
Citation: Jain, P.H.; Kumar, V.;

Samuel, J.; Singh, S.; Mannepalli, A.;

Anderson, R. Artificially Intelligent

Readers: An Adaptive Framework

for Original Handwritten Numerical

Digits Recognition with OCR

Methods. Information 2023, 14, 305.

https://doi.org/10.3390/

info14060305

Academic Editors: Eftim Zdravevski,

Petre Lameski and Ivan Miguel Pires

Received: 12 April 2023

Revised: 16 May 2023

Accepted: 19 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Artificially Intelligent Readers: An Adaptive Framework for
Original Handwritten Numerical Digits Recognition with
OCR Methods
Parth Hasmukh Jain 1 , Vivek Kumar 2,* , Jim Samuel 1 , Sushmita Singh 3 , Abhinay Mannepalli 1

and Richard Anderson 1

1 Edward J. Bloustein School, Rutgers University, Piscataway, NJ 08854, USA;
pj269@scarletmail.rutgers.edu (P.H.J.); jim.samuel@rutgers.edu (J.S.); am2977@scarletmail.rutgers.edu (A.M.);
rianders@docs.rutgers.edu (R.A.)

2 Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy
3 School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool L3 2AF, UK;

sushmitafordata@gmail.com
* Correspondence: vivek.kumar@unica.it

Abstract: Advanced artificial intelligence (AI) techniques have led to significant developments
in optical character recognition (OCR) technologies. OCR applications, using AI techniques for
transforming images of typed text, handwritten text, or other forms of text into machine-encoded
text, provide a fair degree of accuracy for general text. However, even after decades of intensive
research, creating OCR with human-like abilities has remained evasive. One of the challenges has
been that OCR models trained on general text do not perform well on localized or personalized
handwritten text due to differences in the writing style of alphabets and digits. This study aims
to discuss the steps needed to create an adaptive framework for OCR models, with the intent of
exploring a reasonable method to customize an OCR solution for a unique dataset of English language
numerical digits were developed for this study. We develop a digit recognizer by training our model
on the MNIST dataset with a convolutional neural network and contrast it with multiple models
trained on combinations of the MNIST and custom digits. Using our methods, we observed results
comparable with the baseline and provided recommendations for improving OCR accuracy for
localized or personalized handwritten text. This study also provides an alternative perspective to
generating data using conventional methods, which can serve as a gold standard for custom data
augmentation to help address the challenges of scarce data and data imbalance.

Keywords: OCR; adaptive; custom; digits; MNIST; informatics; machine learning; deep learning

1. Introduction

We are seeing a rapid increase in the breadth and depth of adaptive artificial intelli-
gence (AI) solutions to improve performance in areas such as computer vision for character
recognition, which is receiving significant industry attention [1,2]. Optical character recog-
nition (OCR) is an AI method that mimics the human-intelligence capability of visual
recognition for the computational identification of machine and handwritten text and digits
from a broad range of images containing text [3,4]. This includes identification of text or
digits from images of typed text, handwritten text, or printed text into machine-encoded
text, either from a scanned document as a pdf file, a picture of a piece of paper in png
or jpeg format, or a scene photo with text in it, such as text on a coffee cup, text on the
cover page of a book, or the license number on number plates. The number of researchers,
academic centers and labs, and companies researching and developing computer vision
and OCR solutions has risen significantly over the past several years [2]. Hence, an array
of OCR solutions and tools are available widely. We discuss a few OCR applications in the
context of our research below.

Information 2023, 14, 305. https://doi.org/10.3390/info14060305 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14060305
https://doi.org/10.3390/info14060305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0007-2158-2264
https://orcid.org/0000-0003-3958-4704
https://orcid.org/0000-0002-7599-3209
https://orcid.org/0009-0003-8812-6002
https://doi.org/10.3390/info14060305
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14060305?type=check_update&version=3

Information 2023, 14, 305 2 of 19

OCR is increasingly used for automation and enhancement of workflow and business
processes. OCR is used by organizations to manage handwritten and printed text and
document types identification and to parse data according to complex rules. OCR also has
social and societal functional capabilities; for example, OCR can be used to provide an
assistive solution for those with vision impairment by converting text images into text-to-
speech [5]. One of the significant challenges faced by hospitals is the loss of patient medical
information. OCR technologies can support electronic medical records and health infor-
mation capture. Additionally, OCR can be used to automate information extraction from
test results for input into hospital information management systems (HIMS), supporting
the effective representation of patients’ medical histories. OCR tools such as Scayne and
Expensify are used in finance, accounting and business process management for functions
such as receipt recognition [6]. OCR is also used in loan processing, security and fraud
detection, government sector services such as scanning legacy identification documents and
automated license plate detection, and for supporting cultural and historical heritage initia-
tives, while fairly robust solutions are available for typed or printed machine-readable texts,
automated handwriting recognition systems are yet to provide high levels of accuracy due
to the challenges of variations in handwriting styles and composition of visual structure.
Resolving these challenges remains an open problem, and improving handwriting OCR can
lead to very valuable insights for decision support through the inclusion of handwritten
data in the evaluation of public sentiment and other textual analytics solutions [7,8].

It is, thus, evident that OCR is an important technology and AI capability. It is, there-
fore, important to improve the accuracy of OCR tools with handwritten text, especially for
specific handwriting styles, such as the handwriting of a particular doctor or a handwriting
style from a particular region. Our work contributes to the body of knowledge of OCR
methods by introducing the idea of fine-tuning MNIST with training data from a custom
dataset belonging to a particular style to improve the accuracy for that specific style of
handwritten digits. The model, method, and process used for OCR with such custom
personalized or localized data can be extended to any handwritten style. Our work can also
provide an alternative mechanism for generating custom data and conversion to MNIST
format using conventional methods and can serve as a standardized mechanism for data
augmentation to address the challenges associated with scarce data and data imbalance.
The main contributions of this paper are as follows:

• We create a new handwritten custom dataset from a single contributor to ensure
overall consistency of style.

• We train and apply a convolutional neural network to MNIST data for validation and
then extend the method with custom data.

• Furthermore, we provide insights into the effects of training the model with variations
in the proportions of custom data with and without rotations

• We provide a framework for adaptive OCR applicable to handwritten documents
from a single source or belonging to a particular style of writing.

• Finally, we provide a comprehensive discussion of how the adaptive framework could
be implemented and potential improvements with alternate technological solutions.

The rest of the paper is organized as follows. Section 2 presents the literature back-
ground of notable OCR methods. Section 3 mentions the problem statements and provides
details of the dataset, and preprocessing strategies used for the experiments. Section 4
presents the stages involved in OCR and the architecture of the employed deep learning
(DL) approaches. Section 5 sums up the total experiments performed and presents the
experimental outcomes. Section 6 presents the analyses of the obtained results and the
limitations of the employed methods. Finally, Section 7 provides the concluding remarks
and the future research direction.

2. Related Works

In this section, we review the existing works related to OCR. OCR systems can be
classified into two groups depending on the kind of input: handwriting recognition and

Information 2023, 14, 305 3 of 19

machine-printed character recognition. OCR, to some extent, is considered a solved prob-
lem for standard machine text images. Machine-printed character recognition is a relatively
straightforward problem since characters are typically of uniform dimensions, and their
positions on the page can be predicted. The image input for this model can be in any format,
such as JPEGs, PDFs, and documents. However, handwritten text recognition, a critical
component of OCR, is still challenging. Unlike printed text, the wide range of human
handwriting styles and the poor quality of handwritten text pose significant challenges in
converting it to machine-readable language [9].

Handwritten Character Recognition plays a crucial role in the postal services industry
by automating the process of address interpretation and facilitating efficient mail sorting.
In earlier approaches, high-volume applications utilized task-specific readers to achieve
high system throughput. These readers focused on specific fields of interest, taking advan-
tage of the similarity in size and layout structure among similar documents. This enabled
image scanners to extract the desired information efficiently, reducing image processing
and text recognition time [10]. Address readers, another type of earlier system, were
designed to locate the destination address block on mail pieces and read the ZIP code
within that block. In cases where additional fields were read with high confidence, the
system could generate a nine-digit ZIP code and apply a corresponding bar code on the
envelope [11]. Modern systems in postal services have embraced advanced techniques,
such as Hidden Markov Models (HMM), for handwritten address recognition. Kornai
conducted a study on two variants of an HMM-based postal OCR system, one with pre-
segmentation and one without. This study reported promising results on the CEDAR
dataset, contributing to understanding handwritten address recognition [12]. Furthermore,
region-specific use cases have emerged, such as recognizing Sinhala handwriting using
OCR and image processing technologies [13]. These specific applications cater to the unique
challenges of different languages and writing systems. Grid-based approaches have also
gained attention in offline handwritten word recognition. Patel and Reddy explored the
impact of a grid-based approach using Principal Component Analysis (PCA) for improved
representation of handwritten Kannada words. Their study focused on recognizing district
names within the Karnataka state, showcasing the applicability of grid-based methods in
specific contexts [14], while significant progress has been made, challenges still exist in
achieving high accuracy rates and adapting to varying handwriting styles. Ongoing techno-
logical research and development will continue to enhance the efficiency and effectiveness
of postal services, ultimately improving the accuracy and speed of address interpretation
and mail sorting processes.

Improvement of OCR accuracy for handwritten text remains an important issue for
other industries as well, such as healthcare (handwritten medical notes by healthcare
practitioners with varying styles), insurance (handwritten forms, mail envelopes, and
handwriting from digital devices—stylus and touch screen handwriting), and banking
(handwritten letters, checks, forms, and documentation, especially in developing and
underdeveloped nations) [2,15,16]. In healthcare, OCR can be adapted to improve accuracy
with individual medical practitioners. Similarly, OCR can be adapted in banking and insur-
ance to enhance accuracy with individual users, clients, and executives in organizational
processes with repetitive handwritten input, while postal services use OCR for handwriting,
there is no need to customize it for the user. However, even postal services could customize
based on the regional styling of characters, wherein the characters may vary within the
same language based on regional grouping [17,18].

Handwritten text recognition systems are available as online and offline applications.
Online systems work in real-time when users write the characters into a mechanism such
as a touch screen or another touch-sensitive interface. They are structured differently since
they can store time-based information, such as speed, velocity, number of strokes, and
writing direction. Offline recognition systems, on the other hand, work with static data, i.e.,
bitmap images as input, and often require extensive pre-processing to perform these tasks.
Consequently, the recognition task can be more challenging. More recent technologies

Information 2023, 14, 305 4 of 19

based on the transformers architecture have shown promise in reading handwritten text,
but the need to improve accuracy further remains [19].

The quality of OCR-generated text can impact various downstream natural lan-
guage processing tasks, including NER and dependency parsing in certain workflows.
Retrieval results on OCR-generated text should be viewed cautiously and manual super-
vision is recommended, as they can result in false positives. Topic models can also be
affected by OCR quality in certain workflows, leading to increasingly divergent topics.
It is, therefore, recommended to use high-quality OCR above 90 percent and better [20].
A new architecture for OCR-based image captioning called Long Short-Term Memory
Relational Aware Pointer Network (LSTM-R) uses Long Short-Term Memory and a relation-
aware pointer network to incorporate the geometrical relationships between OCR tokens.
The relation-based pointer network copies words from OCR tokens based on their geometric
relationship, and the model is optimized with multi-label loss. Experimental results demon-
strated the effectiveness of LSTM-R over benchmarks, achieving state-of-the-art results on
the TextCaps dataset [21]. It is also important to consider potential directions for developing
post-OCR processing approaches. It is possible to create artificial materials to train machine
learning models, utilize external resources for neural network-based models, improve error
detection and correction tasks, and analyze performance with different OCR errors; it is
also useful to focus on ‘handling errors’ involving word segmentation, consider ‘different
weights for evaluation metrics’, create datasets with more detailed information, and de-
velop ‘post-processing approaches for languages other than English’ [22]. Analysis by [23]
revealed that most of the OCR software is incapable of accurately detecting variations in
fonts and formats. Furthermore, while it can effectively convert text images, it fails to appro-
priately convert mathematical equations and symbols, providing only plain text as output.
This highlights the need for new and improvised OCR tools to be developed in the future
that can effectively perform the identification of mathematical equations and symbols [23].

According to [24], creating a dataset specific to a particular language and an associated
period is highly beneficial for OCR correction workflows. Interestingly, using only a
language-specific dataset based on the Bible created more errors than corrections. Ref. [24]
considered this as being similar to a person from the biblical era attempting to fix OCR
errors in modern texts. Furthermore, the error generation algorithm for Hebrew historical
newspapers required only 105 manually corrected articles, which is significantly less than
the amount of labeled training data needed for a neural network [24]. Ref. [25] showed
that document AI and Textract had consistently lower error rates than Tesseract on various
documents with different noise levels and fonts in English and Arabic.

Tesseract was more sensitive to noise and performed better only on noise-free doc-
uments in English. Further analysis by noise type showed that Textract and Tesseract
performed better on grayscale images than on color images and struggled with blur, and
Tesseract was more sensitive to salt and pepper noise. In conclusion, Document AI and
Textract had better OCR accuracy than Tesseract, and accuracy varied across languages and
noise types [25].

It is also important to take a quick view of some of the state-of-the-art solutions
available currently. Popular OCR solutions include Tesseract, EASY OCR, Keras OCR,
PyPDF2, DocTr, and TrOCR. Tesseract was initially proposed in [26]. Tesseract was one of
the first architectures to handle white-on-black text with ease [26]. Tesseract was initially
developed at HP in 1984 and 1994. Tesseract was open-sourced in 2005, then acquired by
Google, and it works well with Tensorflow. Tesseract solves the problem of text localization,
identifying where the text is in the document or an image [27]. Tesseract 4.00 has a new
neural network subsystem as a text line recognizer. It has its origins in [28]. Easy OCR is the
most straightforward way to implement OCR, and Easy OCR can be implemented with just
a few lines of code. It is a Python package, and Jaided AI [29] maintains it. It was released
in July 2020 and received a recent update in June 2022. EasyOCR uses Pytorch and OpenCV
in the backend [30]. Keras OCR [31] provides end to end training pipeline to build new
OCR models. It is a slightly better and packed version of Keras CRNN implementation and

Information 2023, 14, 305 5 of 19

CRAFT text detection model. It provides a very accurate API for training a text detection
and OCR pipeline [32]. Convolutional Recurrent Neural Network is a CNN, RNN, and
CTC (Connectionist Temporal Classification) loss combination for image-based sequence
recognition applications, such as scene text recognition and OCR [33]. The convolution is
used to extract the feature sequence from an input image. The Recurrent neural network
predicts the label distribution for each frame. Furthermore, a transcription layer translates
the per-frame predictions into a final label sequence [34]. A convolutional neural network
is used to construct Character Region Awareness For Text (‘CRAFT’) Detection to provide
the character region and affinity scores. Individual characters are localized in the image
using the region score, and each character is grouped into one instance using the affinity
score [35].

PyPDF2 is a Pure-Python library that Fenniak [36] created as a PDF toolkit. It has
the ability to extract document information [37], divide and merge documents page by
page, crop pages, combine numerous pages into one, and encrypt and decode PDF files.
DocTR was published by Mindee in March 2021 [38]. Its latest version was released in
March 2022. It achieves end-to-end OCR in a two-stage approach; in the first stage, it
implements text detection using Resnet 50 architecture, and in the second stage, it achieves
text recognition by using CRNN. It can process both PDFs and images. It also detects
rotated images. It can show text localization along with confidence. Its overall good
implementation and gives overall accurate results [39]. More recently, we have seen the
use of transformers for converting textual or handwritten data to machine-encoded text.
The transformer concept and architecture were first introduced in the famous paper
by [40], and since then, transformers have been increasingly used in NLP, computer vi-
sion, and other AI tasks. A Transformer architecture is a stack of encoder and decoder
layers. Encoder and Decoder are composed of modules stacked on top of each other
multiple times. The encoder will convert the English text into numerical representations.
Those numerical representations are fed into a Decoder, and the decoder converts to des-
ored output for further processing. Microsoft’s TrOCR models are encoder–decoder models
with a text Transformer as the decoder and an image Transformer as the encoder [41].
The Hugging Face version of the TrOCR model is popular because of its longevity and
simplicity. With many other implementations, it is observed that the same model or li-
braries cannot recognize handwritten and typed text with high accuracy. The TrOCR model
can convert both text types into machine-encoded text. Furthermore, experiments have
shown that the TrOCR model outperforms the current state-of-the-art models on printed
and handwritten text recognition tasks. Table 1 list the notable open-source OCR models.

Table 1. Overview of open-source OCR models.

Sr No. Name Brief Description Authors Format

1. Tesseract Tesseract is performing well for high-resolution images [42] Machine text

2. TrOCR It can produce very accurate results for machine and
handwritten text and is based on Transformers [41] Handwritten and

Machine text

3. KerasOCR
Keras-OCR is designed for images.
It produces decent results when text is embedded in
a picture and the fonts and colors are not coordinated

[31] Machine text

4. DocTr State-of-the-art performances on public document
datasets, comparable with GoogleVision [38] Machine text

5. Easy OCR
EasyOCR is a lightweight model that gives accurate
results with organized texts like pdf files, receipts, and bills.
It supports 80+ languages

[43] Machine text

6. PyPDF2 Can be used only for PDF and is not accurate in
some cases. [36] Machine text

Information 2023, 14, 305 6 of 19

3. Problem Formulation, Datasets, and Preprocessing

This section explains the problem statements tackled, the experimental dataset used,
the process involved in generating Custom dataset, and preprocessing strategies imple-
mented to prepare the input data for our experiments.

3.1. Problem Formulation

In this work, we explored the idea of developing an adaptive OCR framework and
provide reports from our OCR experiments in working with custom data of a unique
but consistent style from a single source in addition to baseline MNIST data. Thus, we
contribute to addressing the challenge of improving the accuracy of OCR mechanisms
with adaptive methods achieved through localized training of models with the inclusion of
custom data in the training process.

3.2. Datasets

For our work, we have used two datasets, namely the Modified National Institute of
Standards and Technology database (MNIST) and our own generated dataset. For ease of
understanding, we termed our dataset as the Custom dataset.

1. MNIST: The MNIST is a benchmarking [44] of 60,000 train handwritten digits and a
test set of 10,000 (10 class labels) with each example represented as an image of 28 × 28
gray-scale pixels. Images are normalized to fit in a 20 × 20 pixel box while maintaining
their aspect ratio. Images are centered in a 28 × 28 image. One column for each of the
pixels because there are 28 × 28 pixels, there are 784 columns, and +1 for the labels.
Pixel values are between 0 and 255, where 0 means black and 255 means white.

2. Custom: Custom dataset consists of 240 training digits, 40 testing digits, and 20 val-
idation digits, ensuring that the model is trained on a diverse set of data and can
generalize well to new data points.
The Custom dataset is also made available on our Githubrepository [45].

3.3. Custom Dataset Collection

For data collection, we have to create images of the digits. The following steps were
taken to accomplish this. Since writing digits on paper and taking a photograph of them
can be a challenging and time-consuming process, Microsoft Word version 10 was utilized
to make images of the digits. The “draw with trackpad” option in the drawing tab of
Microsoft Word was used for this purpose. Subsequently, screenshots of each digit were
taken and grouped into batches of 10. Each batch contained digits from 0 to 9, with 10 digits
per batch, and the name of the image was the gold label of what the digit represented.

• Preparing the Custom Dataset: Our Custom dataset consists of 300 handwritten digits
collected using the method described in the data collection section. Two users wrote
these digits, and we divided the dataset into three parts, each containing 100 digits.
We then performed a stratified split on each of the three datasets to create training and
testing sets. Specifically, we divided each set into 80 training images and 20 testing
images, ensuring each category had an equal number of labels. This stratified split
helped to prevent any bias in the model. Next, we concatenated the training images,
creating a set of 240 training digits, and concatenated the testing images, creating a set
of 60 digits. We then performed a stratified fold on the testing images, splitting them
into sets of 40 and 20. The 20 digits were used as a validation dataset.

3.4. Preprocessing the Custom Dataset

To ensure consistency with the MNIST dataset, which has images of a fixed size of
28 × 28 pixels, we need to standardize our images to the same size. When digitizing
a handwritten number, we followed several steps to ensure the accuracy and clarity of
the resulting image. Firstly, the handwritten number image is loaded, and then, it is
converted to a binary image format using the “L” mode, which only allows each pixel

Information 2023, 14, 305 7 of 19

to be black or white. A white canvas of 28 × 28 is created the standard size for all
MNIST images. The width or height of the image is then determined, and the image
is resized such that the greatest dimension is 20 pixels, while the smaller dimension
is scaled proportionally. To improve the image quality, the antialias function of pillow
Library is applied, which smoothens jagged edges by averaging the colors of the pixels
at the boundary and sharpening it. Subsequently, the resized image is pasted onto the
28 × 28 pixel white canvas, with 4 pixels from the top or side of the largest dimension used
to center the picture. The smallest dimension is placed halfway between the original size
of 28 and the scaled picture to center the image. After obtaining the pixel values of the
new image, the values are adjusted to a range of 0 to 1, where 1 represents black and 0
represents white, using a formula to invert and normalize the values. As a result of these
steps, the resulting image of the handwritten number is clear and accurate, making it easier
to analyze and process. The original image (Figure 1b) was transformed into the MNIST-
style image shown in Figure 1c using the process mentioned above. Figure 1a and our
transformed digit Figure 1c are quite similar in appearance. However, our transformation
process resulted in a sharper image compared to the original figure.

(a) (b) (c)

Figure 1. Preprocessing the Custom dataset. (a) MNIST image from the MNIST Dataset. (b) Original
custom image. (c) Transformed into MNIST format.

4. Materials and Methods

This section mentions the computational resource used to conduct the experiments,
the phases involved in performing OCR, and the architecture of the employed CNN-based
DL model. The computational resource used to perform the experiments is mentioned in
Table 2.

Table 2. Hardware resource specifications.

Item Specification

CPU Intel Core i3-7100 (-HT-MCP-) CPU @ 3.90 GHz
GPU NVIDIA T4
CUDA Version 10.1
OS Ubuntu 17.10
Python Version 3.10
Tensorflow Version 2.12.0

4.1. Major Phases of Performing an OCR

The OCR workflow combines multiple phases, as described by [46].

1. Source data input—this phase involves using an external optical device, such as
a scanner or camera, to generate images that contain relevant alphanumeric text
or symbols.

Information 2023, 14, 305 8 of 19

2. Data preparation—covers various preprocessing operations, such as noise removal, to
enhance source image quality and alignment of the image with the required standard-
ized input format.

3. Partitioning—multiple characters in the image are split into individual items in this
phase so that a recognition engine can process the partitioned characters appropriately.

4. Feature extraction—the partitioned characters are further “processed to extract dif-
ferent features.” The characters are then ‘recognized’ based on their alignment with
these features.

5. Classification—based on partitioning and feature extraction, the target image’s fea-
tures are mapped to several categories and classified to appropriate values.

6. Options—characters within source files can be classified using multiple techniques
for pattern recognition using fundamental and statistical approaches.

7. Validation and improvement—upon the completion of initial classification exercises,
it may be observed that the results are rarely perfect. This is especially true for
handwritten content with multiple authors, multifaceted fonts, and intricate lan-
guages. Quantitative, conceptual, linguistic, and probabilistic remedial approaches
and fine-tuning can be performed to improve the accuracy of OCR systems.

4.2. Architecture of CNN-Based DL Model

CNNs have become popular for image classification tasks due to their exceptional
ability to extract features from images [47]. Our study utilized the MNIST dataset, which
comprises 70,000 handwritten digits from 0 to 9 represented in a 28-by-28-pixel grayscale
format. To further enhance the dataset, we added our data to the original MNIST dataset,
resulting in an augmented dataset used to train the CNN. The trained model was then
evaluated on our custom test data to assess its accuracy and generalizability. The process
flowchart with Custom data is shown in Figure 2.

Figure 2. Process flowchart with Custom data.

For our experiments, we built a CNN Architecture, as shown in Figure 3, with the
following parameters:

1. In our model, we stack multiple Conv2D layers to extract increasingly complex
features from an input image.

2. Each Conv2D layer has parameters such as the number of filters, kernel size, padding,
and activation function, which are tuned to optimize the performance of the network.
The Conv2D layers are used to build feature maps from the data.

3. The kernel size of the filters is usually (3 × 3), and we use padding to ensure that
the filters fit the input image. We also use the ReLU activation function to introduce
nonlinearity in our model. Max-Pooling is used to reduce dimensionality. In Max-

Information 2023, 14, 305 9 of 19

Pooling, the output value is just the maximum input value in each patch (for example,
the maximum pixel in a span of three pixels).

4. The next step is to flatten out the output from the last pooling layer because the input
of the fully-connected layer is not a 2D vector but a 1D vector. To flatten means to
convert a 2D matrix into a 1D matrix.

5. A fully-connected hidden layer is added to perform classification. The fully-connected
layers combine the features extracted from the convolutional layers to create a model.
Between fully-connected layers, dropout layers are added to remove specific neurons’
contributions to the following layer while leaving the rest intact. Dropout layers are
applied to reduce overfitting.

6. Finally, an activation function as softmax is used to classify the outputs as digits as 0,
1, 2 . . . 9.

Figure 3. Model flowchart.

The model information is presented in Table 3.

Table 3. Model summary.

Layer (Type) Output Shape Number of Parameters

conv2d (Conv2D) (None, 28, 28, 16) 160

max_pooling2d (MaxPooling2D) (None, 14, 14, 16) 0

conv2d_1 (Conv2D) (None, 14, 14, 32) 4640

max_pooling2d_1 (MaxPooling2D) (None, 7, 7, 32) 0

conv2d_2 (Conv2D) (None, 7, 7, 64) 18,496

max_pooling2d_2 (MaxPooling2D) (None, 3, 3, 64) 0

conv2d_3 (Conv2D) (None, 3, 3, 64) 36,928

max_pooling2d_3 (MaxPooling2D) (None, 1, 1, 64) 0

flatten (Flatten) (None, 64) 0

dense (Dense) (None, 64) 4160

dropout (Dropout) (None, 64) 0

dense_1 (Dense) (None, 64) 4160

dropout_1 (Dropout) (None, 64) 0

dense_2 (Dense) (None, 10) 650

5. Experiments and Results

In this section, we describe the details of our experiments, the process, and the out-
comes. For ease of understanding, we have grouped each experiment and its result.
We have used the Accuracy and F-1 score [48] metrics below to measure the performance
of our employed classification models given by the following equations:

Information 2023, 14, 305 10 of 19

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

F1 = 2 × Precision × Recall
Precision + Recall

(2)

where TP, FP, TN, and FN are True positive, False positive, True Negative, and False
Negative, respectively.

5.1. Experiment 1

In this experiment, we trained the CNN Model on 60,000 MNIST images and tested
the model on 10,000 MNIST test data points. The output from this experiment is not shown
in Table 4 because it was a standard experiment with MNIST data, and we only used it to
validate our base process.

Results: Overall, the model performed well and generalized well to different data
points, with very few mispredicted labels, as shown in Figure 4a. Furthermore, Figure 4b
depicts the Loss vs. Epoch and Loss vs. Accuracy graph, demonstrating that the validation
accuracy and validation loss were consistent with the training accuracy and training loss.
The small gap between training and validation accuracy indicates that the model does
not overfit and can generalize well. This model will serve as our baseline for comparison
to other models. The model achieved an accuracy of 97.90% and a validation accuracy
of 99.18%.

(a) Confusion matrix

(b) Graph
Figure 4. Experiment 1 outcome.

Information 2023, 14, 305 11 of 19

5.2. Experiment 2

In this experiment, the model was trained on a dataset of 60,000 images from the
MNIST dataset and was then tested on our Custom test dataset consisting of 40 images. The
MNIST test set, which consists of 10,000 images, was used as the validation dataset for
this model.

Results: To evaluate the model’s performance on our Custom dataset, we used the
same model as before and tested it on 40 images. The results showed that five of the
40 digits were misclassified, as seen in Figure 5. Notably, the digit “2” had the lowest
accuracy of classification.

Figure 5. Confusion matrix of experiment 2.

5.3. Experiment 3

The model was trained on a combined dataset comprising 60,000 images from the
MNIST dataset and 240 images from our Custom dataset. To prevent overfitting and ensure
that the model generalizes well, we used the MNIST test set, which contains 10,000 images,
along with 20 digits from our Custom validation dataset, as the validation dataset for this
model. After the training phase, we evaluated the model’s performance on our Custom test
dataset of 40 images.

Results: The evaluation of the model’s performance on our Custom test dataset re-
vealed that two of the 40 digits were misclassified, as shown in Figure 6a. Notably, the
digits “4” and “5” were the ones that were misclassified. The graph shown in Figure 6b
indicates that there is only a tiny gap between training and validation accuracy and loss,
indicating that the model has maintained its generalizability and can fine-tune itself over
our Custom dataset, achieving a low number of misclassification. The model achieved
an accuracy of 97.07% on the combined dataset and a validation accuracy of 98.91%.
These results suggest that the model performs well on both the MNIST and our Custom
datasets, indicating that it has learned relevant common features across different datasets.
These findings demonstrate the effectiveness of using a combined dataset and diverse
validation data to improve the model’s performance on new data points.

Information 2023, 14, 305 12 of 19

(a) Confusion matrix

(b) Graph
Figure 6. Experiment 3 outcome.

5.4. Experiment 4

This model was trained on a combined dataset of 60,000 images from the MNIST
dataset, 240 images from our Custom dataset, and 720 rotated digits. The rotated digits
were generated by applying a random rotation angle between −15 degrees to 15 degrees to
our 240 digits. For validation, we used the MNIST test set, which contains 10,000 images,
and added 20 digits from our Custom validation dataset. Following the training phase, we
evaluated the model’s performance on our Custom test dataset of 40 images.

Results: The evaluation of the model’s performance on our Custom test dataset re-
vealed that two of the 40 digits were misclassified, as shown in Figure 7a. As seen in the
graph presented in Figure 7b, there is a slightly increased gap between the training and
validation accuracy, which was expected due to the addition of our large Custom dataset.
Although the model’s generalizability decreased slightly, it still performed well on the
Custom test dataset. The model achieved an accuracy of 96.30% on the combined dataset
and a validation accuracy of 98.83%.

Information 2023, 14, 305 13 of 19

(a) Confusion matrix

(b) Graph
Figure 7. Experiment 4 outcome.

5.5. Experiment 5

This model was trained on a combined dataset of 60,000 images from the MNIST
dataset, 240 images from our Custom dataset, and 9600 rotated digits. The rotated digits
were generated by applying a random rotation angle between −15 degrees to 15 degrees to
our 240 digits. For validation, we used the MNIST test set, which contains 10,000 images,
and added 20 digits from our Custom validation dataset. Following the training phase, we
evaluated the model’s performance on our Custom test dataset of 40 images.

Results: The evaluation of the model’s performance on our Custom test dataset re-
vealed that two of the 40 digits were misclassified, as shown in Figure 8a. As seen in the
graph presented in Figure 8b, there is a drastic increased gap between the training and
validation accuracy, which was expected due to the addition of our larger Custom dataset.
Although the model’s generalizability decreased slightly, it still performed well on the
Custom test dataset. The model achieved an accuracy of 85.30% on the combined dataset
and a validation accuracy of 98.96%.

Information 2023, 14, 305 14 of 19

(a) Confusion matrix

(b) Graph
Figure 8. Experiment 5 outcome.

5.6. Experiment 6

The model used in this experiment is based on the transformer architecture and was
first introduced in the paper by Li et al. (2021) [41]. It was trained on the IAM dataset [49],
and the specific model used in this study is a pre-trained model fine-tuned on the MNIST
dataset accessible via [50]. On the MNIST dataset, the model achieved an accuracy of
99.52%. However, when tested on our dataset, it misclassified two digits, as seen in
Figure 9.

Figure 9. Confusion matrix of experiment 6.

Information 2023, 14, 305 15 of 19

5.7. Experimental Summary

We have provided the consolidated experimental outcomes of experiments 2 to 6 in
Table 4.

Table 4. Summary of experimental results with 40 Custom test digits.

Model Train Data Validation Accuracy Misclassified Digits Test Accuracy

CNN MNIST 99.18% 5 87.5%

CNN MNIST + 240 custom digits 98.91% 2 95%

CNN MNIST + 960 custom digits 98.83% 2 95%

CNN MNIST + 9840 custom digits 98.96% 2 95%

TrOCR (Pretrained model) NA 2 95%

6. Discussion and Limitations

Computer vision and digital image processing are crucial in multimedia, artificial
intelligence, and robotics. Image analysis includes segmentation, feature extraction, and
classification techniques. Human–computer interaction can make things easier for users,
and optimal results with less computation time and multilingual character segmentation
and recognition are possible. A segmentation-free approach using Deep Neural Network
(DNN) is also possible in OCR, and this work may bridge the knowledge gap in automatic
interaction between human–system and system–system interactions [51].

We use a CNN to recognize an image containing a single character. Text of arbitrary
length is a sequence of characters, and such problems are solved using Recurrent Neural
Networks, and LSTM [52] is a popular form of RNN [53]. Modernization of the Tesseract
tool involved code cleaning and adding a new LSTM model. The input image is processed
in boxes, line by line, and fed into an LSTM model. Even after a lot of training, Tesseract
performs better, but it still needs to be improved to work on handwritten text and weird
fonts. Additionally, rotated or skewed text may cause the Tesseract to malfunction.

One major limitation we faced during the model training was the scarcity of data, as we
only produced about 300 digits. This limited our ability to make significant improvements
to the model, which was already trained on a much larger dataset of 60,000 digits. To
address this limitation and make further progress, we would need to increase our dataset
size to at least 10,000 digits.

Additionally, although we used a CNN model for our digit recognition task, we acknowl-
edge that transformer models such as TrOCR have demonstrated comparable accuracy, as
seen in the above table. With the potential to capture more global representations of images
compared to CNN models, fine-tuning a TrOCR-based model could yield even better results.
Furthermore, while our smart-OCR research concept is demonstrated using digits, the final
production-level application will be expected to extend the concept to handwritten textual
artifacts, full texts, and documents corpora, including historical texts [54,55].

7. Conclusions and Future Work

In this paper, we demonstrated the viability of a simple schema to develop an OCR
mechanism for creating an adaptive framework for custom digit recognition models, and its
logical implication of flexibility of OCR models to specific writing styles. Once developed
further with state-of-the-art neural networks, such as transformers for computer vision,
this approach can be applied to a variety of industry-level use cases. This could include
solutions in healthcare where individual medical practitioners have different writing
styles, and in fraud detection to match or distinguish handwriting styles with greater
accuracy. Given the tremendous potential for adaptive OCR applications, it is advisable
to move adaptive OCR research to the forefront. We are hopeful that such adaptive
OCR solutions would be an important part of the rapidly advancing artificial intelligence
ecosystems worldwide. Currently, most NLP research and practice use machine-readable

Information 2023, 14, 305 16 of 19

typed data and associated textual data distributions [56]. It would be very useful to
develop OCR solutions for handwritten documents to create a seamless integration with
NLP solutions, such as sentiment analysis and NLP-based socioeconomic modeling [57–59].
OCR is a mature discipline with industry-level solutions for identifying and ‘reading’
images of machine-printed text. However, due to the high degree of variations, OCR for
handwriting recognition needs additional work. Based on the early-stage success of TrOCR,
we believe there is significant potential for improving OCR solutions for handwritten text
with transformer-based applications. We intend to explore the potential of fine-tuning and
limited shot learning with pretrained transformer models to cater to user-specific digit
recognition needs. Furthermore, the additional use of AI methods and tools to mimic
human intelligence’s capability to identify text in varying colors, mixed sizes, and styles
and other complex forms holds great promise. As an applied direction for future research,
it is possible to use OCR methods to generate data for domains such as heritage culture
and preservation from images of historical texts. One of the most important research areas
to build upon would be the capability of an OCR application to be ‘flexible’ with custom
handwriting styles. Incorporating the on-demand flexibility of OCR models would be a
powerful way to advance the effectiveness of OCR with Custom data and variations in font
styles. We also aim to incorporate world knowledge in the form of triples to address the
domain adaptation challenges in identifying subtle sentiments [60].

Author Contributions: Conceptualization, P.H.J., V.K., J.S., S.S., A.M. and R.A.; methodology, P.H.J.,
V.K., J.S., S.S., A.M. and R.A.; software, P.H.J. and J.S.; formal analysis, P.H.J., V.K. and J.S.; inves-
tigation, P.H.J., V.K. and J.S.; resources, P.H.J., J.S. and A.M.; data curation, P.H.J., J.S. and A.M.;
writing—original draft preparation, P.H.J., V.K. and J.S.; writing—review and editing, P.H.J., V.K.,
J.S., S.S. A.M. and R.A.; visualization, P.H.J., V.K. and J.S.; supervision, V.K. and J.S.; project adminis-
tration, J.S.; funding acquisition, J.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the NJ State Policy Lab (https://policylab.rutgers.edu/ (ac-
cessed on 11 April 2023)) and the Public Informatics program at Bloustein School, Rutgers University
(https://bloustein.rutgers.edu/graduate/public-informatics/mpi/ (accessed on 11 April 2023)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The MNIST dataset is available at (https://archive-beta.ics.uci.edu/
dataset/683/mnist+database+of+handwritten+digits (accessed on 11 April 2023)) and our Custom
dataset is available at the Github repository (https://github.com/ay7n/OCR-RUCILDigits-4 (ac-
cessed on 11 April 2023)).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolution Neural Network
DL Deep Learning
ML Machine Learning
OCR Optical Character Recognition
LSTM Long Short-Term Memory
NLP Natural Language processing
RNN Recurrent Neural Network
NER Named-Entity Recognition
ReLU Rectified Linear Unit
LSTM-R Long Short-Term Memory plus Relation-aware pointer network
HMM Hidden Markov Models
DNN Deep Neural Network

https://policylab.rutgers.edu/
https://bloustein.rutgers.edu/graduate/public-informatics/mpi/
https://archive-beta.ics.uci.edu/dataset/683/mnist+database+of+handwritten+digits
https://archive-beta.ics.uci.edu/dataset/683/mnist+database+of+handwritten+digits
https://github.com/ay7n/OCR-RUCILDigits-4

Information 2023, 14, 305 17 of 19

References
1. Samuel, J.; Kashyap, R.; Samuel, Y.; Pelaez, A. Adaptive cognitive fit: Artificial intelligence augmented management of

information facets and representations. Int. J. Inf. Manag. 2022, 65, 102505. [CrossRef]
2. Thorat, C.; Bhat, A.; Sawant, P.; Bartakke, I.; Shirsath, S. A detailed review on text extraction using optical character recognition.

In ICT Analysis and Applications; Springer: Singapore, 2022; pp. 719–728.
3. Singh, S. Optical character recognition techniques: A survey. J. Emerg. Trends Comput. Inf. Sci. 2013, 4, 2009–2015.
4. Samuel, J. A call for proactive policies for informatics and artificial intelligence technologies. Scholars Strategy Network, 19

December 2021.
5. Srivastava, N.; Singh, S. Netra: Smart Hand Gloves Comprises Obstacle Detection, Object Identification & OCR Text to Speech

Converter for Blinds. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics
and Computer Engineering (UPCON), Gorakhpur, India, 2–4 November 2018; pp. 1–4.

6. Januszewski, A.; Kujawski, J.; Buchalska-Sugajska, N. Benefits of and obstacles to RPA implementation in accounting firms.
Procedia Comput. Sci. 2021, 192, 4672–4680. [CrossRef]

7. Samuel, J.; Rahman, M.M.; Ali, G.M.N.; Samuel, Y.; Pelaez, A.; Chong, P.H.J.; Yakubov, M. Feeling Positive About Reopening?
New Normal Scenarios From COVID-19 US Reopen Sentiment Analytics. IEEE Access 2020, 8, 142173–142190. [CrossRef]

8. Ali, G.M.N.; Rahman, M.M.; Hossain, M.A.; Rahman, M.S.; Paul, K.C.; Thill, J.C.; Samuel, J. Public perceptions of COVID-19
vaccines: Policy implications from US spatiotemporal sentiment analytics. Healthcare 2021, 9, 1110. [CrossRef]

9. Manwatkar, P.M.; Yadav, S.H. Text recognition from images. In Proceedings of the 2015 International Conference on Innovations
in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015; pp. 1–6.

10. Srihari, S.N.; Shekhawat, A.; Lam, S.W. Optical character recognition (OCR). In Encyclopedia of Computer Science; Wiley: London,
UK, 2003; pp. 1326–1333.

11. Srihari, S.N.; Kuebert, E.J. Integration of hand-written address interpretation technology into the united states postal service
remote computer reader system. In Proceedings of the Fourth International Conference on Document Analysis and Recognition,
Ulm, Germany, 18–20 August 1997; Volume 2, pp. 892–896.

12. Kornai, A. An experimental HMM-based postal ocr system. In Proceedings of the 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Munich, Germany, 21–24 April 1997; Volume 4, pp. 3177–3180.

13. Ifhaam, M.; Jayalal, S. Sinhala handwritten postal address recognition for postal sorting. In Proceedings of the 2019 International
Research Conference on Smart Computing and Systems Engineering (SCSE), Colombo, Sri Lanka, 28 March 2019; pp. 134–141.

14. Patel, M.; Reddy, S.L. An impact of grid based approach in offline handwritten Kannada word recognition. In Proceedings of
the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India, 27–29 November 2014;
pp. 630–633.

15. Nagy, G. Disruptive developments in document recognition. Pattern Recognit. Lett. 2016, 79, 106–112. [CrossRef]
16. Faizullah, S.; Ayub, M.S.; Hussain, S.; Khan, M.A. A Survey of OCR in Arabic Language: Applications, Techniques, and

Challenges. Appl. Sci. 2023, 13, 4584. [CrossRef]
17. Al-Hadhrami, A.A.; Allen, M.; Moffatt, C.; Jones, A.E. National characteristics and variation in Arabic handwriting. Forensic Sci.

Int. 2015, 247, 89–96. [CrossRef]
18. Bhagyasree, P.; James, A.; Saravanan, C. A proposed framework for recognition of handwritten cursive english characters

using DAG-CNN. In Proceedings of the 2019 1st International Conference on Innovations in Information and Communication
Technology (ICIICT), Chennai, India, 25–26 April 2019; pp. 1–4.

19. Bhunia, A.K.; Khan, S.; Cholakkal, H.; Anwer, R.M.; Khan, F.S.; Shah, M. Handwriting transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1086–1094.

20. Van Strien, D.; Beelen, K.; Ardanuy, M.C.; Hosseini, K.; McGillivray, B.; Colavizza, G. Assessing the impact of OCR quality on
downstream NLP tasks. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence, Valletta, Malta,
22–24 February 2020.

21. Wang, J.; Tang, J.; Yang, M.; Bai, X.; Luo, J. Improving OCR-based image captioning by incorporating geometrical relationship. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 1306–1315.

22. Nguyen, T.T.H.; Jatowt, A.; Coustaty, M.; Doucet, A. Survey of post-OCR processing approaches. ACM Comput. Surv. (CSUR)
2021, 54, 1–37. [CrossRef]

23. Vijayarani, S.; Sakila, A. Performance comparison of OCR tools. Int. J. UbiComp (IJU) 2015, 6, 19–30.
24. Suissa, O.; Elmalech, A.; Zhitomirsky-Geffet, M. Optimizing the Neural Network Training for OCR Error Correction of Historical

Hebrew Texts; iConference 2020 Proceedings; iSchools Inc.: Grandville, MI, USA, 2020; pp. 1–10.
25. Hegghammer, T. OCR with Tesseract, Amazon Textract, and Google Document AI: A benchmarking experiment. J. Comput. Soc.

Sci. 2022, 5, 861–882. [CrossRef]
26. Smith, R. An overview of the Tesseract OCR engine. In Proceedings of the Ninth International Conference on Document Analysis

and Recognition (ICDAR 2007), Curitiba, Brazil, 23–26 September 2007; Volume 2, pp. 629–633.
27. Ramiah, S.; Liong, T.Y.; Jayabalan, M. Detecting text based image with optical character recognition for English translation

and speech using Android. In Proceedings of the 2015 IEEE Student Conference on Research and Development (SCOReD),
Kuala Lumpur, Malaysia, 13–14 December 2015; pp. 272–277.

http://doi.org/10.1016/j.ijinfomgt.2022.102505
http://dx.doi.org/10.1016/j.procs.2021.09.245
http://dx.doi.org/10.1109/ACCESS.2020.3013933
http://dx.doi.org/10.3390/healthcare9091110
http://dx.doi.org/10.1016/j.patrec.2015.11.024
http://dx.doi.org/10.3390/app13074584
http://dx.doi.org/10.1016/j.forsciint.2014.12.004
http://dx.doi.org/10.1145/3453476
http://dx.doi.org/10.1007/s42001-021-00149-1

Information 2023, 14, 305 18 of 19

28. Breuel, T.M. The OCRopus open source OCR system. Proc. Doc. Recognit. Retr. SPIE 2008, 6815, 120–134.
29. Kittinaradorn, R. EasyOCR. 2020. Available online: https://github.com/JaidedAI/EasyOCR/tree/master (accessed on 11 April 2023).
30. Awalgaonkar, N.; Bartakke, P.; Chaugule, R. Automatic license plate recognition system using ssd. In Proceedings of the 2021

International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), Goa, India,
20–22 September 2021; pp. 394–399.

31. Troller, M. Practical OCR System Based on State of Art Neural Networks. Bachelor’s Thesis, Czech Technical University in Prague,
Dejvice, Czech Republic, 2017.

32. Alrasheed, N.; Prasanna, S.; Rowland, R.; Rao, P.; Grieco, V.; Wasserman, M. Evaluation of Deep Learning Techniques for Content
Extraction in Spanish Colonial Notary Records. In Proceedings of the 3rd Workshop on Structuring and Understanding of
Multimedia heritAge Contents, Virtual, 20 October 2021; pp. 23–30.

33. Chen, Y.; Yang, J. Research on scene text recognition algorithm basedon improved CRNN. In Proceedings of the 2020 4th
International Conference on Digital Signal Processing, Chengdu, China, 19–21 June 2020; pp. 107–111.

34. Shi, B.; Bai, X.; Yao, C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene
text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 2298–2304. [CrossRef]

35. Baek, Y.; Lee, B.; Han, D.; Yun, S.; Lee, H. Character region awareness for text detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9365–9374.

36. FenniakM. PyPDF2·PyPI. Available online: https://pypi.org/project/PyPDF2/ (accessed on 4 April 2023).
37. Kekare, A.; Jachak, A.; Gosavi, A.; Hanwate, P. Techniques for Detecting and Extracting Tabular Data from PDFs and Scanned

Documents: A Survey. Tabula 2020, 7, 415–417.
38. Mindee. docTR: Document Text Recognition. Available online: https://github.com/mindee/doctr (accessed on 4 April 2023).
39. Batra, P.; Phalnikar, N.; Kurmi, D.; Tembhurne, J.; Sahare, P.; Diwan, T. OCR-MRD: Performance Analysis of Different Optical

Character Recognition Engines for Medical Report Digitization. 2023. Available online: https://www.researchsquare.com/
article/rs-2513255/v1 (accessed on 4 April 2023).

40. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.
arXiv 2017. arXiv:1706.03762.

41. Li, M.; Lv, T.; Cui, L.; Lu, Y.; Florencio, D.; Zhang, C.; Li, Z.; Wei, F. Trocr: Transformer-based optical character recognition with
pre-trained models. arXiv 2021. arXiv:2109.10282

42. Smith, R.W. The Extraction and Recognition of Text from Multimedia Document Images. Ph.D. Thesis, University of Bristol,
Bristol, UK, 1987.

43. Ai, J. EasyOCR. Available online: https://github.com/JaidedAI/EasyOCR (accessed on 4 April 2023).
44. Le Cun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
45. Lab, R. OCR-RUCILDigits-4. 2022. Available online: https://github.com/ay7n/OCR-RUCILDigits-4 (accessed on 4 April 2023).
46. Eikvil, L. Optical Character Recognition. 1993. Available online: http://home.nr.no/~eikvil/OCR.pdf (accessed on 4 April 2023).
47. Agrawal, A.K.; Shrivas, A.; kumar Awasthi, V. A Robust model for handwritten digit recognition using machine and deep

learning technique. In Proceedings of the 2021 2nd International Conference for Emerging Technology (INCET), Belagavi, India,
21–23 May 2021; pp. 1–4.

48. Kumar, V.; Recupero, D.R.; Riboni, D.; Helaoui, R. Ensembling Classical Machine Learning and Deep Learning Approaches for
Morbidity Identification From Clinical Notes. IEEE Access 2021, 9, 7107–7126. [CrossRef]

49. Cheng, L.; Bing, L.; He, R.; Yu, Q.; Zhang, Y.; Si, L. IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument
Mining Tasks. arXiv 2022, arXiv:2203.12257

50. Aico. TROCR Digit. Available online: https://huggingface.co/spaces/aico/TrOCR-digit (accessed on 4 April 2023).
51. Karthick, K.; Ravindrakumar, K.; Francis, R.; Ilankannan, S. Steps involved in text recognition and recent research in OCR:

A study. Int. J. Recent Technol. Eng. 2019, 8, 2277–3878.
52. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef] [PubMed]
53. Williams, G.; Baxter, R.; He, H.; Hawkins, S.; Gu, L. A comparative study of RNN for outlier detection in data mining.

In Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002;
pp. 709–712.

54. Mueller-Gastell, J.; Sena, M.; Tan, C.Z. A Multi-Digit OCR System for Historical Records (Computer Vision). Available online:
http://cs230.stanford.edu/projects_spring_2020/reports/38792124.pdf (accessed on 4 April 2023).

55. Goodfellow, I.J.; Bulatov, Y.; Ibarz, J.; Arnoud, S.; Shet, V. Multi-digit number recognition from street view imagery using deep
convolutional neural networks. arXiv 2013, arXiv:1312.6082

56. Samuel, J.; Palle, R.; Soares, E.C. Textual Data Distributions: Kullback Leibler Textual Distributions Contrasts on GPT-2 Generated
Texts, with Supervised, Unsupervised Learning on Vaccine & Market Topics & Sentiment. arXiv 2022, arXiv:2107.02025.

57. Rahman, M.M.; Ali, G.M.N.; Li, X.J.; Samuel, J.; Paul, K.C.; Chong, P.H.; Yakubov, M. Socioeconomic factors analysis for COVID-19
US reopening sentiment with Twitter and census data. Heliyon 2021, 7, e06200. [CrossRef]

58. Samuel, J.; Ali, G.G.M.N.; Rahman, M.M.; Esawi, E.; Samuel, Y. COVID-19 public sentiment insights and machine learning for
tweets classification. Information 2020, 11, 314. [CrossRef]

https://github.com/JaidedAI/EasyOCR/tree/master
http://dx.doi.org/10.1109/TPAMI.2016.2646371
 https://pypi.org/project/PyPDF2/
https://github.com/mindee/doctr
https://www.researchsquare.com/article/rs-2513255/v1
https://www.researchsquare.com/article/rs-2513255/v1
https://github.com/JaidedAI/EasyOCR
http://dx.doi.org/10.1109/5.726791
https://github.com/ay7n/OCR-RUCILDigits-4
http://home.nr.no/~eikvil/OCR.pdf
http://dx.doi.org/10.1109/ACCESS.2020.3043221
https://huggingface.co/spaces/aico/TrOCR-digit
http://dx.doi.org/10.1162/neco_a_01199
http://www.ncbi.nlm.nih.gov/pubmed/31113301
http://cs230.stanford.edu/projects_spring_2020/reports/38792124.pdf
http://dx.doi.org/10.1016/j.heliyon.2021.e06200
http://dx.doi.org/10.3390/info11060314

Information 2023, 14, 305 19 of 19

59. Bhandari, A.; Kumar, V.; Thien Huong, P.T.; Thanh, D.N. Sentiment analysis of COVID-19 tweets: Leveraging stacked word
embedding representation for identifying distinct classes within a sentiment. In Artificial Intelligence in Data and Big Data
Processing, Proceedings of ICABDE 2021, Ho Chi Minh City, Vietnam, 18–19 December 2022; Springer: Berlin/Heidelberg, Germany,
2022; pp. 341–352.

60. Kumar, V.; Reforgiato Recupero, D.; Helaoui, R.; Riboni, D. K-LM: Knowledge Augmenting in Language Models Within the
Scholarly Domain. IEEE Access 2022, 10, 91802–91815. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2022.3201542

	Introduction
	Related Works
	Problem Formulation, Datasets, and Preprocessing
	Problem Formulation
	Datasets
	Custom Dataset Collection
	Preprocessing the Custom Dataset

	Materials and Methods
	Major Phases of Performing an OCR
	Architecture of CNN-Based DL Model

	Experiments and Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experimental Summary

	Discussion and Limitations
	Conclusions and Future Work
	References

