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Abstract: In wireless sensor networks (WSNs), the target positioning and tracking are very important
topics. There are many different methods used in target positioning and tracking, for example,
angle of arrival (AOA), time of arrival (TOA), time difference of arrival (TDOA), and received signal
strength (RSS). This paper uses an artificial fish swarm algorithm (AFSA) and the received signal
strength indicator (RSSI) channel model for indoor target positioning and tracking. The performance
of eight different method combinations of fixed or adaptive steps, the region segmentation method
(RSM), Hybrid Adaptive Vision of Prey (HAVP) method, and a Dynamic AF Selection (DAFS) method
proposed in this paper for target positioning and tracking is investigated when the number of artificial
fish is 100, 72, 52, 24, and 12. The simulation results show that using the proposed HAVP total average
positioning error is reduced by 96.1%, and the positioning time is shortened by 26.4% for the target
position. Adopting HAVP, RSM, and DAFS in target tracking, the positioning time can be greatly
shortened by 42.47% without degrading the tracking success rate.

Keywords: WSNs; target positioning; target tracking; AFSA; region segmentation method

1. Introduction

A wireless sensor network is a network system consisting of one to several wireless
data collectors and a big number of sensors, and the communication mode between compo-
nents is wireless communication. A wireless sensor network is a kind of ad hoc network.
It is a distributed network that does not require fixed infrastructure. Each network node
communicates directly with other nodes within its range. The packets are forwarded by
nearby nodes or other nodes on the path from the source node to the destination node.
In the absence of fixed infrastructure and central management, wireless ad hoc networks
must be able to establish cooperation between nodes on their own. Network nodes must
also be able to adapt to changes in the network and have a dynamic network topology.
In other words, we can place any sensor or wireless data collector in the network, which
saves considerable deploying costs and is very convenient to use. In the framework of
the wireless sensor network, the sensor is designed for saving power, lower costs, being
smaller in size, and sensing the environment. The sensor is like a small computer and
equipped with simple sensing components, computing, and wireless transmission devices.
The sensing elements can detect the things we are interested in in the environment, such
as temperature, light source, etc., and after simple calculation processing of the collected
data, through the wireless transmission device, the data are sent back to the data collector.
Finally, according to the data collected by the data collector, different applications can be
developed such as military surveillance, environmental detection, smart home, and target
positioning and tracking [1,2].
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Wireless sensor network positioning estimates the position of sensors whose initial
position information is unknown by using the absolute position information of a few sensors
and measuring data such as distance and azimuth between sensors. Generally speaking,
the positioning methods of wireless sensor networks can be divided into range-based and
range-free types [1]. The former is represented by the global positioning system (GPS).
The advantage of GPS is that the positioning accuracy is high, while the disadvantages
are that it requires costly construction and that the using scope and its positioning quality
are easily affected by factors such as weather or the shelter of buildings. The range-free
locating method arranges anchor nodes on the network to assist in the positioning of
sensor nodes. It can significantly reduce the cost, but the positioning accuracy decreases.
In practical applications, to meet the needs of dynamic events, the sensor must have the
ability to move [3–6]. In the target positioning and tracking system, in which each sensor
needs to know its position, a lot of target positioning and tracking methods of wireless
sensor networks have been proposed, such as received signal strength (RSS), time of arrival
(TOA), time difference of arrival (TDOA), angle of arrival (AOA), etc. [7–11]. Sensors
communicate with each other to receive signals to the target point to estimate the target
position. However, TOA, TDOA, and AOA in these methods require more expensive
equipment and higher computational complexity than RSS. In the wireless sensor network,
for coping with dynamic network events and dynamic applications, such as the need to
send motor vehicles or robots with sensing capabilities to a specific location to perform
corresponding tasks, it is necessary to use sensing devices with mobile capabilities. In [12],
AFSA was used for target positioning with the least square method. In [13], AFSA and
TDOA algorithms were used to locate the sensor. In [14], AFSA combined with visible
light communication was used to conduct a high-precision indoor 3D positioning system.
Compared with traditional wireless sensor networks, with the rapid development of the
Internet of Things (IoT), multiple data collection and computational task wireless sensor
networks will face some new challenges. For example: WSN hardware complexity and
software computing requirements will increase. Therefore, combining edge computing
in the future is crucial for many WSN applications. It can reduce latency and bandwidth
usage, although it may lead to higher costs. However, it is helpful to improve overall
performance and reduce energy consumption.

This paper proposes the Hybrid Adaptive Vision of Prey (HAVP) method and the
region segmentation method (RSM) for the target positioning and tracking methods in the
wireless sensor network using AFSA combined with the received signal strength indicator
(RSSI) channel model to improve the accuracy of target localization and tracking methods.
At the same time, a dynamic artificial fish selection (DAFS) method is proposed for the
target tracking system to improve the efficiency of target tracking. In addition, this paper
also investigates the impact of the number of sensors on different target positioning and
tracking methods.

The rest of this paper is as follows. Section 2 depicts the AFSA and RSSI model, and
the system model is introduced in Section 3. Section 4 describes the simulation results, and
discussions are made in Section 5. Finally, a conclusion is given in Section 6.

2. AFSA and RSSI Model
2.1. AFSA

The AFSA was proposed by Xiao-Lei Li et al. in 2002 [15,16]. The artificial fish swarm
algorithm seeks the best solution by imitating fish behaviors such as foraging behavior,
gathering behavior, and following behavior. The artificial fish swarm algorithm has the
characteristics of parallelism, simplicity, quick jumping out of the local solution, fast speed
of seeking the best solution, and insensitivity to the initial parameters. However, AFSA has
the disadvantage that its mathematical theory foundation is relatively weak. The setting
of parameters of the algorithm has no exact theoretical basis, and most parameters are
set according to experience. Therefore, algorithm parameter setting for different applica-
tion environments is a very important problem. Based on the basic artificial fish swarm
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modeling algorithm, many studies have proposed methods to improve the performance
of the algorithm [17–19]. The accuracy of the artificial fish swarm modeling algorithm
is proportional to the number of artificial fishes. The more artificial fish individuals, the
higher the accuracy of the optimal solution but the slower the convergence speed. The
authors in [20] introduced the swallowing behavior of fish. If the current individual has
small adaptability, it will be swallowed, and new individuals will be randomly generated
to reduce the amount of computation and improve the computing speed. A random search
and artificial fish jumping behavior were proposed in [21] to improve the efficiency of the
algorithm in seeking the global optimal solution. The authors in [22] proposed an adaptive
step size and visual range method, which maintains a large step size and visual range for
global searching in the initial iteration of the algorithm and reduces the step size and visual
range for local search in the later iteration of the algorithm, improving the accuracy of
optimization of the algorithm and the speed of seeking the best solution.

2.1.1. Basic Behaviors in AFSA

In bodies of water where the number of fish is the largest is generally the place where
the water is rich in nutrients. Fish can swim quickly and agilely in the water to find food,
relying on information sharing among fish schools. The artificial fish swarm algorithm
imitates the behaviors of a fish swarm, such as praying, swarming, and following, based
on this feature and then achieves the purpose of seeking the best solution in the whole
domain [23]. An artificial fish (AF) is a virtual version of a real fish that is used to analyze
and explain problems. An AF is an entity that encapsulates its data and a series of behaviors.
It can receive environmental information through its senses and determines its actions
based on it.

In the AFSA, the state of the AFs is expressed as a vector X = (X1, X2, · · · , XM) where
Xi(i = 1, 2, · · · , M) is the variable to be solved. The food concentration at the current
position of the artificial fish can be expressed as Y = f (X), the distance between individual
artificial fish is dij =

∥∥Xi, Xj
∥∥, Visual is the maximum field of view of the AF, Step is the

maximum step length of the artificial fish, δ is the crowd factor, and Try_Number is the
maximum number of tries. Fish do not have the intelligence for complex logical reasoning
and comprehensive judgment that humans have. They achieve their goals through simple
behaviors of individuals or groups, and their behaviors can be roughly divided into four
types, namely preying, swarming, following, and random behavior, as described below.

Preying behavior: Let the current state of ith AF be Xi and randomly select a state Xj
within its perception range, being shown as

Xj = Xi + Visual + Rand() (1)

where Rand() is a random number between zero and one. In the problem of finding the
maximum value, if Yi < Yj, move one step forward in this direction; otherwise, randomly
select the state Xj in the field of vision again, and after repeated attempts until Try_Number,
if the condition for advancing is still not satisfied, move one step randomly, which can be
expressed as

Xt+1
i = Xt

i +
Xj − Xt

i∥∥Xj − Xt
i

∥∥ ·Step·Rand() (2)

where Xt
i is the search for the i-th state at the t-th time, and

∥∥Xj − Xt
i

∥∥ is the distance
between the current state Xj and the state Xt

i .
Swarming behavior: Let the current state of the AF be Xi, the number of companions

in the field of vision is nf, and Xc is the center position. If Yc/n f > δYi means that there is
more food in the partner center and it is not too crowded, move one step towards the Xc
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direction as shown in Equation (3). If there is no other AF in the field of vision, the preying
behavior will be carried out. Figure 1 is the flow chart of swarming behavior.

Xt+1
i = Xt

i +
Xc − Xt

i∥∥Xc − Xt
i

∥∥ ·Step·Rand() (3)

Information 2023, 14, x FOR PEER REVIEW  4  of  20 
 

 

𝑋 𝑋
𝑋 𝑋

𝑋 𝑋
⋅ 𝑆𝑡𝑒𝑝 ⋅ 𝑅𝑎𝑛𝑑   (3)

 

Figure 1. Flow chart of swarming behavior in AFSA. 

Following behavior: Assume  that  the current state of  ith AF  is Xi and explore  the 

partner Xj with the maximum fitness value in the visual field (dij < Visual). If  𝑌/𝑛 𝛿𝑌 , 
it means that the food concentration of partner Xj is higher and the surroundings are not 

too crowded, so move forward in the direction of Xj as shown in Equation (4); otherwise, 

carry out preying behavior. Figure 2 is a flow chart of the following behavior. 

𝑋 𝑋
𝑋 𝑋

𝑋 𝑋
⋅ 𝑆𝑡𝑒𝑝 ⋅ 𝑅𝑎𝑛𝑑   (4)

 

Figure 2. Flow chart of following behavior in AFSA. 

Random behavior: random behavior  is to find a direction randomly  in the field of 

vision and compensate for preying behavior. 

   

Figure 1. Flow chart of swarming behavior in AFSA.

Following behavior: Assume that the current state of ith AF is Xi and explore the
partner Xj with the maximum fitness value in the visual field (dij < Visual). If Yj/n f > δYi,
it means that the food concentration of partner Xj is higher and the surroundings are not
too crowded, so move forward in the direction of Xj as shown in Equation (4); otherwise,
carry out preying behavior. Figure 2 is a flow chart of the following behavior.

Xt+1
i = Xt

i +
Xj − Xt

i∥∥Xj − Xt
i

∥∥ ·Step·Rand() (4)
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Figure 2. Flow chart of following behavior in AFSA.

Random behavior: random behavior is to find a direction randomly in the field of
vision and compensate for preying behavior.
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2.1.2. Flow Chart of AFSA

According to the previously described behavior, a movement strategy can be formu-
lated. Each AF performs swarming and following behaviors, respectively. If it does not
meet the movement requirements of the behavior, it carries out foraging behavior. If the
movement requirements of the preying behavior are still not met, it carries out random
behavior. After multiple moves to find the best solution in the whole domain, the AFSA
process is shown in Figure 3.
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2.1.3. Influence of Algorithm Parameters on System Convergence

The AFSA has five parameters, which are visual range Visual, step size Step, number
of individuals M, number of tries Try_Number, and crowding factor δ [15–23]. The impact
of each parameter on system convergence is summarized as follows:

Visual: When the Visual is small because each individual can see a relatively small
number of other individuals in the algorithm at the same time, the ability of the individual
to carry out swarming and following behaviors decreases, but the chance of the individual
to search the adjacent area will also increase. The chances of individuals performing preying
behaviors and random behaviors will also increase at this time. On the contrary, when the
Visual is larger, the chances of individuals executing following behaviors and swarming
behaviors will increase, while preying and random behaviors will decrease. Overall, the
larger the Visual, the easier it is for the individual to find the global optimum solution, but
it may also cause oscillations around the global optimum solution.

Step: The step size affects the accuracy and speed of the convergence of the algorithm.
If a larger step size is selected, it can help the individual to converge to the extreme
value quickly, but it may cause the individual to oscillate back and forth around the
global optimum solution in the later stage of convergence, thus affecting the accuracy of
convergence. If you choose a smaller step size, the convergence speed will be slower, but
its accuracy is relatively better.

M: The larger the number of individuals is, the more information the individuals can
exchange, the higher the accuracy of convergence, and the stronger the ability to jump out
of the local optimum solution, but the greater the amount of calculation for each iteration
of the algorithm. Therefore, in practical applications, on the premise of satisfying stable
convergence, the number of algorithm individuals should be reduced as much as possible.
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Try_Number: If the number of tries increases, the ability of the individual to perform
preying behavior will increase, and the probability of the individual random moving will
decrease. However, for problems with prominent local optimal solutions, if there are
too many tries, it is easy for the individual to fall into the vicinity of the local optimum
solution, thus missing the global optimum solution. Therefore, for general problems, the
number of tries can be appropriately increased to speed up the convergence speed. For
the problem with prominent local optimal solutions, the number of tries can be reduced to
increase the probability of random movement of the individual to avoid falling into the
local optimum solution.

δ: The crowd factor affects the results of the individual following and swarming
behaviors. By combining the crowd factor with the field of view, it is possible to limit the
swarming size of the individuals and further decide whether to perform the following and
flocking behaviors. In the follow-up simulation experiments, we will ignore the crowding
factor. In other words, as long as the AF Xi explores the state within the field of vision
during flocking behavior or following behavior, as long as it is greater than the fitness value
of Xi’s current position, it will move towards this state position regardless of overcrowding
around the state.

2.2. RSSI Model

The RSSI channel model is also known as the Propagation Path Loss Model [24–28].
Under the free space propagation model, the signal intensity received by the receiver
is inversely proportional to the square of the distance. When the distance between the
transmitter and the receiver is d, the average power Pr(d) received by the receiver is
as follows:

Pr(d) =
PtGtGrλ2

(4π)2d2L
=

PtGtGrλ2

(4π)2d0
2L
·
(

d0

d

)2
= Pr(d0)·

(
d0

d

)2
(5)

where Pt is the transmission power, Gt is the antenna gain at the transmitter, Gr is the
antenna gain at the receiver, L is the system loss coefficient and represents the hardware
signal loss in the communication system, λ is the wavelength, and d0 is the reference
distance. In this study, the antenna gain of the transmitter and the receiver is set as one,
which means that the system has no signal loss.

In general, the average loss PL(d) caused by the path is proportional to the nth power
of the distance. In other words, at any distance between the transmitter and the receiver,
the average loss at the receiver is as follows:

PL(d) = PL(d0) + 10n× log
(

d
d0

)
(6)

where n is the path loss index, which represents the path loss rate. In the natural environ-
ment, the interference received by the signal changes with the environment. Therefore, in
the simulation analysis, we can only describe this phenomenon with logarithmic normal
distribution, so the average power of the path can be expressed as

PL(d) = PL(d) + Xσ = PL(d0) + 10n·log
(

d
d0

)
+ Xσ (7)

and the received power can be expressed as

Pr(d) = Pt − PL(d) (8)

where PL(d) is the average path loss at the same distance between the transmitter and the
receiver, Xσ is a zero-mean Gaussian random variable with a mean value of zero, and the
standard deviation σ is 1 to 10 dBm. At the same distance between the transmitter and
the receiver, the more complex the environment and terrain, the greater the fluctuation of
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the path loss means the larger the standard deviation. The reference distance is 0.5 m in
subsequent simulation experiments.

3. System Model

This section will give a complete and detailed description of the AFSA-based wireless
sensor network’s target positioning and tracking methods. The RSSI channel model is
used to estimate the distance between the target point and the individual in the algorithm.
Relying on the AFSA to simulate the creature preying characteristics, the highest point of
the individual moving to find the food source (RSSI value) is regarded as the estimated
point. In addition, this thesis also discusses the impact of sensor arrangement and quantity
on the system.

3.1. Target Positioning Method

The AFs (mobile sensors) were arranged on a square plane with an area of 100 m× 100 m.
After each AF performs the algorithm behavior, the point with the highest food concen-
tration (RSSI value) is obtained through communication with each AF as the global best
solution. After a while, if the current global best solution meets the stop search condition,
the corresponding position of the current global best solution is the estimated point, as
shown in Figure 4.
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In Figure 4, N target points are generated randomly. The optimum solution of the
current time is obtained through the algorithm’s behaviors and compared with the global
optimum solution. The bulletin board is a recording matrix with a size of 1 × Tmax, and
Tmax is the maximum iteration value. This matrix records the best solution found in each
iteration. After multiple iterations, if the stop criteria are met, the last value of the bulletin
board is the estimated point.

3.1.1. Adaptive Step Size and Visual Range

Because the step size and field of view of AFSA will affect the performance of the
system to find the optimal solution, the method of adaptive step size is proposed in [22]
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to improve the system performance. Therefore, this paper adds an adaptive step size
and field of view method as shown in Equation (9) to the target positioning method and
adopts a nonlinear dynamic adjustment of step size and field of view to meet the search
requirements at various stages.

Visaul = Visual × α + Visualmin
Step = Step× α + Stepmin

α = e
(
−30×( t

Tmax )
ζ
) (9)

Here, ζ is the convergence factor and is an integer greater than one, which determines
the convergence time of the curve. The larger the value, the later the convergence of the
field of vision and step length; Visual is the field of vision; Step indicates the step size. In
general, the initial value of Visual is networkSize/5 (networkSize is the maximum search
range). The Step is Visual/8 [22]; Visualmin is the minimum value of the visual field; Stepmin
is the minimum step size; t is the number of current iterations; Tmax is the maximum
number of iterations. This method maintains the maximum value in the initial iteration,
enabling the fish swarm to search the entire space approximately, improving the global
search ability and convergence speed of the system. In the later iteration, the system
changes to local search, keeping the visual field and step size at a low value, so that the
region near the optimal solution can be searched for fine.

3.1.2. Hybrid Adaptive Vision of Prey

In this paper, based on the composite adaptive artificial fish swarm algorithm (AAFSA4)
in [29], Hybrid Adaptive Vision of Prey (HAVP) is proposed to add a third fixed visual
field, so that the method can better meet the needs of the positioning system.

In AAFSA4, the forward mode to the direction with a large fitness value is shown in
Equation (10). The forward mode will slow down the search speed. Therefore, this paper
takes AAFSA4 as the basis and changes the AF movement mode of the algorithm into a
jumping mechanism, that is, when the AF searches for a better position Xj by the AAFSA4
method, the AF moves directly to this position, as shown in Equation (11). On the other
hand, the three fields of vision can be searched with again to judge whether the forward
condition is met. A search can be performed repeatedly until Try_number of times. If the
forward condition is not met, one step of movement can be made randomly. In addition,
this paper adds a third visual field, Visual3, which is the visual field of the fish swarm in
the basic AFSA, and its value is a fixed value. The simultaneous random search of the
three horizons can improve the efficiency of the system, but inevitably the complexity of
the system will also be increased.

Xnext = X +
XV − X
‖XV − X‖ × Step× Rand() (10)

Xnext = Xj (11)

3.1.3. Region Segmentation Method [30]

The region segmentation method (RSM) involves dividing a 100 m × 100 m square
wireless sensor network into four equal zones and positioning an anchor node in the center
of each zone. The mobile sensor is equally divided into four segments and placed in each
region. The anchor nodes of these four regions receive signal strength from the target point,
and it is used to determine the approximate location of the target point. The boundaries [XL,
XU, YL, YU] are defined, where XL represents the lower limit of the x axis, XU represents
the upper limit of the x axis, YL represents the lower limit of the y axis, and YU represents
the upper limit of the y axis. These boundaries restrict the movement of the individual
particles to a specific range, and the algorithm uses this information to determine which
region of the mobile sensor to focus on. Figure 5 is an illustration of RSM region judgment.
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3.2. Target Tracking Method

Figure 6 is the AFSA target tracking flowchart [30]. The mobile sensors are deployed in
a 100 m × 100 m square wireless sensor network. The AFs will gather in the highest fitness
value region through Equation (12) as the estimated point. To avoid the algorithm dropping
in a local solution, the global best will be reset to the initial value GlobalBest_Y = −100 in
each iteration of finding the best one, so the algorithm can start another search.{

Yi > GlobalBest_Y
GloblaBest_Y = Yi

(12)
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3.2.1. Tracks Definition

In this paper, two moving tracks, a snake track and a random track of target points,
are designed in the target tracking method, as shown in Figure 7a,b. The moving speed
is 4~7 m/s, so the students in the algorithm need to find the location of the target point
within a limited number of moves. Therefore, the parameter setting of the algorithm is
slightly different from the parameters of the algorithm in the target positioning method,
such as step size and visual field. How to adjust the parameters in the algorithm so that the
AFs can quickly find the target point is one of the problems discussed in this paper.
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3.2.2. AF Movement Restriction in the Algorithm

Due to the moving characteristics of the target in the target tracking system, the target’s
moving speed is 4~7 m/s. In other words, the AF needs to move as much as possible within
one second and reach the set threshold value alpha, which affects the system’s success rate.
If the signal strength received by the AF is greater than or equal to alpha, it is considered
that the AF has found the target position and ended this search. The information, such as
the current estimated point position and fitness value, is recorded in the record matrix for
subsequent success rate calculation. On the other hand, the AF can perform the algorithm
behavior within one second. If the fitness value of any AF does not reach alpha within one
second, the AF with the highest fitness value among all AFs in the algorithm is selected as
the estimated point. Figure 8 is the flow chart of the movement restriction of AFs in the
algorithm. Equation (13) is the definition of success rate. S = f ind(Record > alpha)

SuccessRate =
(

S
Total

)
× 100%

(13)

Here, S is the number of all estimated points reaching alpha. Record is the recording
matrix, recording the fitness values of all estimated points. Total is the number of all
estimated points.

3.2.3. Dynamic AF Selection Method

For the AFSA target tracking system, a Dynamic AF Selection (DAFS) method is
proposed in this paper to reduce the number of AFs used in the algorithm and reduce the
search area to improve the efficiency of the target tracking system. This study assumes the
target’s moving speed is 4~7 m/s, and the distance between the current and the previous
target positions is very close. The DAFS method selects the AFs within 20 m from the last
estimate point and starts a new algorithm iteration. If there is no AF in the range of 20 m,
the AFs within 30 m are selected. Otherwise, all AFs will be considered in the algorithm.
In addition, if the fitness value of the estimated point is less than the correction factor
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beta, all the AFs will be used in the algorithm to prevent error propagation. The DAFS
method can reduce the search area and the number of AFs used in the algorithm to improve
the efficiency of the target tracking system. Figure 9 shows the procedure of the DAFS
method [30].
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4. Simulation Results
4.1. Simulation Environment

In this study, the hardware and software used for simulations are listed in Table 1 [30].
The wireless sensor network is a two-dimensional area of 100 m × 100 m. The RSSI values
will be calculated by substituting the position of each AF and the target point into the target
function. The closer the location is to the target, the higher its RSSI value. In the simulation,
each AF assumes to know the positions of other AFs. The AFs will move towards the
area with the highest fitness value and eventually converge around the global optimum
solution after many iterations by the algorithm. Then, the AF with the highest fitness value
is selected as the estimated location.

Table 1. Simulation equipment.

Name Specification

OS Windows 7 Enterprise 64 bits
CPU Intel(R) Core(TM) i5-4590 3.30 GHz
RAM 8 GB

MATLAB Edition R2015a

In this paper, the AFSA was used with different numbers of AF for target positioning
and tracking to investigate the impact of the number of AFs on the system. Additionally,
the placement of the initial positions of the AFs was random deployment and the numbers
of AF used in AFSA are 100, 72, 52, 24, 12, respectively, to address different applications in
real-world environments.

The RSSI channel model parameters of the simulation experiment are shown in Table 2 [30],
and Table 3 shows the AFSA simulation parameters for target positioning and tracking.

Table 2. Parameters of RSSI channel model.

Parameter Value

Transmission Power Pt 2 mW
Carrier Frequency f 2.4 GHz

Path Loss Exponent n 4.5
Reference Distance d0 0.5 m
Antenna Gains Gt, Gr 1
Standard Deviation σ 9 dBm

Table 3. AFSA parameters for target positioning and target tracking.

Parameter
Value

Target Positioning Target Tracking

Network size 100 m × 100 m
Number of executions 100

Number of iterations Tmax 100
Number of sensors M 100, 72, 52, 24, 12
Number of targets N 10 1

Try number Try_Number 100
Initial step Step Visual/8 2

Initial visual Visual networkSize/5 2

Minimum step Stepmin 5 1,2

Minimum visual Visualmin 50 1,2

Convergence factor S 4 2

Threshold alpha * −6.5 dBm
Correction factor beta * −15 dBm

1 For fixed step and visual; 2 for adaptive step and visual; * not applicable.



Information 2023, 14, 246 13 of 19

4.2. Simulation on Target Positioning

In order to calculate the error between the estimated point and the target point obtained
by AFSA target positioning, the average error is calculated through Equation (14):

e =
1
N

N

∑
i=1
‖X̂i − X̂i‖ (14)

where N is the number of target points, X̂i is the position of the ith estimated point, and Xi
is the position of the ith target.

In this study, the performance of the proposed methods, RSM and HAVP, along with
the adaptive step and adaptive vision methods, will be analyzed in terms of positioning
accuracy. Various analysis modes are shown in Table 4. P1 and P2 are the traditional AFSA
methods, and P3 to P8 are the proposed methods in this paper.

Table 4. Analysis modes for target positioning method.

Mode
Condition

Fixed Step Adaptive Step and Vision RSM HAVP

P1 3

P2 3

P3 3 3

P4 3 3

P5 3 3

P6 3 3

P7 3 3 3

P8 3 3 3

Table 5 shows the simulation results of the average error in random deployment, and the
average positioning time is shown in Table 6. The average time is the average time required
to locate a target point in 100 iterations using the MATLAB software calculation algorithm.

Table 5. Average error of random deployment in target positioning.

Number of AF P1 P2 P3 P4 P5 P6 P7 P8

100 0.874 0.892 2.516 2.562 0.000 0.000 0.000 0.000
72 1.117 1.113 3.359 3.358 0.000 0.000 0.000 0.000
54 1.614 1.500 4.320 4.418 0.000 0.000 0.000 0.000
24 2.953 2.991 8.370 8.694 0.000 0.000 0.000 0.000
12 5.520 5.341 251.316 231.705 0.121 0.000 11.162 10.247

Average 2.416 2.367 53.976 50.147 0.024 0.000 2.232 2.049

Table 6. Average positioning time of random deployment in target positioning.

Number of AF P1 P2 P3 P4 P5 P6 P7 P8

100 12.986 13.790 3.406 3.191 9.184 10.018 2.382 2.363
72 8.916 9.613 2.203 2.541 6.546 7.642 1.749 1.650
54 6.634 6.750 1.624 1.787 4.778 4.996 1.362 1.236
24 2.974 3.085 0.860 0.782 2.108 2.236 0.676 0.732
12 1.326 1.352 0.174 0.206 1.049 1.176 0.308 0.290

Average 6.567 6.918 1.653 1.701 4.733 5.214 1.295 1.254

4.3. Simulation on Target Tracking

The methods proposed in this paper, such as RSM, HAVP, and DAFS, are added into
the target tracking system, respectively. The analysis modes for the target tracking method
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are shown in Table 7 to analyze their influence on the system efficiency. In addition, in the
simulation experiment, different numbers of AFs are placed in the sensor network for the
simulation experiment of each analysis method, and the influence of the number of AFs in
the algorithm on the system efficiency is discussed. K1 is a traditional method, and K2 to
K8 are the proposed ones.

Table 7. Analysis modes for target tracking method.

Mode RSM HAVP DAFS

K1
K2 3

K3 3

K4 3 3

K5 3

K6 3 3

K7 3 3

K8 3 3 3

Table 8 shows the simulation results of the average tracking time, and the average tracking
success rate is shown in Table 9. The average tracking time is the average time required to
track a target point in 100 iterations using the MATLAB software calculation algorithm.

Table 8. Average tracking time of random deployment in target tracking.

Number of AF K1 K2 K3 K4 K5 K6 K7 K8

100 0.081 0.058 0.076 0.040 0.041 0.032 0.040 0.026
72 0.065 0.041 0.067 0.030 0.038 0.034 0.041 0.028
54 0.061 0.043 0.061 0.033 0.051 0.048 0.040 0.032
24 0.044 0.039 0.046 0.023 0.109 0.098 0.042 0.038
12 0.041 0.064 0.037 0.058 0.123 0.109 0.048 0.044

Average 0.0584 0.049 0.0574 0.0368 0.0724 0.0642 0.0422 0.0336

Table 9. Average tracking success rate of random deployment in target tracking.

Number of AF K1 K2 K3 K4 K5 K6 K7 K8

100 99% 81% 100% 83% 100% 97% 100% 98%
72 99% 100% 100% 100% 99% 99% 98% 99%
54 100% 100% 100% 99% 95% 96% 97% 96%
24 97% 100% 99% 95% 85% 94% 96% 96%
12 94% 76% 100% 85% 85% 80% 95% 97%

Average 97.8% 91.4% 99.8% 92.4% 92.8% 93.2% 97.2% 97.2%

5. Discussion
5.1. Target Positioning

According to the simulation results in Tables 5 and 6, some discussions for the target
positioning system are as follows.

The average positioning error decreases as the number of AFs increases. The results
in Table 10 were obtained based on the number of AFs. The average error is minimum at
100 AFs and becomes higher with the decrease in AFs. However, the average positioning
time will increase with the increase in AFs because the more AFs there are, the longer the
calculation time of the algorithm will be.
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Table 10. Total average error and positioning time when the number of AFs is 100, 72, 54, 24, and 12.

Number of AF Average Error (cm) Average Positioning Time (s)

100 0.849 7.272
72 1.121 5.081
54 1.467 3.638
24 2.839 1.658
12 66.064 0.741

There is no significant difference between fixed step size and adaptive step size and
visual field on positioning efficiency. According to Tables 5 and 6, the values of all methods
using fixed and adaptive step size are averaged, respectively, and the results are shown in
Table 11. It shows that the simulation results of the fixed step size algorithm or the adaptive
step size algorithm have little difference in the average positioning error and positioning
time. The reason is that in the simulation environment of the wireless sensor network in
this study, when there are a large number of AFs in the algorithm, whether it is a fixed or
adaptive step size algorithm can satisfy the need to move AFs in the algorithm to the region
of the global optimum solution within 100 iterations. On the contrary, when the number
of AFs in the algorithm is fewer, such as reducing to 12, no matter the fixed step size or
the adaptive step size, the AFs in the algorithm cannot move around the global optimum
solution after 100 iterations.

Table 11. Total average error and positioning time of the fixed and adaptive steps.

Parameter Fixed Step Adaptive Step

Average error (cm) 14.589 14.347
Average positioning time (s) 3.587 3.587

RSM will increase the average error but greatly reduce the average positioning time.
Table 12 shows the average error and positioning time of using and not using RSM. The
average positioning error increases by about 26 cm, but the positioning time is shortened
by 74.4%.

Table 12. Total average error and positioning time of using and not using RSM.

Parameter No RSM RSM

Average error (cm) 1.185 27.750
Average positioning time (s) 5.866 1.490

The HAVP method effectively improves the positioning error and positioning time.
Table 13 shows the total average error and positioning time of using HAVP and not using
HAVP. The average positioning error is reduced by about 96.1%, and the positioning time
is shortened by 26.4%. If the analysis is carried out on whether to use RSM and HAVP, the
results are shown in Table 14. It is obvious that using RSM will effectively improve the
positioning time, but the positioning error will become worse. However, if the proposed
HAVP is used, not only can the advantages of RSM to improve the positioning time be
maintained, but the positioning error will not become worse.

Table 13. Total average error and positioning time of using and not using HAVP.

Parameter No HAVP HAVP

Average error (cm) 27.861 1.074
Average positioning time (s) 4.237 3.120
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Table 14. Average error and positioning time for methods using and not using RSM and/or HAVP.

Parameter No RSM + HAVP RSM HAVP RSM + HAVP

Average error (cm) 2.36 53.36 0.01 2.14
Average positioning time (s) 6.76 1.71 4.97 1.27

For target positioning, the proposed AFSA algorithms, P7 and P8, combined with
RSM and HAVP have better performance in both average error and average positioning
time than the traditional AFSA methods, P1 and P2, in random deployment for target
positioning. Especially in P8, the average positioning time is reduced by 81.9% compared
with P2.

5.2. Target Tracking

From the simulation results in Tables 8 and 9, the further discussions for target tracking
can be depicted as follows.

RSM can use less time to achieve a better tracking success rate when there are many
AFs, and the tracking performance of the modes without RSM is better when the number of
AFs is fewer. Table 15 shows the total average positioning time and success rate of using
RSM and not using RSM, which shows that the average positioning time of the analysis
mode with RSM is less than that of the analysis mode without RSM. However, as the number
of Afs used decreases, the difference between the average positioning time using RSM and
those without RSM is smaller. The reason is that, after using RSM, the number of AFs
used at the same time is less than that without RSM, so an AF in the AFSA can obtain less
information from other AFs at the same time, so the AF needs to perform more algorithmic
actions to reach the global optimal solution. Therefore, when the number of AFs is 12, the
average positioning time using the RSM is longer than that without using the RSM.

Table 15. Total average positioning time and success rate of methods using or not using RSM.

Number of AF
Average Positioning Time (s) Average Success Rate

No RSM RSM No RSM RSM

100 0.060 0.039 99.8% 99.5%
72 0.053 0.033 99.0% 99.5%
54 0.053 0.039 98.0% 97.8%
24 0.060 0.050 94.3% 96.3%
12 0.062 0.069 93.5% 84.5%

When the number of AFs is large, using DAFS can shorten the positioning time and
maintain a good tracking success rate. Analysis mode K1 without DAFS and K5 with DAFS
were used to analyze the impact of DAFS on the performance of the target tracking system,
as shown in Table 16. It can be found that the larger the number of AFS, the more data the
algorithm needs to process, and the longer the target position estimation time is, and after
using DAFS to track the AFSA target, it can be found that the greater the number of AFs
used, the shorter the average positioning time. The reason is that when the DAFS method
performs the algorithm by selecting the AF around the last estimated point, a larger number
of AFs in the algorithm can ensure that there is an AF around the last estimated point
and vice versa. The fewer the number of AFs, such as 12, the probability of an AF around
the last estimated point is relatively small, so the use of all AFs for algorithm behavior
increases, which in turn leads to the average positioning time when the number of AFs is
12. On the contrary, it is longer; in addition, when the number of AFs is greater than 52,
DAFS can achieve a good tracking success rate at a faster speed, but when the number of
AFs is less than 52, the DAFS method will make the system performance poor.
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Table 16. Average positioning time and success rate of modes K1 and K5.

Number of AF
Average Positioning Time (s) Average Success Rate

K1 K5 K1 K5

100 0.081 0.041 99% 100%
72 0.065 0.038 99% 99%
54 0.061 0.051 100% 95%
24 0.044 0.109 97% 85%
12 0.041 0.123 94% 85%

The average performance of the related modes using HAVP is shown in Table 17. It
shows that using HAVP alone can improve the tracking success rate without increasing
the positioning time. When using both DAFS and RMS for target tracking, the average
positioning time of K8 is shorter by 42.47% than that of the traditional one, K1, and the
average success rate remains the same as that of K1.

Table 17. Average positioning time and success rate for K1, K3, K7, and K8.

Parameter K1 K3 K7 K8

Average positioning time (s) 0.0584 0.0574 0.0422 0.0336
Average success rate 97.8% 99.8% 97.2% 97.4%

6. Conclusions

In this paper, AFSA is used to study indoor space target positioning and tracking. The
simulation results show that the greater the number of AFs used in algorithm, the better
the accuracy of target positioning but the longer the time of target positioning. The HAVP
method is proposed to improve the positioning error and positioning time in this paper.
The simulation results show that, when using HAVP, the total average positioning error is
reduced by about 96.1%, and the positioning time is shortened by 26.4%. In addition, the
DAFS method is proposed in the target tracking system to further reduce the number of
AFs used in the target tracking system. The simulation results show that when the number
of AFs is large, using DAFS can shorten the positioning time and maintain a good tracking
success rate. Moreover, HAVP can improve the tracking success rate without increasing the
positioning time. If DAFS and RMS are used at the same time, the positioning time can be
greatly shortened by 42.47%, and the original success rate of the conventional method can
be maintained.
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