
Citation: Palm, H.; Arndt, L.

Reinforcement Learning-Based

Hybrid Multi-Objective Optimization

Algorithm Design. Information 2023,

14, 299. https://doi.org/10.3390/

info14050299

Academic Editor: Katsuhide Fujita

Received: 11 April 2023

Revised: 16 May 2023

Accepted: 18 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Reinforcement Learning-Based Hybrid Multi-Objective
Optimization Algorithm Design
Herbert Palm ∗,† and Lorin Arndt †

Systems Engineering Laboratory, University of Applied Sciences, Lothstrasse 64, 80335 München, Germany
* Correspondence: herbert.palm@hm.edu
† These authors contributed equally to this work.

Abstract: The multi-objective optimization (MOO) of complex systems remains a challenging task
in engineering domains. The methodological approach of applying MOO algorithms to simulation-
enabled models has established itself as a standard. Despite increasing in computational power, the
effectiveness and efficiency of such algorithms, i.e., their ability to identify as many Pareto-optimal
solutions as possible with as few simulation samples as possible, plays a decisive role. However,
the question of which class of MOO algorithms is most effective or efficient with respect to which
class of problems has not yet been resolved. To tackle this performance problem, hybrid optimization
algorithms that combine multiple elementary search strategies have been proposed. Despite their
potential, no systematic approach for selecting and combining elementary Pareto search strategies has
yet been suggested. In this paper, we propose an approach for designing hybrid MOO algorithms that
uses reinforcement learning (RL) techniques to train an intelligent agent for dynamically selecting and
combining elementary MOO search strategies. We present both the fundamental RL-Based Hybrid
MOO (RLhybMOO) methodology and an exemplary implementation applied to mathematical test
functions. The results indicate a significant performance gain of intelligent agents over elementary and
static hybrid search strategies, highlighting their ability to effectively and efficiently select algorithms.

Keywords: multi-objective optimization; complex systems; Pareto front; hybrid search algorithms;
reinforcement learning; intelligent agent

1. Introduction

Decision making aims at identifying solutions with optimal target attributes in the
space of available solution alternatives. In context of the Cynefin [1] framework, we call a
problem’s environment (i.e., its habitat, or in Welsh, Cynefin):

• complicated when there is a non-trivial number (usually more than two) of known
cause–effect relations;

• complex when there are at least some relevant cause–effect relations that are not subject
to existing experience, or that are not accessible in closed analytical form,

characterizing the problem. Thus, the degree of a problem’s complicacy increases with both
the dimension of the design space (i.e., the domain defining the set of alternative solutions
by all degrees of decision freedom) and the number of cause–effect relations (connecting a
domain to its co-domain, i.e., the set of achievable objectives). The degree of a problem’s
complexity, in contrast, increases with its degree of uncertainty about the cause–effect
relationships mentioned above [2]. The complicacy and complexity of a problem can both
be elevated if decision making is not focused on a single (uni-criterial) objective, but on
a multitude of usually conflicting (multi-criterial) objectives. The latter case forms the
basis for Multi-Objective Decision Making (MODM) [3,4] or synonymously, Multi-Criteria
Decision Making (MCDM) [5], supporting decision makers faced with a multitude of
objectives.
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Before a multi-objective decision may be concluded, knowledge about conflicting
target trade-offs is paramount. Definitions of processes, methods, and algorithms for
simultaneously optimizing multiple objectives, and thereby, identifying conflicting target
trade-offs, is subject to the multi-objective optimization (MOO) field [6]. For nontrivial
MOO problems (i.e., problems without the existence of a single solution that simultaneously
optimizes each stated objective), MOO algorithms aim to find solutions that can only be
improved with respect to any objective if at least one other objective is worsened at the
same time. Mathematically, this basic MOO goal is usually expressed by searching for
(design) domain elements dopt that correspond to the global extreme points of the (target)
domain in terms of target value minimization:

dopt = arg min
d∈X

f (d) (1)

within the design space domain X ⊂ Rd being mapped to the (objective or target space)
co-domain T by a t−dimensional function

f : X → T ⊂ Rt. (2)

MOO problems can be formulated in the above type of minimization without a loss of
generality, since maximizing the objectives, if necessary, is equivalent to minimizing their
negatives. While f is analytically known for a complicated problem, it is represented by a
black box function in the case of a complex problem that in many cases is only accessible
through a computationally expensive DAE (differential-algebraic system of equations)-
based simulation model.

In order to deal with simultaneous multiple objectives, MOO extends the scalar valued
minimization operation to the identification of a set P ⊂ T of non-dominated solutions
p ∈ P (with P being called the Pareto front, containing all Pareto points), as defined by the
dominance relation between two solutions p, q ∈ T

p 4 q :⇐⇒ ∀ i : pi ≤ qi

p ≺ q :⇐⇒ ∀ i : pi < qi

(3)

with the vector components being indicated by i ∈ {1, ..t}. The Pareto front of (Pareto-)
optimal solutions then may be phrased as

P := {p ∈ T | @ (q ∈ T, i ∈ {1, .., t}) : q 4 p ∧ qi ≺ pi}. (4)

In other words, the Pareto front comprises those solutions of a problem that cannot be
improved without accepting a deterioration within at least one target dimension.

MOO algorithms focusing on the effective and efficient search of Pareto-optimal points
follow an established set of heuristics; for example, multi-objective evolutionary algo-
rithms (MOEAs) [7] (such as particle swarm [8], ant-colony [9], genetic algorithms [10]),
or (surrogate) model-based algorithms [11,12]. Within the latter family of heuristics,
Multi-Objective Bayesian Optimization (MOBO) [13,14] derived from classical Bayesian
approaches play a predominant role through the use of infill criteria that take into ac-
count Pareto front identification-related indicators such as the Expected Hyper-Volume
Improvement (EHVI) [15].

In order to extend the application scope of MOO algorithms with respect to a wider
range of problem classes, hybrid MOO algorithms [16] have been developed. They combine
elementary search algorithms and their individual strengths with the goal of overcoming
each other’s weaknesses. One example of such a hybrid algorithm is the Surrogate Opti-
mization of Computationally Expensive Multi-objective Problems (SOCEMO) [17], which
integrates various surrogate model-based optimization techniques to effectively address
computationally demanding (or, synonymously, expensive) multi-objective optimization
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problems. So far, however, the selection of elementary algorithms and their sequence of
application is defined manually rather than following an automated optimization scheme.

Within the paper at hand, we present an algorithm-based process to automatically
generate a Reinforcement Learning-Based Hybrid Multi-Objective Optimization (RLhyb-
MOO) intelligent agent inherently meeting an individually definable optimization scheme.
The set of underlying elementary algorithms can be selected manually, while the sequence
of individual applications results from the reinforcement learning (RL) training process.

The paper is organized as follows: Section 2 introduces the methodological frame-
work by detailing the RLhybMOO intelligent agent training algorithm and the application
processes. Section 3 describes an exemplary implementation of the RLhybMOO approach
in step-by-step mode, being trained on a mathematical test function, and thereby substan-
tiating a variety of choices under the general RLhybMOO approach. Section 4 presents
the results of the trained hybrid MOO intelligent agents, comparing them with those of
the individual underlying elementary algorithms. Sections 5 and the Conclusion conclude
with a discussion and outlook for future work.

2. RLhybMOO Process Structure and Algorithm

In this section, we present the methodological approach using reinforcement learning
(RL) techniques for automatically generating an intelligent hybrid MOO agent that is
capable of the state-sensitive sequencing of elementary MOO Pareto front search strategies.

Reinforcement learning methods [18] focus on learning effective decisions within a
given set of alternative actions through iterative feedback on the effect of actions taken.
Within the RL framework vocabulary, an agent selects actions that influence the environment,
resulting in a change in the environment’s state. The agent in turn receives a reward signal
from an observer, quantifying the impact values of its actions. By assessing the estimated
state of the system and the received rewards, the agent learns to adapt its behavior to
optimize a cumulative reward metric. The learning process in RL involves the agent
iteratively updating its control policy, which represents a mapping of the current state of the
environment to the action to be selected. During the training phase, the agent refines its
policy by exploring the space of possible actions and exploiting the knowledge gained from
past experiences, in accordance with the mathematical principles of its RL algorithm. This
process allows the agent to improve its decision making and to learn an optimal control
policy that maximizes the cumulative reward over time.

RLhybMOO
control policy

(intelligent agent)
RL Algorithm

MOO Problem
Environment

Action Space A
(elementary

search strategies)

ai(X, Y)

at with k points

X, Y

D ∪ {(st, at, rt, st+1)}
st+1

updated π(D)

Figure 1. RLhybMOO process structure for training (solid plus dashed lines) and application (solid
lines only).

In areas such as cost-optimal planning [19], heuristic estimator selection for satisfying
planning [20,21], or dynamic algorithm configuration (DAC) [22,23], the reinforcement
learning approach is successfully applied to dynamically respond to problem-specific state
changes, finding state-dependent optimal action responses.

Figure 1 shows the structural elements of the process when transferring the RL ap-
proach to the task of developing an automated design of a hybrid MOO algorithm. The
resulting RLhybMOO policy training algorithm is referenced step-by-step in pseudo-code
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form in Algorithm 1. It comprises all of the above mentioned individually required RL
elements, as indicated within the structural view of Figure 1:

• The Action Space A provides the set of available actions to the RLhybMOO control
policy as its base of selectable action alternatives. Elements within the Action Space
A are predefined by the user. Each element within the Action Space represents an
elementary MOO sampling strategy ai(X, Y) ∈ A that is applicable to the existing
problem. Each individual sampling algorithm (also called the infill algorithm) yields
a dedicated number of sampling points xi ∈ X within the design space X (domain)
proposed for the next round of (computationally expensive) black-box evaluations to
yield a result vector yi ∈ Y within the target space Y (co-domain). Usually, the logic of
a sampling strategy is based on previous function evaluations {(xi, yi)} provided by
the MOO Problem Environment.

Algorithm 1 RLhybMOO policy training

1: A← {a1, . . . , ai} . Define Action set A
2: s← S({(xi, f (xi))}) . Define State function
3: r ← R(s, ai), ai ∈ A . Define Reward function
4: π ← πbase . Assign Policy Algorithm base
5: while nepi ≤ Nepi do . Repeat for Nepi episodes
6: X0 ← {x1, . . . , xNinit} . Set initial DoE
7: Y0 ← f (X0) . Simulate at X0 (expensive)
8: s0 ← st . Initial Environment State s0
9: while nsim ≤ Ntot do . Until abortion criterion

10: at ← π(ai|st) . Select Policy-based action
11: Xt ← {x1, ..., xk} . at-based sample definition
12: Yt ← f (Xt) . Simulate at Xt (expensive)
13: X ← X ∪ Xt . Extend sample set in domain
14: Y ← Y ∪Yt . ... and in co-Domain
15: st+1 ← S(X, Y) . Calculate new state
16: rt ← R(st+1, at) . Calculate reward
17: t← t + 1 . Increase time step
18: nsim ← nsim + k . Update sampling counter
19: Dt ← {(at, rt, st, st+1)} . Define experience
20: D ← D ∪ Dt . Update experience buffer
21: end while
22: nepi ← nepi + 1 . Update episode counter
23: π ← π(D) . Update Policy by experience buffer
24: end while
25: πMOO ← π . Define RLhybMOO Policy

• MOO Problem Environment: Black box function evaluation tasks yi = f (xi) are an-
swered by the (simulation-capable) model of the MOO Problem Environment. In
addition, it provides descriptive state features at each time step t, as required for learn-
ing the hybrid MOO algorithm control policy. The variables employed to characterize
an environment state, referred to as state features, must be observable in a quantifying
way, and representative for describing the overall achieved quality of solving the MOO
problem. To evaluate the value-adding contribution of the k function evaluations as
triggered by an individual action ai applied at a state s at time t, a suitable reward
function rt = R(s, ai) is provided. Overall, the MOO Problem Environment provides
the k function evaluations (Xt, Yt) requested by action at at state st, analyzes their
value-add by the reward rt, and calculates the consecutive state st+1 of the progressing
optimization process.
Starting the training or evaluation process requires the definition of several optimiza-
tion and process-related parameters, specifically the total number of available samples
Ntot, the number of initial samples Ninit, and the number of episodes Nepi to train
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the policy. In the first step (episode) of each optimization process, an initial Latin
Hyper Cube Sampling (LHCS) with Ninit intial training points is executed to receive
a first information set (X0, Y0) and to calculate the initial state s0. Subsequent states
st+1 of the MOO Problem Environment are handed over to the RLhybMOO policy. In
each increasing time step t, the number of evaluated samples nsim is monitored. An
individual training phase, and thereby, an episode, ends at the particular time-step
when the number of evaluated sample points nsim equals or exceeds the number of
available sample points Ntot.

• Control Policy: Finally, the desired RLhybMOO control policy π(ai|st), resulting from
the function block of the same name represents a probability density for any action
ai within the action space A as a function of the internal state st, including a decision
scheme for selecting one of the available actions. The thereby chosen sampling strategy
triggers a search at k design points.

• RL Algorithm: To start the search for the RLhybMOO control policy, a problem-
adequate RL algorithm family must be defined. It phrases the mathematical nature of
the policy and its base initialization πbase. During the training phase (indicated by
dashed lines in Figure 1), the selected RL algorithm is fed by individual learning “ex-
periences” {(st, at, rt, st+1)}, as gathered during an iterative episodic training process.
The set of these experiences forms the experience memory D as a learning base for the
control policy π, repeatedly updated after the completion of every episodic training
iteration nepi until the final number of allowed training episodes Nepi is reached.

3. Experimental Setup

In this section, a prototypic RLhybMOO design is presented on exemplary basis to
further explain the elements of the proposed approach and to demonstrate some of its
elementary advantages. The experimental setup for this approach aims to quantify a con-
verging learning behavior via the proposed training process, and allows for a comparison
between the thereby gained optimized hybrid MOO algorithmic approach versus its ele-
mentary constituents. The quantitative performance evaluation is enabled by the choice
of computational cheapness, and to be minimized, the multi-objective Zitzler-Deb-Thiele
(ZDT) problem suite functions [24] following the construction:

min f1(x)

min f2(x) = g(x)h(f1(x), g(x))
(5)

The function g(x) is considered as the function of convergence and is for the ZDT
functions under consideration, defined as:

g(x) = 1 +
9

n− 1

d

∑
i=2

xi (6)

The ZDT problem suite is of particular value for a number of reasons. Among other
aspects, it allows for the formulation of problems with parametrically definable design
space dimension d, and provides analytical accessibility to compute the Pareto-optimal
points. The RLhybMOO training approach will be conducted on one of these functions
(ZDT1), and then additionally bench-marked against established algorithms on other test
functions (ZDT2 and ZDT3) of the same ZDT problem suite to analyze its transferability
and effectiveness. All essential elements and parameters, as introduced during Section 2,
are designed and chosen for emphasizing the demonstrative character of the prototypical
application.

Sections 3.1 to 3.4 define the essential elements of the process, while Section 3.5 quanti-
fies the algorithm hyperparameters required for the executable form of the experiments.



Information 2023, 14, 299 6 of 13

3.1. State Description

Learning hybrid MOO algorithm control policies requires descriptive state features
containing information about characteristics and dynamics during an ongoing optimization.
A variety of observables may be chosen to describe the status st of the optimization process
at time t. For our example, we select a mix of qualitative and temporal attributes in terms
of a five-dimensional state vector with components characterizing or characterized by:

• A solution quality increase with respect to initial sampling,
• A solution quality increase by the last taken action,
• A stagnation counter,
• The number of identified Pareto-optimal solutions,
• The percentage of left over vs. totally available samples.

Quantifying the solution qualities of the MOO algorithm results, we use the hyper-
volume performance indicator [25]. The hypervolume of a problem solution set measures
the size of the sum of all cubes within the target space spanned by all non-dominated (i.e.,
Pareto-optimal) solutions and some reference point r. During the process, this reference
point for the calculation of the hypervolume is set by the worst (e.g., maximum) values
in each objective axis from the initial sampling. Maximizing the hypervolume by adding
an additional solution point is identical to having identified another Pareto-optimal so-
lution [26], i.e., the hypervolume is a suitable measure of the effectiveness of a sampling
strategy. The solution quality at time step t may therefore be characterized by the hypervol-
ume HVr(Yt), calculating the hypervolume for the solution set Yt as existing at time step t,
and defined in [26] with respect to the reference point r, as defined in [26].

The first entry in the state vector is expressed by the hypervolume improvement in
the current state st (at time step t) with respect to its initial value in the initial state s0 (at
time step t = 0 after the initial LHCS) relative to the total hypervolume

HVr(Y(st))− HVr(Y(s0))

HVr(Y(st))
. (7)

The second entry in the state vector indicates the quality change achieved by the last
action compared to the previous state. We therefore define the hypervolume improvement

hvi :=
HVr(Y(st))− HVr(Y(st−1))

HVr(Y(st))
(8)

as an appropriate performance indicator.
The stagnation counter, i.e., the third state vector entry, represents the number of time

steps that have passed without any solution quality improvement. The metric is intended
to encourage exploratory actions if the optimization process stagnates.

As the fourth entry in the state vector, we added the cardinality of Pareto points

P = |Y(st)| (9)

(see Section 1, Equation (4)) of the set Y(st) of (black box) function evaluations to enable
reactions within the search strategy based on this search efficiency-related performance
indicator. Note that the cardinality of Y(st) is monotonically growing until it reaches the
total number of allowed evaluations Ntot.

The fifth state vector entry is defined by the proportion of leftover samples to the total
number of available samples nsim/Ntot yielding information about the temporal component
of the optimization process. This information is especially important for applications in
expensive black-box functional optimization, where the number of feasible simulations is
limited, and therefore, efficiency should be increased.

3.2. Reward Function

The reward function provides the necessary feedback on the success of chosen actions,
based on the available state information by the control strategy. In our example case, the
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reward function aims to maximize our solution quality (measured in terms of improvement
in hypervolume) with a minimum of computationally intensive function calls. Thus, while
the hypervolume merely reflects the effectiveness of the Pareto search, the reward function
aims to maximize the efficiency of the targeted hybrid algorithm. This focus may result in
a control policy picking at a given state the right action that maximizes the hypervolume
improvement with a minimum number of computationally expensive samples. Thus,
closely following [27], we propose a reward function that measures the hypervolume
improvement between two successive states induced by the previous action at in relation
to the number k of its returned samples

R(st, at) = C ∗ hvi
k

(10)

with a scaling constant C. Consequently, the actions that did not improve the hypervolumes
of successive states are assigned a reward of zero. The ratio behind this aims to reinforce
the search strategy to pick those actions that maximize our objective. Note that not all
individual strategies return the same number of new simulation points and thus, a fair
reward should be achieved in terms of the algorithms efficiency.

3.3. Action Space

To ensure a successful RL-hybMOO policy search, the predefined selection of the set of
available actions (Action Space A) is crucial. For reasons of comparability, we choose in our
work one of the few existing and benchmarked hybrid MOO algorithms, SOCEMO [17],
using five elementary sampling strategies in a strict and well-defined sequence based on
the evaluation of adaptive surrogate models. It is a stated SOCEMO goal to enable efficient
sampling with a minimum amount of computationally expensive function evaluations. We
therefore picked all five elementary sampling strategies as selectable actions ai ∈ {1, . . . , 5}
(but not the SOCEMO predefined sequence of their application), where the values are
mapped to the adapted elementary sampling strategies described in detail by Müller [17]:

• a1: Target Value Strategy (ParetoFill),
• a2: Pareto Points Random Perturbation,
• a3: Minimum Point Sampling (Single Optimization),
• a4: Uniform Random Points over the Design Space,
• a5: Surrogate MOO Genetic Algorithm (NSGA-II).

3.4. Policy Adaptation (RL Algorithm)

To initialize πbase and to iteratively adjust a dynamic policy for the sampling strate-
gies, the model-free Soft Actor-Critic (SAC) [28] algorithm is used. This is an off-policy
actor-critic Deep Reinforcement Learning algorithm based on the maximum entropy frame-
work [28]. Maximum Entropy RL algorithms attempt to find a policy that compromises
between maximizing the reward (exploitation) and the maximum entropy objective (ex-
ploration) to successfully complete their task while acting as randomly as possible. The
stochastic actor-critic formulation tends to avoid assigning an excessively high probability
to any specific action within the range of available actions [28]. This behavior reduces
the risk of becoming stuck in a local optimum and provides incentives to explore the
action space further, which is a desirable property for our approach as a state-specific
representation of decisions about actions affected by stochastic influences. Thus, multiple
promising paths are given equal probability mass by the policy. This is beneficial for our
approach, since multiple actions can appear attractive in a given state, resulting in multiple
near-optimal paths for solving MOO problems. The follow up implementation [29] is used
to make SAC compatible with discrete action spaces to fit our MOO Problem Environment,
and provides state-of-the-art sample efficiency and robustness in training. This might help
for a generalization of this approach when applying to expensive black box functions.
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3.5. Parameter Settings

The policy is trained for Nepi = 35, 000 episode iterations. The total number of samples
available for the training process is set to Ntot = 100 with an initial sample population
fraction of 40%, i.e., (Ninit = 40) samples are available for the initial LHCS. To ensure the
comparability of results and baseline conditions for each episode and its related learning
progress, the training process is conducted with a fixed seed for the initial LHCS.

The test functions are then evaluated over Ntotal = 50 with an initial sampling fraction
of 60%, i.e., Ninit = 30, and random seeds.

4. Results

All training and test experiments were run on an RTX A5000 GPU, and algorithms
were run on an AMD Ryzen 7 5800X CPU with 64 GB of dynamic memory.

For the training of the RLhyMOO control policy, the ZDT1 test problem was used,
refining the generic test suite Equations (5) and (6) by

f1(x) = x1

h( f1, g) = 1−
√

f1

g

(11)

with d = 30 input dimensions. Its analytically well-known optimal set of solutions forms a
convex-shaped Pareto front.

Figure 2 shows the mean reward over the total episode during the training process,
indicating the span between the maximally and minimally achieved rewards at each
episode. The spread decreases over time, with a mean reward remaining almost constant
after more than approximately 20,000 training episodes.

Figure 2. Mean episode reward evolution during training process.

Figure 3 shows how the frequency of samplers used per episode changes during the
evolving training process. Sample strategy a5 is developed to the most frequently used
action, and strategies a1 and a3 are gaining in importance, while the usage of a4 slightly
decreases, and a2 are only used sporadically as the number of episodes increases.

To further evaluate the performance of the finally trained policy, it is subsequently
applied to ZDT2 with

f1(x) = x1

h( f1, g) = 1− (
f1

g
)2 (12)
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and ZDT3 with
f1(x) = x1

h( f1, g) = 1−
√

f1

g
− f1

g
∗ sin 10 f1π.

(13)

These problems are considered as novel from a training perspective, because unlike
ZDT1, they have different Pareto front characteristics with a concave shape in ZDT2
and a series of disconnected Pareto fronts in ZDT3. For the benchmark and statistical
purposes of evaluation, the number of ZDT1, ZDT2, and ZDT3 input dimensions was
varied within the range of d ∈ {2, 3, 5, 10, 15, 20, 25, 30}. The trained RLhybMOO policy is
benchmarked for an effectiveness comparison against the established algorithms NSGA-
II [30], SOCEMO, and the random search LHCS [31], as well as against the individual,
model-based elementary sampling strategies used in the Action set A.

Figure 3. Development of episodic sampler distribution, indicating frequency of elementary algo-
rithm calls within a given episode.

For the application of NSGA-II, the evolutionary parameters generations and population
size are set to ngen = 5 and npop = 10. In all cases, the hypervolume is used as a MOO
algorithm effectiveness indicator for the ability of the control policy to find Pareto-optimal
solutions. Since the analytical form of Pareto fronts and thus, also the maximum achievable
hypervolume is known for all test problems, the achieved hypervolume of all algorithm op-
timization results is determined with the same reference point r = (2, 10) for comparability,
according to [26].

Figure 4 indicates the identified relative (with respect to its theoretical maximum)
hypervolume of the repeated search results for all described policy tests (in contrast to
training) evaluations of the ZDT1 problem. The box plots in Figure 4a,b compare the
RLhybMOO relative hypervolume achievement results versus NSGA-II and LHC, respec-
tively. Figure 5 compares the RLhybMOO median performance to that of its underlying
individual search strategies as a function of the test problem dimension.

The results for all three test problems are summarized in Table 1, where the listed
Average Performance Median refers to the average of the median hypervolume over the set
of dimensions.
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(a) (b)

Figure 4. Performance comparison of (a) RL-hybMOO (red) with NSGA-II (green), and (b) RLhyb-
MOO (red) with LHCS (blue), indicated by the relative of the max hypervolume found for ZDT1 over
the range of input dimensions.

Figure 5. Performance comparison of RLhybMOO median compared to that of its elementary search
strategies. Relative of max hypervolume indicated by the relative of the max hypervolume found for
ZDT1 over the range of input dimensions.

Table 1. Average Performance Median Comparison.

Test SOCEMO RLhyb Target Pertur- Single Uniform NSGA LHC

Function MOO Value bation II

ZDT1 94.53% 96.49% 86.40% 80.2% 88.2% 82.0% 86.89% 82.16%

ZDT2 96.23% 96.30% 87.5% 71.92% 85.86% 74.5% 79.18% 73.03%

ZDT3 85.67% 89.23% 87.44% 72.5% 85.84% 75.11% 75.89% 76.26%

5. Discussion

Figure 3 illustrates the progressive learning process over the episodes, towards an
increasing efficiency of the control policy. This is obviously achieved by the alternating
selection strategy of the elementary search algorithms during the learning process, as
shown in Figure 3. The increasing policy search performance is quantified in Figure 2,
demonstrating an achieved average reward growth of 30% during the training process,
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compared to the starting random decision making policy. This indicates the policies to
select elementary search strategies that are more likely to achieve an improvement based
on its analyzed problem solving status. Nevertheless, there is still a statistical spread of
min and max total rewards for the episodes, explainable by the factor of randomness in
generating evaluation points that each sampling strategy intentionally includes. The two
aforementioned observations on the training process indicate that the approach has trained
a policy that combines the elementary algorithms based on status analysis in such a way
that they contribute as much as possible to the solution quality.

All tested search algorithms in Figure 5 show a decrease in their effectiveness over
the number of problem input dimensions. However, our hybrid RL approach outperforms
all other (static hybrid and elementary) search strategies over the problem range, up to 30
input dimensions. Even with 30 problem input dimensions, RL-hybMOO still achieves
over 90% of the theoretically coverable hypervolume.

The RL-based strategy dominates each of the individual algorithms, indicating the
importance of using hybrid algorithms for good performance with a limited number of
available samples. Moreover, without the use of a large number of iterations or large
population sizes, evolutionary algorithms can hardly solve the optimization problems
effectively. In addition, there is a slight improvement over the static alternating (hybrid)
sampling approach of SOCEMO in all three test functions, especially with an increasing
number of dimensions. However, this has been demonstrated only for one possible instance
of the RLhybMOO implementation and the test problem suite. The approach cannot
guarantee a generalized improvement for all applications or differently shaped problems.

6. Conclusions and Outlook

This paper introduces a fundamentally novel approach for designing hybrid multi-
objective optimization algorithms to solve black-box problems by combining elementary
search strategies based on reinforcement learning techniques. We describe the general
method and its base algorithm to identify a Reinforcement Learning-Based Hybrid Multi-
Objective Optimization (RLhybMOO) policy. The workflow and its performance gain
over conventional approaches is demonstrated using a prototype implementation that is
trained and evaluated with mathematical test functions. The training process demonstrates
the ability for progressive convergent policy learning, and a significant performance gain
over the underlying elementary search policies. Not all elementary search strategies
contribute equally to the solution process. In this context, the RL-trained policy has
demonstrated its ability to prioritize appropriate effective and efficient actions for the Pareto
search. A benchmark on mathematical test functions could prove that the RLhybMOO
approach is able to outperform elementary and static hybrid search strategies. Some
topics within this research, however, remain open for future work, such as applying the
approach to a variety of data sets for validation purposes, and expanding the action space
through MOBO algorithms. It was found that the description of the state of the solution
process, and the associated reward have a significant impact on the adapted policy, and
therefore, they deserve further investigation. In addition, the definition of the action
space should be extended to include other elementary search algorithms that may affect
decision performance. In addition, other RL algorithms and implementation forms should
be considered and investigated with respect to real-world, computationally expensive
design optimization problems with multiple competing targets.
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