.13, α2 = 0.21 M3: joint α1 and α2 0.028 0.019 0.014 0.010
M4: logistic link (2PL) 0.032 0.026 0.022 0.020

DGM3: α1 = −0.30, α2 = 0.21 M3: joint α1 and α2 0.028 0.020 0.014 0.010
M4: logistic link (2PL) 0.038 0.032 0.029 0.027

DGM4: α1 = 0.21, α2 = −0.30 M3: joint α1 and α2 0.028 0.020 0.014 0.010
M4: logistic link (2PL) 0.036 0.030 0.027 0.025

Note. DGM = data-generating model.
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3.2. Simulation Study 2: Estimation of Item-Specific α1 and α2 Asymmetry Parameters
3.2.1. Method

In Simulation Study 2, the DGM assumes the item-specific shape parameters α1 and α2.
As in Simulation Study 1, 20 items were employed in the simulation. The data-generating
item parameters can be found in Table A1 in Appendix A.

In addition to Models M3 (i.e., joint α1 and α2 parameters) and M4 (i.e., the logistic link
function), additional analysis models were specified. In Model M1, the generalized logistic
IRT model was estimated without a regularization approach (i.e., nonregularized estima-
tion). In Model M2, we employed regularized estimation with an optimal regularization
parameter λopt by using k-fold cross-validation utilizing the cross-validated log-likelihood
value. In Model M6, we report the parameter estimates of the regularized estimation using
a fixed regularization parameter λ = 1.

In this simulation, we consider the sample sizes N = 1000, 2000, and 4000. We did
not simulate a sample size N = 500 because larger sample sizes are certainly required for
item-specific estimation of the generalized logistic IRT model.

In k-fold cross-validation, k = 5 folds were used. A grid of 33 λ values was chosen:
0.000010, 0.000015, 0.000022, 0.000033, 0.000049, 0.000073, 0.000108, 0.000161, 0.000240,
0.000356, 0.000530, 0.000788, 0.001172, 0.001743, 0.002593, 0.003857, 0.005736, 0.008532,
0.012690, 0.018874, 0.028072, 0.041753, 0.062102, 0.092367, 0.137382, 0.204336, 0.303920,
0.452035, 0.672336, 1.0, 2.0, 5.0, and 10.0. Values between 0.000010 and 1.0 were equidistantly
chosen on a logarithmic scale.

In total, 1500 replications were conducted. The absolute average bias and average
RMSE are reported for the groups of item parameters. Moreover, the performance of the
different models is also assessed with the RISE statistic (see (12)).

Again, the statistical software R [42] was employed for all parts of the simulation. The
estimation of the nonregularized and regularized IRT models was carried out using the
sirt::xxirt() function in the sirt package [43].

3.2.2. Results

Table 3 presents the average absolute bias and average RMSE for different analysis
models as a function of sample size N. It can be seen that biases only vanish for the
nonregularized (Model M1) and optimally regularized (Model M2) models. However,
the variability in terms of the RMSE was much lower in Model M3, which assumes the
joint shape parameters α1 and α2 or a regularized estimation with a relatively large reg-
ularization parameter λ = 1 (Model M6). Hence, it is up to the researcher whether the
bias or RMSE matters for parameter estimates when choosing from among the different
modeling alternatives.

Table 3. Simulation Study 2: (Average) absolute bias and (average) root mean square error (RMSE) of
parameter estimates as a function of sample size N.

Par Model
Bias RMSE

N N

1000 2000 4000 1000 2000 4000

α1

M1: α1 and α2 item-specific, nonregularized 0.072 0.051 0.037 0.454 0.365 0.286
M2: α1 and α2 item-specific, regularized with λopt 0.077 0.055 0.040 0.411 0.349 0.283
M6: α1 and α2 item-specific, regularized with λ = 1 0.141 0.140 0.137 0.167 0.158 0.152
M3: joint α1 and α2 0.149 0.149 0.150 0.169 0.159 0.155

α2

M1: α1 and α2 item-specific, nonregularized 0.086 0.061 0.036 0.532 0.440 0.346
M2: α1 and α2 item-specific, regularized with λopt 0.113 0.074 0.038 0.496 0.428 0.343
M6: α1 and α2 item-specific, regularized with λ = 1 0.259 0.249 0.235 0.289 0.268 0.248
M3: joint α1 and α2 0.273 0.272 0.272 0.302 0.287 0.280
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Table 3. Cont.

Par Model
Bias RMSE

N N

1000 2000 4000 1000 2000 4000

a

M1: α1 and α2 item-specific, nonregularized 0.116 0.063 0.036 0.571 0.401 0.284
M2: α1 and α2 item-specific, regularized with λopt 0.098 0.058 0.036 0.535 0.391 0.282
M6: α1 and α2 item-specific, regularized with λ = 1 0.195 0.185 0.174 0.283 0.244 0.217
M3: joint α1 and α2 0.211 0.211 0.212 0.287 0.253 0.235

b

M1: α1 and α2 item-specific, nonregularized 0.018 0.013 0.007 0.151 0.111 0.082
M2: α1 and α2 item-specific, regularized with λopt 0.025 0.016 0.008 0.149 0.110 0.082
M6: α1 and α2 item-specific, regularized with λ = 1 0.046 0.042 0.037 0.124 0.092 0.071
M3: joint α1 and α2 0.050 0.049 0.048 0.126 0.095 0.077

Note. Par = parameter.

Figure 2 displays the average RISE as a function of the regularization parameter λ.
A regularization parameter λ of about 0.20 minimizes the RISE statistic. Notably, this
value is much larger than the optimal regularization parameter selected by the cross-
validated log-likelihood function. In the subsequent table, Table 2, we report a slightly
larger regularization parameter λ = 1.

λ

0.
00

0
0.

00
5

0.
01

0
0.

01
5

1e−05 1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

Figure 2. Simulation Study 2: Average root integrated square error (RISE) between estimated item
and true item response function as a function of the regularization parameter λ for a sample size
N = 4000.

Table 4 displays the RISE for different analysis models as a function of the sample size
N. As it was also evident in Figure 2, an appropriate fixed regularization parameter can
lead to smaller RISE values than an optimally selected regularization parameter based on
the cross-validated log-likelihood. Nevertheless, it must be emphasized that all models
that utilize the generalized logistic link function outperformed the misspecified logistic
2PL model (Model M4) for all sample sizes. This was also the case for Models M1 and M2,
which resulted in highly variable item parameter estimates.
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Table 4. Simulation Study 2: Average root integrated square error (RISE) between estimated item
and true item response function as a function of sample size N.

N

Model 1000 2000 4000

M1: α1 and α2 item-specific, nonregularized 0.027 0.020 0.015
M2: α1 and α2 item-specific, regularized with λopt 0.026 0.020 0.015
M6: α1 and α2 item-specific, regularized with λ = 1 0.022 0.017 0.013
M3: joint α1 and α2 0.023 0.018 0.015
M4: logistic link (2PL) 0.029 0.025 0.023

4. Empirical Examples
4.1. PISA 2006 Reading Dataset: Dichotomous Items
4.1.1. Method

We now apply the generalized logistic IRT model to the program for international
student assessment (PISA; [44]) study. Ten countries were selected from the PISA 2006
study [44] in the reading domain. The ten countries were: Austria (AUT), Switzerland
(CHE), Czech Republic (CZE), Germany (DEU), Finland (FIN), Japan (JPN), South Korea
(KOR), Norway (NOR), Poland (POL), and Sweden (SWE).

In this analysis, we only used those students who had a reading test in the PISA 2006
study. For each country, 27 or 28 items were valid and used in the subsequent analysis. A
total of 10 items were multiple-choice, while 18 items were constructed response or short
response items. Seven polytomous items were dichotomously rescored, while only the
largest category was treated as correct.

The used sample sizes per country in the analysis varied between N = 2374 and
N = 4000 (M = 2896.8, SD = 484.0). The average number of students per item varied
across countries between 1337.7 and 2261.3 (M = 1628.0, SD = 273.4). Sampling weights
were not taken into account in the analysis because the two-stage stratified clustered
sampling design would require a modified computation of the Akaike information criterion
(AIC; [45,46]).

Five different analysis models were specified. In the first model, Model M1, the
asymmetry parameters α1 and α2 were assumed to be item-specific and nonregularized.
Model M2 estimated the item parameters by using the optimal regularization parameter
λopt via maximization of the cross-validated log-likelihood. In Model M3, the joint α1 and
α2 parameters across items were assumed. Models M4 and M5 employed the logistic and
probit link functions, respectively.

In Model M7, we fitted the three-parameter logistic (3PL; [47]) IRT model that also
includes an item difficulty, an item discrimination, and a pseudo-guessing parameter. In
Model M8, the three-parameter logistic model with residual heterogeneity (3PLRH; [23,25,30])
was fitted, which extends the 2PL model by including an asymmetry parameter. In Model M9,
the four-parameter logistic (4PL; [48–50]) model was specified, which includes item difficulty,
item discrimination, guessing, and slipping parameters.

All models were separately estimated for each country because this example did not
focus on country comparisons but rather on comparing different IRT modeling alternatives.
All IRT models were estimated using the sirt::xxirt() function in the R package sirt [43].

4.1.2. Results

In Table 5, the AIC is presented for all countries for Models M1, M3, M4, and M5. For
all countries except for FIN and SWE, the generalized logistic IRT model with item-specific
α1 and α2 parameters better fit the data than the 2PL model (Model M5). However, only for
Finland (FIN), the constrained generalized logistic IRT model (Model M3) was the best-fitting
model among the competitive IRT models. For six countries, the 3PLRH model (Model M8)
was the best-fitting model, while for three countries, the 4PL model (Model M9) was the
frontrunner among the models. Interestingly, in nine of the ten countries, the generalized
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logistic IRT model outperformed the 3PL model. Moreover, in all countries, the 4PL model
outperformed the 3PL model. Additionally, the IRT model with the logistic link function fitted
the datasets for all countries better than the IRT model with the probit link function. Hence,
from a sole statistical perspective, the generalized IRT model or alternative IRT models should
be preferred over the operationally used 2PL model [51] because of a better model fit.

In Table 6, the summary statistics of the estimated asymmetry parameters α1 and α2
are presented. The joint α1 parameter from Model M3 ranged between −0.20 and 0.01
(M = −0.08, SD = 0.07) and was mostly negative. In contrast, the joint α2 parameter
from Model M3 was positive and ranged between 0.09 and 0.36 (M = 0.21, SD = 0.09).
Overall, almost no differences in the summary statistics between the nonregularized and
regularized estimations were observed.

Table 5. Example PISA 2006 Reading: Akaike information criterion (AIC) for model comparisons for
ten selected countries.

Model AUT CHE CZE DEU FIN JPN KOR NOR POL SWE

M1: α1 and α2 item-specific, nonregularized 41,134 63,611 48,878 40,663 36,300 52,888 39,937 39,918 46,768 37,446
M3: joint α1 and α2 41,151 63,657 48,953 40,719 36,263 53,024 39,959 39,986 46,800 37,440
M4: logistic link (2PL) 41,159 63,691 48,976 40,763 36,294 53,074 39,993 40,017 46,807 37,453
M5: probit link (2PP) 41,167 63,692 48,999 40,769 36,315 53,088 40,023 40,025 46,813 37,459
M7: three-parameter logistic (3PL) 41,155 63,682 48,955 40,759 36,297 53,016 39,982 39,981 46,777 37,455
M8: 3PL & residual heterogeneity (3PLRH) 41,114 63,587 48,888 40,630 36,269 52,877 39,903 39,892 46,741 37,421
M9: four-parameter logistic (4PL) 41,127 63,607 48,861 40,652 36,291 52,877 39,935 39,915 46,735 37,435

Note. Models with minimal AIC value are printed in bold font.

Table 6. Example PISA 2006 Reading: Summary of estimated α1 and α2 parameters in different
models for ten selected countries.

Par Model AUT CHE CZE DEU FIN JPN KOR NOR POL SWE

α1

Model M3 −0.05 0.01 −0.10 −0.04 −0.15 −0.15 −0.20 −0.09 −0.01 −0.03
Mean of Model M1 −0.18 −0.14 −0.36 −0.14 −0.31 −0.23 −0.36 −0.22 −0.09 −0.08
Mean of Model M2 −0.18 −0.14 −0.36 −0.14 −0.31 −0.22 −0.36 −0.22 −0.09 −0.08
SD of Model M1 0.43 0.45 0.40 0.55 0.41 0.54 0.40 0.49 0.56 0.54
SD of Model M2 0.43 0.45 0.41 0.52 0.41 0.53 0.40 0.49 0.56 0.54

α2

Model M3 0.12 0.33 0.10 0.36 0.25 0.21 0.09 0.22 0.17 0.23
Mean of Model M1 0.03 0.17 −0.14 0.16 0.03 0.17 −0.10 0.16 −0.04 0.17
Mean of Model M2 0.03 0.17 −0.14 0.18 0.03 0.17 −0.10 0.16 −0.04 0.18
SD of Model M1 0.69 0.65 0.69 0.65 0.72 0.68 0.81 0.75 0.65 0.69
SD of Model M2 0.69 0.65 0.70 0.62 0.72 0.67 0.81 0.75 0.65 0.68

Note. Par = parameter; SD = standard deviation; M1 = α1 and α2 item-specific, nonregularized; M2 = α1 and α2
item-specific, regularized with λopt; M3 = joint α1 and α2; λopt = optimal regularization parameter obtained with
the cross-validated log-likelihood function.

Figure 3 displays the estimated IRFs for the five MC items and five CR items for
Germany (DEU) based on the nonregularized generalized logistic IRT model (Model M1),
the 2PL model employing the logistic IRF (Model M4), and the 3PL model (Model M7).
There is evidence of asymmetry in the IRF (i.e., for items R055Q02, R055Q03, and R067Q04)
and guessing behavior (i.e., for items R055Q01 and R067Q01). Interestingly, the estimated
IRF of the 3PL model also substantially differs from the generalized logistic IRT model.
The item parameters for the generalized logistic IRT model (Model M1) of all 28 items for
Germany can be found in Table A2 in Appendix B. In conclusion, the generalized logistic
IRT model can more flexibly capture the functional form of the IRF.



Information 2023, 14, 306 11 of 18

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R055Q01 MC

θ

P
i(θ

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R067Q01 MC

θ

P
i(θ

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R102Q07 MC

θ

P
i(θ

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R111Q01 MC

θ

P
i(θ

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R220Q02B MC

θ

P
i(θ

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R055Q02 CR

θ

P
i(θ

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R055Q03 CR

θ

P
i(θ

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R055Q05 CR

θ

P
i(θ

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R067Q04 CR

θ
P

i(θ
)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R067Q05 CR

θ

P
i(θ

)

Figure 3. Example PISA 2006 Reading: Estimated item response functions for five multiple-choice
(MC) and five constructed response (CR) items for Germany (DEU) using the nonregularized gener-
alized logistic IRT model (Model M1; displayed with solid black lines), the two-parameter logistic
(2PL) IRT model (Model M4; displayed with dashed red lines), and the three-parameter logistic (3PL)
IRT model (Model M7; displayed with dashed-dotted blue lines).

4.2. ASTI Dataset: Polytomous Items
4.2.1. Method

In this example, the nonregularized and the regularized generalized logistic item
response model is applied to questionnaire data. The adult self-transcendence inventory
(ASTI; [52,53]) is a self-report scale measuring the complex target construct of wisdom. The
items can be assigned to five dimensions: non-attachment (NA; 4 items), presence in the
here-and-now and growth (PG; 6 items), peace of mind (PM; 4 items), self-knowledge and
integration (SI; 4 items), and self-transcendence (ST; 7 items). The items had three or four
response categories.

A dataset with responses to the ASTI questionnaire has been made available in the
MPsychoR package as the data object ASTI [54,55]. It contains polytomous item responses
from 1215 respondents.

The polytomous generalized logistic IRT model described in Section 2.2 was applied.
The same five analysis models as in the PISA 2006 reading example (see Section 4.1)
were specified. In Model M1, the asymmetry parameters α1 and α2 were assumed to be
item-specific and nonregularized. Model M2 estimated the item parameters by using
the optimal regularization parameter λopt via maximization of the cross-validated log-
likelihood function. Model M3 assumed the joint α1 and α2 parameters across the items.
Models M4 and M5 utilized the logistic and probit link functions, respectively (see also [56]).
Unidimensional IRT models were separately fitted to each of the five dimensions.

4.2.2. Results

In Table 7, the AIC values are displayed for the four different models M1, M2, M3, and
M4 are displayed. The most complex Model M1 was preferred for scales PG and ST in which
the asymmetry parameters α1 and α2 were made item-specific. Model M3, which assumed
the joint shape parameters α1 and α2, resulted in the best model fit for scales PM and SI. The
graded response model with the logistic link function (Model M4) was selected by AIC for the
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NA scale. Interestingly, the logistic link function always resulted in a better model fit compared
to the probit link function.

Table 7. Example ASTI: Akaike information criterion (AIC) for model comparisons for the five
ASTI scales.

Model NA PG PM SI ST

M1: α1 and α2 item-specific, nonregularized 10,681 14,449 10,009 8249 18,116
M3: joint α1 and α2 10,680 14,464 10,007 8248 18,125
M4: logistic link 10,679 14,463 10,033 8261 18,150
M5: probit link 10,687 14,467 10,045 8269 18,179

Figure 4 displays the cross-validated log-likelihood values for the five different ASTI
scales. The maximum value of the cross-validated log-likelihood function is indicated by a
red triangle. It can be seen that the optimal λ value was lowest for the NA and PG scales and
largest for the SI scale.
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Figure 4. Example ASTI: Cross-validated log-likelihood values in regularized estimation for the five
ASTI scales as a function of the regularization parameter λ.

In Table 8, the summary statistics for the α1 and α2 parameters are presented. Overall, the
means of α1 and α2 were relatively similar in Models M1 and M2, which utilized nonregularized
and regularized estimation, respectively. Substantial differences in standard deviations for
the α2 parameter were observed for scales SI and ST. These scales had the largest optimal
regularization parameter λopt (see Figure 4), which supports the plausibility of these differences.
Note that, except for Model M3 for the PG scale, all of the estimated α1 and α2 parameters were
(on average) negative.

Table 8. Example ASTI: Summary of estimated α1 and α2 parameters in different models for the five
ASTI scales.

Par Description NA PG PM SI ST

α1

Model M3 −0.20 −0.12 −0.55 −0.25 −0.22
Mean of Model M1 −0.33 −0.53 −0.70 −0.29 −0.30
Mean of Model M2 −0.33 −0.53 −0.70 −0.26 −0.34
SD of Model M1 0.45 0.40 0.37 0.15 0.39
SD of Model M2 0.45 0.40 0.37 0.13 0.43

α2

Model M3 −0.07 0.13 −0.39 −0.60 −0.25
Mean of Model M1 −0.21 −0.38 −0.29 −0.68 −0.15
Mean of Model M2 −0.21 −0.38 −0.30 −0.60 −0.41
SD of Model M1 0.26 0.78 0.76 0.23 0.60
SD of Model M2 0.26 0.78 0.75 0.04 0.34

Note. Par = parameter; SD = standard deviation; M1 = α1 and α2 item-specific, nonregularized; M2 = α1 and
α2 item-specific, regularized with λopt; M3 = joint α1 and α2; λopt = optimal regularization parameter obtained
with the cross-validated log-likelihood function; NA = non-attachment; PG = presence in the here-and-now and
growth; PM = peace of mind; SI = self-knowledge and integration; ST = self-transcendence.
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5. Discussion

In this article, nonregularized and regularized maximum likelihood estimations of the
generalized logistic IRT model for dichotomous and polytomous items were investigated.
It was shown that parameter estimates were practically unbiased in large samples, and
variability decreased with larger sample sizes. Moreover, this was present in the simula-
tion, and the empirical examples that used regularized estimation were able to stabilize
parameter estimates.

It should be emphasized that the variability of the estimated item parameters in
the generalized logistic IRT model can be noteworthy, even in very large sample sizes
such as N = 4000. However, as in the three-parameter or four-parameter logistic IRT
models, this is likely the case due to the large dependency among the four different item
parameters. Nevertheless, estimated item response functions can still be relatively precise,
which demonstrates the finding of stable item response functions despite the unstable
estimation of item parameters [57]. Using complex IRT models might be preferable when
the primary goal is deriving an optimal scoring rule that maximizes the extent of the
extracted information from the observed item responses [58,59].

In applications, it is likely that item response functions typically differ for constructed
response items and multiple-choice items. It might be interesting and parsimonious to
separately estimate α1 and α2 for the two item formats but make them equal for items of
the same item format. By estimating this, the guessing or slipping effects can be modeled
by the generalized logistic IRT model.

As pointed out by an anonymous reviewer, it would be vital also to compare the
generalized logistic IRT model to other IRT models, such as the three- or four-parameter
logistic models, in the simulation studies. It might well be the case that despite quite
different functional forms of utilized IRT models, there would not be negligible differences
in the fitted item response functions of different types of IRT models.

There is a recent discussion about whether distributional assumptions must be taken
for granted in ordinal factor analysis for analyzing polytomous items [60]. Most often,
ordinal factor analysis in structural equation modeling software relies on the limited-
information estimation method that utilizes tetrachoric or polychoric correlations [61].
Using polychoric correlations implies that one assumes an underlying normally distributed
variable for each item (i.e., a latent normality assumption; [62–64]). It is argued in [60]
that the distributional assumption for the underlying latent variable must be known by
the researcher and cannot be identified from data. It is important to emphasize that the
issue of non-identification is coupled with the goal of using limited information methods
and computing a latent correlation matrix (i.e., polychoric correlations or correlations
adapted to other pre-specified marginal distributions). To put this in other words, those
researchers base the ordinal factor analysis on a normal copula model. When applying the
generalized logistic IRT model (i.e., the generalized logistic link function) for exploratory or
confirmatory factor analysis, residual distributions different from the normal distribution
can be identified. In this case, simply no substantial knowledge is required for factor-
analyzing ordinal data if there is enough data available for empirical identification.

As has been demonstrated in the PISA example dataset, other classes of flexible item
response functions [48,65–72] can be considered as an alternative to the generalized logistic
IRT model. These IRT models might even outperform the generalized logistic IRT model.
However, it has been argued that analysis models should not be mainly chosen for statistical
reasons in the operational practice in educational large-scale assessment studies [30,73–76].
This poses issues in test linking [77–80] if the preferred scoring model were a misspecified
IRT model [81,82].

Appropriate linking methods should be applied that are relatively robust to model
misspecifications (see [83]).
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Abbreviations

The following abbreviations are used in this manuscript:

2PL two-parameter logistic
2PP two-parameter probit
3PL three-parameter logistic
3PLRH three-parameter logistic with residual heterogeneity
4PL four-parameter logistic
AIC Akaike information criterion
DGM data-generating model
IRF item response function
IRT item response theory
LSA large-scale assessment
MCMC Markov chain Monte Carlo
ML maximum likelihood
PISA program for international student assessment
RMSE root mean square error
SD standard deviation

Appendix A. Item Parameters Used in the Simulation Studies

Table A1 displays the item parameters that were used in the two simulation studies.
The item parameters for Simulation Study 2 are exactly displayed in this table. The
asymmetry parameters αi1 for the upper tail of the item response functions ranged between
−0.5 and 0.3 (M = −0.13, SD = 0.19). The asymmetry parameters αi2 for the lower tail of
the item response functions ranged between −0.4 and 0.7 (M = 0.21, SD = 0.32). The item
discrimination parameters ai ranged between 0.5 and 2.3 (M = 1.46, SD = 0.55), while the
item difficulty parameters ranged between −1.9 and 2.5 (M = −0.16, SD = 1.2).

For Simulation Study 1 (see Section 3.1.1), only the item discrimination parameters ai
and item difficulty parameters bi are displayed in Table A1.

Table A1. Used item parameters in Simulation Studies 1 and 2.

Item αi1 αi2 ai bi

1 −0.2 −0.4 2.3 −1.4
2 −0.1 0.5 1.1 −0.1
3 −0.3 0.4 1.8 −0.6
4 −0.3 0.0 2.2 −0.9
5 −0.1 0.0 1.8 −1.9
6 0.3 0.6 0.5 0.7
7 −0.1 0.5 1.0 −0.5
8 −0.3 0.1 1.5 0.6
9 0.0 0.2 1.1 0.2
10 −0.1 0.4 1.5 −1.5
11 0.0 0.1 1.6 −1.3
12 0.2 0.1 0.7 1.3
13 −0.3 0.1 0.9 2.5
14 −0.1 −0.3 1.7 −0.6
15 −0.2 0.6 0.8 2.3
16 0.1 0.3 1.1 0.4
17 −0.1 0.7 1.4 −0.4
18 −0.1 0.6 1.8 −0.8
19 −0.4 −0.2 2.1 −1.2
20 −0.5 −0.1 2.3 0.1

https://www.oecd.org/pisa/pisaproducts/database-pisa2006.htm
https://www.oecd.org/pisa/pisaproducts/database-pisa2006.htm
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Appendix B. Estimated Item Parameters in the PISA 2006 Reading Dataset
for Germany

Table A2 contains estimated item parameters of 28 items for the PISA 2006 reading dataset
for Germany for the nonregularized generalized logistic IRT model (Model M1).

Table A2. Estimated item parameters in the PISA 2006 reading dataset for Germany (DEU) in the
nonregularized generalized logistic item response model (Model M1).

Item Type Maxpts αi1 αi2 ai bi

R055Q01 MC 1 −0.11 −0.95 1.99 −1.04
R055Q02 CR 1 −0.46 0.93 1.84 −0.27
R055Q03 CR 2 −0.48 0.22 2.61 −0.34
R055Q05 CR 1 −0.52 −0.28 4.82 −0.63
R067Q01 MC 1 0.49 0.08 0.97 −2.01
R067Q04 CR 2 0.87 0.21 0.78 1.16
R067Q05 CR 2 0.13 0.65 0.97 −0.34
R102Q04A CR 1 0.28 0.96 1.22 0.28
R102Q05 CR 1 −0.98 −0.20 1.98 0.35
R102Q07 MC 1 0.80 0.74 1.04 −0.82
R104Q01 CR 1 0.50 −0.85 1.79 0.00
R104Q02 CR 1 0.49 1.00 0.27 −0.46
R104Q05 CR 2 0.38 1.00 0.43 −0.46
R111Q01 MC 1 0.43 −0.52 1.12 1.40
R111Q02B CR 2 −0.11 0.92 1.37 −0.64
R111Q06B CR 2 0.14 0.45 1.55 −1.43
R219Q01E CR 1 0.99 −0.52 2.38 −0.80
R219Q01T CR 1 0.98 −0.68 3.00 −0.47
R219Q02 CR 1 0.86 −0.68 2.56 −0.32
R220Q01 CR 1 0.98 0.12 1.47 −2.62
R220Q02B MC 1 −0.99 −0.33 2.89 −0.40
R220Q04 MC 1 −0.80 −0.43 1.86 −0.10
R220Q05 MC 1 −0.91 −0.84 1.00 2.10
R220Q06 MC 1 −0.98 −0.65 2.30 −0.25
R227Q01 MC 1 0.14 −0.39 0.78 −0.01
R227Q02T MC 2 0.12 0.33 1.07 0.26
R227Q03 CR 1 −0.38 −0.18 3.32 −0.47
R227Q06 CR 1 0.26 −0.57 2.25 −0.04

Note. Type = item format; CR = constructed response (or short response); MC = multiple-choice; Maxpts = maxi-
mum score per item.
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