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Abstract: Recently, federated learning (FL) has gradually become an important research topic in
machine learning and information theory. FL emphasizes that clients jointly engage in solving
learning tasks. In addition to data security issues, fundamental challenges in this type of learning
include the imbalance and non-IID among clients’ data and the unreliable connections between
devices due to limited communication bandwidths. The above issues are intractable to FL. This study
starts from the uncertainty analysis of deep neural networks (DNNs) to evaluate the effectiveness of
FL, and proposes a new architecture for model aggregation. Our scheme improves FL’s performance
by applying knowledge distillation and the DNN’s uncertainty quantification methods. A series of
experiments on the image classification task confirms that our proposed model aggregation scheme
can effectively solve the problem of non-IID data, especially when affordable transmission costs
are limited.

Keywords: federated learning; model aggregation; knowledge distillation; uncertainty in deep
neural networks

1. Introduction

The concept of FL was proposed by McMahan et al. in 2016 [1]. Its goal is to complete
the training of a global model when target datasets are distributed to different devices (or
clients), and the sensitivity of each dataset is of grave concern. In addition, the authors [1]
also proposed a federated averaging (FedAvg) algorithm to complete the task of global
aggregation, so that each client can complete the model training and keep their data
locally. FedAvg prevents users from transmitting sensitive data from their side to the server
by uploading the client-side’s model gradients to the server instead. Then, the server
aggregates the uploaded gradients to build a new global model to protect the privacy and
security of every client’s local data.

Although FedAvg claims to be able to deal with non-IID data, many studies have
pointed out that the accuracy of FedAvg seriously drops if the processed data are non-
IID [2,3]. The main reason for the performance degradation is that the non-IID data will
cause the weights of the local models to diverge. More precisely, since the loss function
of a regular neural network (NN) is non-convex, if FedAvg obtains the global model by
conducting the mean operations, it will continuously increase the gap between the obtained
result and the ideal model obtained by training on ideal IID datasets, which in turn makes
the ensemble unable to converge, and deteriorates the learning performances [4]. In
addition, FedAvg cannot fully utilize all of the information provided by clients, such as the
inter-client gradient variations.

Currently, the primary methods for dealing with the problem of non-IID data can
be divided into three categories: data-based, system-based, and algorithm-based [5]. The
data-based category solves the non-IID problem directly and effectively through data
sharing [3,6] or data augmentation [7] techniques. However, such methods often violate
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the spirit of FL because there is a risk of data privacy leakage due to the inability to practice
data decentralization securely. In contrast, system-based methods usually use clustering
techniques to cluster users for the construction of multi-centric frameworks [8,9], and users
in the same group will have similar training data. The adopted data similarity estimation
methods can be further divided into two types: estimating the similarity of the loss values
and estimating the similarity of the user-end model weights. The realization of algorithm-
based methods are very diverse and include regularization [10,11], fine-tuning [12], and
personalization layers [13], and these are introduced in user-end training. There are also
some standard techniques in machine learning, such as multi-task learning [14], lifelong
learning [15], and knowledge distillation [16–20].

Guha et al. proposed DOSFL [16] as a “one-shot” FL architecture. Unlike the model
distillation method, this architecture uses the dataset distillation method, in which the
client distills the local data and uploads the synthetic data and learning rate to the server.
The server combines the synthetic data from the users to train a global model. Jeong et al.
proposed the federated distillation (FD) architecture [17], in which users upload the per-
label mean logit vectors for each label to speed up communications. In addition, for facing
non-IID problems, a federated augmentation (FAug) [17] algorithm is proposed to deal with
them. FAug will ask all users to inform the server of the samples they lack, the algorithm
will let the server train a GAN, and then then allow the user to download the GAN to
expand their local data into IID patterns. Compared with FedAvg, FD, and DOSFL, FAug
can significantly reduce communication costs, but the associated accuracy performance is
somewhat poor. The architecture of FedMD [18], proposed by Li et al., requires a public
dataset. The user first uses the public dataset for general training and the local private data
for customized training. In the communication stage, the user uploads the logarithmic
probability calculated from the public dataset, and the server averages the logarithmic
probability uploaded by all users before learning. Compared with FedMD, FedDF [19]
proposed by Lin et al. uses unlabeled data for distillation and transfers the distillation
task from the user to the server side. The results show that FedDF has a better robustness
in selecting distillation datasets and is suitable for the context of FL. Figure 1 shows the
block diagram and information flow of FedDF, which is chosen as the major benchmark for
our newly proposed work. Each of the indicated functional modules of Figure 1 will be
detailed in the next Section. Chen et al. proposed FedBE [20]. The architecture of FedBE
is based on FedDF, and it introduces the Bayesian inference for sampling more models,
and applies Bayesian ensembles to obtain better global models. FedBE has been proven
effective for resolving non-IID problems, and is compatible with other architectures that
normalize user-side models.

As mentioned above, our work was developed based on the architecture of FedDF,
but with the following notable characteristics:

1. The server quantifies the network’s uncertainty of the uploading client, which serves
as the basis for building a more adaptable aggregation scheme to deal with the
inhomogeneity of client side models;

2. The server introduces the sample’s quality evaluation to effectively sieve through
samples to suppress the influences of data uncertainty and improve learning efficiency;

3. As a knowledge distillation aggregation architecture, our work can effectively separate
the information of uncertainty and inter-class relationships. This separation helps
solve the non-IID data issue and provides a good learning performance while limiting
the transmission costs.
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2. Preliminary Backgrounds
2.1. Knowledge Distillation

Initially, knowledge distillation was proposed to be applied for model compres-
sion [21], where the goal was to compress one or more large models (teacher models)
into small models (student models). The resultant small models could effectively learn
the so-called “important knowledge” from the pre-trained large models, allowing them to
enhance a certain level of effectiveness associated with a specific requirement. Knowledge
distillation is generally used to make small models have a better generalization ability. For
example, as shown in Figure 2, a knowledge distillation-based classifier can effectively
learn inter-class relations (a.k.a. dark knowledge) by regulating the distillation temperature
in classification problems.

Knowledge distillation is a promising idea for federated learning. There are two
practical reasons to support the above claims: First, it can alleviate over-fitting on the user
side: In the context of FL, if users cannot perform model aggregation frequently due to
the communication limitation, the differences in models among users will continue to
accumulate, and the user model will learn too many useless local data features, compared
to the general global IID data assumption in the server, those useless features behave like
redundant noises, which in turn handicap the final aggregation result to approximate that
of the ideal model. Applying knowledge distillation in the aggregation stage helps the
global model sift through informative and valuable information for learning; therefore, it
can alleviate the bias caused by incomplete or overtrained data that often occurs on the
user side in FL.

As addressed above, knowledge distillation enables the global model to learn the inter-
class relationship, which helps transfer the knowledge learned for a general multi-purposed
model to a specific target-oriented model; this is the second reason for using knowledge
distillation in FL. To dive into the reasoning of this claim in more detail: when the data
are not independently and identically distributed, the inter-class relationship learned
by the local model may be incomplete and inconsistent. An inappropriate aggregation
scheme may not effectively transfer the genuine inter-class relationship to the global model.



Information 2023, 14, 234 4 of 20

Of course, effectively identifying the inter-class relationships suitable for FL becomes a
research topic worthy of deeper investigation.
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Figure 2. An illustrative example of learning dark knowledge through a knowledgeable teacher
model in image classification problems. In this example, although we know that the input image
falls in the cat category, we also know that the input has a higher probability of falling into the
dog category than into the bird category. The pre-described classification order is the so-called
“inter-class relationship”.

However, the current distillation-based federated learning architectures have yet
to effectively consider all of the advantages mentioned above. The uncertainty-aware
distillation-based federated learning (shortened as FedUA) scheme proposed in this paper
aims to provide a possible solution to improve the learning effect when both the non-IID
data and the limited communication capacity occur at the same time.

2.2. Uncertainties in DNNs

General DNNs cannot express confidence levels; however, displaying confidence lev-
els is increasingly essential for specific application domains, such as safety-critical tasks and
medical applications. Therefore, studies on the uncertainty of NNs have also been investi-
gated, including defining the sources of uncertainties in DNNs, quantifying uncertainties
through various measures, and constructing correction networks, to name a few.

Generally speaking, the uncertainties of NNs can be divided into the following
three types:

1. Data uncertainty—the uncertainty inherent in the data; even with a well-calibrated
model, such an uncertainty still exists;

2. Model uncertainty—the model needs to be built with more knowledge. Generally
speaking, this kind of uncertainty can be suppressed by improving the training process
or calibrating the model;

3. Distributional uncertainty—the uncertainty of the distribution prediction itself. From
another viewpoint, such an uncertainty can be an essential basis for out-of-distribution
detection [22–25]. Figure 3 shows the classification of the uncertainties of NNs. We
refer interested readers to find the detailed definition of each uncertainty class in [22].

Data uncertainty will manifest in the final forecast, such as estimating the outputs
of a normalized exponential function (a.k.a. the Softmax output) for a classification task
or the standard deviation of the predictions for a regression task. However, studies have
found that NNs often suffer from overconfidence, and the normalized exponential function
output is often poorly calibrated [26–28], resulting in imprecise uncertain estimates.
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For FL, the adverse effects are more pronounced and trickier when the client data
causes distributional uncertainty. Therefore, quantifying uncertainty is undoubtedly a
critical information basis for model aggregation. This work investigates an FL architecture
based on knowledge distillation (cf. Figure 4). We use the logarithmic probability extracted
by the teacher model as the primary basis (i.e., the confidence measure) for the training
process of the student model. If the confidence of the current sample can be effectively
calculated under the multi-teacher structure, a more flexible and efficient knowledge
transfer can be made successfully. Our proposed FedUA considers the influences of the
uncertainties mentioned above and adds uncertainty quantification steps to clarify the
global model’s training objectives in the aggregation stage.
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3. The Proposed Method: FedUA

We designed our FL framework based on the so-called knowledge distillation-aware
aggregation scheme to conquer the challenges of non-IID client data and the restricted
communication between clients and the server. We add two core functional modules: the
uncertainty measurement and the sample quality evaluator to enhance the overall system
performance. The following subsections will describe these two modules’ operations and
architectures in detail.
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3.1. Uncertainty Measurement

Due to the settings of FL, each client uses local data as the training dataset of the NN,
resulting in a regional model; even under the same training parameters, the same data input
may still produce highly inconsistent losses and predictions during the testing phase. The
server side is decentralized in data, making it impossible to spy on or dig out which kind
of data prediction the user model is good at. We bring the uncertainty measurement into
the DNN as a vital basis for conducting the model aggregation process so that the server
side can catch the confidence level of each participating user in the prediction generated by
the specific input data to generate the subsequent integration results and strengthen the
reliability of the global model.

Considering the knowledge distillation-based FL architectures, it is expected that in
the aggregation stage, one can use referential information to approach the outcome of
an ideal teacher model to perfect the knowledge inheritance. According to the model
uncertainty, if an enormous amount of input data belongs to a specific object category in
the model learning stage, the trained model should produce higher confidence concerning
the output of this category in the inference stage. Regarding the distribution uncertainty,
through practical measurements, all of the teacher models can participate in teaching the
student models by “making use of their strengths and circumventing their weaknesses,”
which further enables the server side student models to have a more comprehensive
classification ability.

To accommodate the variations of each client’s data, we use the Gaussian discriminant
analysis for each client to establish a Gaussian mixture model of its characteristic spatial
density. Given a set of (X, Y), the establishment method is as follows:

for each class c with samples Xc ⊂ X do

wc ←
|Xc|
|X| (1a)

µc ←
1
|Xc|∑Xc

fw(Xc) (1b)

σc ←
1
|Xc|

( fw(Xc)− µc) ( fw(Xc)− µc)
T (1c)

Prior to the model aggregation, a Gaussian mixture model is used to quantify the
epistemic uncertainty of the current sample for a specific user-end model. The process is
as follows:

z ← fw(x) ( f : a f eature extractor) (2a)

p(z) ← ∑c wc N(z; µc; σc) ( N : Gaussian model) (2b)

For a given user-end model, we input sample x into feature extraction function f to
obtain feature vector Z and its corresponding p(z). The feature space density probability of
the server side samples associated with the current client side model can now be calculated.

At this time, the uncertainty measurement method we adopted is called the single
deterministic model, that aims to reduce the computational burden of the model during
training and testing. In addition, we used feature space as the quantization objective
instead of the normalized exponential function (i.e., the SoftMax). The reason for this is
because under the knowledge distillation-based FL architecture, the inter-class correlation
of the data is beneficial to the aggregation model, and this relationship is reflected in the
aleatoric uncertainty. Therefore, the aggregation process can exclude the influence of this
factor to avoid the occurrence of an objective mismatch. Because of this consideration, we
also made a comparative analysis in our experiment.
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3.2. Sample Assessment

For typical knowledge distillation, the training data of the student and the teacher
models are independently and identically distributed so that the two can achieve an efficient
and stable knowledge inheritance. However, considering the situation of many teachers
under the structure of FL, the teacher model uploaded by a client is prone to overfitting the
local data. We hope that the server aggregation stage can effectively bring the global model
towards a more generalized direction to eliminate this shortage.

To achieve the above purpose, we should carefully select the students’ training data,
so we include a sample evaluator in FedUA (cf. Figure 5) to be responsible for the sample
evaluation task. At this stage, we followed the spirit of active learning and select samples
with high epistemic uncertainty as the training data for the teacher model. We adopted
the Bayesian active learning by disagreement (BALD) technique [29], that quantifies the
uncertainty of the samples based on the Bayesian viewpoint, and mathematically it can be
written as:

I(y; w|x, D) = H(y|x, D)− Ep(w|D)[H(y|x, w, D)], (3)

where H (x|y) denotes the conditional entropy of x given y, and I (x, y|z) represents the
conditional mutual information between x and y given z, respectively.
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In other words, we aim to find samples x, that maximize the mutual information
between model output y and the model parameters {x, D}. From an information-theoretical
point of view, the qualified samples should meet the following conditions: (1) Low con-
fidence in average model output and (2) high confidence in a single sampling model
output. Based on the above, for the samples with more prominent mutual information, it is
harder to achieve consensus on the outputs between the models; therefore, they are what
we are seeking.
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In practice, the well-known Monte Carlo approximation can simplify the computation
of the conditional mutual information in the above equation. That is,

I(y; w|x, D) ≈ −∑c(
1
T ∑t pt

c) log
(

1
T ∑t pt

c

)
+

1
T ∑c,t pt

c log
(

pt
c
)
, (4)

where pt
c denotes the output probability of class C for model T.

When applied to FL, as pre-described, we can comprehend the distillation process
(cf. Equation (3)) as “samples that do not reach consensus among local models”, should be
taken with higher priority.

Samples with this characteristic will have a considerable divergence in the direction
of model convergence during the training phase. Hence, they are more important for
optimizing the global model on the server side. In our realization, the samples generated
values computed from Equation (4) that are higher than a given threshold will be denoted as
high-priority samples for optimization. Of course, the threshold value is accuracy-sensitive
and is application dependent. In our experiments, this is empirically determined during
the simulation iteration.

3.3. Overall Architecture

Under the mechanism of knowledge distillation, we hope that the student model can
learn the inter-class relation of the ideal model well to suppress the adverse effects of data
uncertainty. However, if the adopted uncertainty measurement is highly susceptible to
data inhomogeneity, it will also be a disadvantage for the proposed FedUA. For example,
suppose there is a sample with high data uncertainty from the viewpoint of the ideal model.
For such a sample, the associated uncertainty measurement will output a low confidence.
In contrast, from the perspective of class distinguishability, the more representative client
(who can demonstrate a better interclass relation) will show a decrease in confidence
value for this sample due to its native data uncertainty. This fact will degrade the overall
performance of our FedUA. We found this problem when we tried to add the uncertainty
measurement to the knowledge distillation-based FL, where the entropy of Softmax outputs
of the NNs is applied to measure the data uncertainty. This finding explains why in our
realization, we replace the Softmax entropy with its feature space density’s counterpart
(cf. Equation (2a)). Moreover, our experimental results, as illustrated in the next Section,
will also justify that feature space density is less affected by the samples’ native data
uncertainty than that of the Softmax outputs of the NNs.

Figure 6 shows the schematic diagram of the overall architecture of our proposed
FedUA. FedUA comprises two main boxes: the server box and the client box. As shown
in the upper portion of Figure 6, the server box consists of five functional modules: the
teacher evaluation, the sample assessment, the uncertainty measurement, the logits compu-
tation, and the student learning modules (note that the brown-colored arrows indicate the
respective information flows of each functional module).

In each round, the server regards all user-end models uploaded in this round as the
teacher model. When performing the teacher model evaluation, we capture the forward
pass outputs of a specific NN layer and send them to the sample assessment and the
uncertainty measurement modules for further analyses. The uncertainty measurement
uses the selected features of the user-end model to represent the model outputs’ weights.
Instead of the original FedDF averaging operation in the logits combination module, we
apply those weights to calculate the combined logarithmic probabilities (a.k.a. the ensemble
logits). At the same time, the user-end model’s prediction values are used for the sample
quality evaluation, and the qualified samples (with prediction values more prominent than
a pre-defined threshold) will be chosen as the training data of the teacher model. Then, after
performing these preprocesses, the average parameters of the teacher models (computed
through FedAvg) will be treated as the initial parameters of the student model. Then, we
can perform the subsequent knowledge distillation (as indicated in the student learning
module of Figure 6, we use the Kl-divergence to complete the corresponding calculation).
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Following the end of the knowledge distillation, the trained student model will be sent back
to the users as the global model for conducting the following local training (as indicated in
the client box at the bottom of Figure 6).
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4. Experiments

To verify the effectiveness of the adopted core methods, we conduct ablation analyses
on the uncertainty measurement and sample evaluation, respectively. All experiments are
repeated more than five times. The statistical average and variances will be reported as our
experimental results.

4.1. Experimental Settings

(a) Datasets and Network Models

We examined the proposed FedUA architecture in an image classification application.
We selected ResNet-32 as the benchmarking neural network architecture and CIFAR-10 as
the training dataset. We randomly picked 40,000 images from the training data as label data
for local training on the client side. The remaining 10,000 images were used as unlabeled
data for the server side distillation aggregation.

For the label data used for client training, we used the step method [20] as the baseline
to achieve the goal of non-IID, and the Dirichlet to make different types of non-IID patterns.
Under the step method, each client had many images of two specific categories and a
few pictures of the remaining eight categories. The Dirichlet method uses a concentration
parameter α (a.k.a. the concentration parameter), to regulate the Dirichlet distribution to
produce data with different degrees of dispersion.

CIFAR-10 comprised ten categories of data composed of various vehicles and animals.
The existence of inter-category relationships is beneficial for us to explore the correlations
between the knowledge distillation, the uncertainty measurement, and the federated
learning architecture. The obtained correlations helped to confirm the ability to learn the
relationship between the classes and judge the effectiveness of the teacher model in the
aggregation stage of federated learning.
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(b) Detailed Processes

In order to facilitate comparisons and consider the parameter settings concerning
related works, we set 40 rounds as the upper limit. The number of clients was assumed to
be 10, and the reporting fraction was initialized to 1.0. The reporting fraction determines
the number of randomly selected customers in each round, representing the proportion of
models uploaded for subsequent aggregation.

Each round of local or server side training consisted of 20 epochs and applied the
commonly adopted stochastic gradient descent method. We set the batch size to 32 on
the local side and 128 on the server side. In addition, to adapt to knowledge distillation,
relative entropy (i.e., the KL divergence) was used on the server side, and this is different
from using cross entropy as the loss function on the local side.

4.2. Results and Analyses
4.2.1. Ablation Analysis

(a) The Impact of the Sample Assessment

In the ablation analysis of the sample assessment, we verified the effectiveness of
Bayesian active learning by disagreement (BALD) first. Then, we considered the impact of
the different sample ratios (SRs) on the unlabeled data.

We used random batch sampling as the benchmarking target for a fair comparison.
Table 1 presents the relevant results of this examination, where we only depict the portions
with a fixed unlabeled data sampling ratio because our experimental results demonstrate
that BALD performs better under the condition associated with the same unlabeled data
sampling ratio. Moreover, the results listed in Table 1 confirm that using BALD to screen
out sample batches demonstrates a better meaning in learning, and therefore performance
in accuracy, for the global model’s optimization than using random batches traditionally.

Table 1. The performances under different settings in the sample assessment test. (Benchmark NN
architecture: ResNet-32, training dataset: CIFAR-10, SR: sample ratio).

SR = 0.2 SR = 0.4 SR = 0.6 SR = 0.8 SR = 1.0

Random 71.5 ± 0.61 71.3 ± 0.78 71.8 ± 0.66 72.3 ± 0.66 72.1 ± 0.55

BALD 72.0 ± 0.24 72.5 ± 0.36 73.9 ± 0.46 73.7 ± 0.33 73.2 ± 0.48

Interestingly, we also found that regardless of which filtering method was adopted,
the best performance in some cases (other than iterative training) occurred with a complete
dataset. For example, the best-performed SR setting for random and BLAD filtering is 0.8
and 0.6, respectively (cf. the boldfaced items in Table 1). A smaller sample ratio stands for
less induced computational loads.

In conclusion, adding our proposed sample evaluation mechanism is beneficial, not
only for the performance of distillation federated learning, but also helpful in reducing the
computational burden on the server side.

(b) The Impact of the Uncertainty Measurement

In the rest of this subsection, we focus on the effectiveness of the uncertainty measure-
ment. We calculate and compare the entropy of the feature space density outputs and the
Softmax outputs in the inference mode when clients learn with non-IID data under the
original learning settings.

CIFAR-10 has a high degree of data uncertainty because there is a specific correlation
among the animal classes, and the same is valid for the vehicle data. Due to the assumptions
of non-independence, we should pay attention to both model effects and distribution
uncertainties. The former is because the data imbalance at the category level will affect
the local model. The latter comes from the distribution uncertainty when the uploaded
local model is compared with the ideal global model, that unavoidably has a distribution
difference between the training and actual samples.



Information 2023, 14, 234 11 of 20

We take the example of a non-IID in Figure 7 for illustration. Client numbers 0, 2, 3,
5, 6, and 7 contain many images in two categories: vehicles and animals, so these clients
should behave in a superior manner in the coarse-grained classification task. In contrast,
clients numbers 1, 8, and 9 contain many images in two animal classes, and client number 4
contains many images in two vehicle classes. These clients tend to have specific behaviors
in fine-grained classification associated with their highly correlated classes.
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For example, when the input sample belongs to the animal category, the No. 4 teacher
model incorrectly classifies coarse-grained and fine-grained animal categories. Therefore,
we should suppress the degree of the student model’s referencing to the No. 4 teacher
model. In addition, promoting the fine-grained ability of teacher models 1, 8, and 9 for
animal classes is crucial in improving the student model’s training effects for the later
stages. Conversely, if the input sample belongs to the transportation category, we should
lower the influences of No. 1, 8, and 9 teacher models. At the same time, the impact of the
No. 4 teacher model should be increased in the aggregation stage.

Figures 8 and 9 show the distributions of the top-1 outputs’ entropy of Softmax and
feature space density, respectively. For ease of comprehension, we respectively illustrate
the mean entropy values of Figures 8 and 9 in Figures 10 and 11. To emphasize the
different behaviors of the two distributions in real applications, say out-of-distribution
(OoD) detection as an example, let us explore the two-dimensional distribution patterns of
the two in detail, as indicated in the red-colored rectangular boxes in Figure 12. Clearly,
from Figure 12, the latter is a better choice than the former due to its higher sparsity
in distribution.
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From the observations of the distributions and the mean values depicted in Figures 8–11,
it is justified that both the proposed normalization function and the feature space density
method enhance the classification performance under data and model uncertainties. More-
over, if we focus on the issue of distribution uncertainty in federated learning, the results
associated with the feature space become more informative. That is, we can determine the
correct classes from the darkness of the colors in Figure 11 as much more accessible than in
Figure 10. This explains why our FedUA ultimately uses the feature space density method.
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4.2.2. Performance Comparisons among the Benchmarked Works

(a) Learning Behaviors of the Different FL-schemes on Non-IID Data

As addressed in Section 4.1. we implement FedUA based on the pre-described settings
and use the step method [20] to find its effectiveness on non-IID data. Of course, we
investigate the learning behaviors of competing aggregation approaches for comparison
purposes. Figure 13 shows the learning curves of FedUA, FedDF, and FedAvg, where
the vertical axis denotes the accuracy percentage and the horizontal axis stands for the
round number.
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As shown in Figure 13, in the early stage, benefiting from knowledge distillation, the
accuracy of the global models of FedUA and FedDF was significantly better than that of
FedAvg. The performance-enhancing speed of the three is close, and it begins to slow
down and converges to an upper limit after 14 rounds. In the end, both FedUA and FedDF
outperform FedAvg, and the accuracy of FedUA is about 2–3% better than FedDF when
the data distribution is non-IID.
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(b) The Impact of Different Non-IID Data Partitions

To dive into the effects of non-IID data on various FL schemes, in this subsection, we
examine the performances of FedUA, FedDF, and FedAvg under different non-IID settings.
Figure 14, from left to right, shows the other non-IID data corresponding to the step method,
the Dirichlet with α = 0.1, and the Dirichlet with α = 0.5. Table 2 compares the obtained
classification accuracy among the benchmarked outcomes. The boldfaced items in Table 2
show that FedUA performs the best among the three.
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Table 2. The performances of FedAvg, FedDF, and FedUA under different non-IID data. Settings
illustrated in Figure 14. (Fed-α-Step and FedUA-FedAvg denote the Percentages of Accuracy Change
vs. Parameter α when we take the Step method’s and FedAvg’s results as the reference, respectively.)

Classification Accuracy vs. Parameter α

Step Method [20] Dirichlet (α = 0.1) Dirichlet (α = 0.5)

FedAvg
62.6 ± 0.23

1
1

59.6 ± 1.03
−4.7%

1

80.1 ± 0.45
+28%

1

FedDF
FedDF-α-Step

FedDF-FedAvg

72.3 ± 0.49
1

15.5 %

64.4 ± 0.93
−11%
8.0%

82.8 ± 0.47
+14.5%

3.4%

FedUA
FedUA-α-Step

FedUA-FedAvg

74.8 ± 0.45
1

19.5%

65.3 ± 0.78
−12.7%

9.6%

83.4 ± 0.24
+11.5%

4.1%

More specifically, from Figure 14, we observed a more severe data imbalance and
distribution uncertainty between clients under the Dirichlet (α = 0.1) setting. The advan-
tages of the FedUA core method are less prominent than the step method, which is only
about 1.6% growth in accuracy compared with the counterpart of FedDF (cf. Table 2).
Nevertheless, there is still a meaningful improvement in knowledge distillation compared
to FedAvg. For the settings under Dirichlet (α = 0.5), the client’s data is closer to IID, and
both FedUA and FedDF behaved normally and better than FedAvg. The reason is that
under the data segmentation of Dirichlet, a more serious data imbalance and more complex
feature space density patterns are derived, resulting in more difficulty in model uncertainty
and distribution uncertainty estimation. Fortunately, considering the real-world usage
of federated learning nowadays, the local data distribution between devices should tend
to the step method, which embraces the adaptation of the proposed FedAU in federated
machine learning.

(c) The Effects of Limited Allowable Communication Capacity

Finally, we consider the limited communication cost scenario faced by federated
learning practices. Finding enough computational resources and large datasets to con-
duct accurate and concrete experiments is challenging in academia. To face this reality,
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we designed our simulations concerning the effects of limited allowable communication
capacity by adjusting the clients’ participation ratio (denoted by C) uploaded to the server
for each round. We set different participation ratios and observed the corresponding results
(cf. Table 3).

Table 3. The performances of FedAvg, FedDF, and FedUA under different participation ratios.
(Accur-drop denotes the percentage of accuracy drop by taking C = 1.0 as the reference.)

Classification Accuracy vs. Participation Ratio

C = 1.0 C = 0.7 C = 0.4

FedAvg
Accur-drop

62.6 ± 0.23
1

61.3 ± 0.35
2.1%

58.1 ± 0.26
7.2%

FedDF
Accur-drop

72.3 ± 0.49
1

68.1 ± 0.61
5.9%

63.8 ± 1.03
11.8

FedUA
Accur-drop

74.8 ± 0.45
1

71.8 ± 0.56
4.0%

68.3 ± 0.85
8.7%

From Table 3, our proposed FedUA performed the best concerning absolute classifi-
cation accuracy. Moreover, Table 3 also indicates that the accuracy drop of FedAvg does
not decline significantly if the participation ratio is lowered below the 0.7 settings, but that
of FedDF declines the most of the three (ranges from 6% to 12%, approximately). While
FedUA behaves in between with an accuracy drop ranging from 4% to about 9%.

When the participation ratio of the native distillation-based federated learning de-
creases, the function of the teacher model is insufficient. That is, knowledge deficiency has
occurred, which may make the unlabeled data used in the server aggregation stage find no
correct learning objectives. As a result, FedDF relies heavily on the client to participate in
the aggregation stably. However, by introducing the sample evaluation and uncertainty
measurement, FedUA somehow mitigates the impact of the above shortages and avoids
the damage caused to the student model when meaningless or even erroneous learning
mode scenarios occur. We can justify the above arguments from the experimental results
obtained in Table 3.

5. Discussions and Conclusions
5.1. Current Progress in FL Dealing with Non-IID Data

Regarding the challenges faced in FL, people in different fields will have different
perspectives. This paper focuses on the countermeasures we can take when the data distri-
butions in FL are heterogeneous. One of the anonymous reviewers suggested lots of related
literature [19,30–35] and asked us to make some focused summaries and comparisons
among them. Therefore, before concluding our work, this section briefly summarizes
various researchers’ current efforts.

Smietanka et al. [30] briefly surveyed privacy-preserving techniques and applications
concerning FL. Technique-wise, three kinds of data access-related security protection meth-
ods were discussed: differential privacy, secure multiparty computation, and homomorphic
encryption. At the same time, FL-related applications in Google Gboard, Health, Retail,
Finance, and Insurance were addressed as illustrative examples.

To combine the advantages of cloud-based and edge-based FL for speeding up the
model training and improving the communication-computation trade-offs, ref. [31] pro-
posed a hierarchical FL architecture using multiple edge servers to perform partial model
aggregation before communicating with the cloud parameter server. Empirical experiments
verified the analysis and demonstrated the benefits of this hierarchical architecture in differ-
ent data distribution scenarios. In other words, introducing the intermediate edge servers
can simultaneously reduce the end devices’ model training time and energy consumption
compared to cloud-based federated learning. However, ref. [31] ignored the effects of
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heterogeneous communication conditions and computing resources on different clients.
Moreover, the performance-sensitive parameters need to be tuned empirically.

The authors of [32] pointed out that to train statistical models in a massive and
heterogeneous network, naively minimizing an aggregate loss function may only benefit
some involved devices. To face this shortage, ref. [32] proposed the so-called q-fair federated
learning (q-FFL), that encourages a fairer (specifically, more uniform) accuracy distribution
across devices in FL networks. Moreover, experimental results showed that with the
aid of the newly devised aggregation mechanism q-FedAvg, q-FFL outperforms existing
benchmarks regarding fairness, flexibility, and efficiency. Nevertheless, q-FFL increases the
accuracy of poor-performing devices by sacrificing better-performing ones. This approach
may not be suitable for performance-critical applications. Moreover, we need to determine
the control parameter in advance again.

Tao et al. [19] proposed using ensemble distillation for model fusion, i.e., training the
central classifier through unlabeled data on the outputs of the models from the clients. The
authors claimed that the knowledge distillation technique would mitigate privacy risk and
cost to the same extent as the baseline FL algorithms, but allowed flexible aggregation
over heterogeneous client models that differed in size, numerical precision, or structure.
They justified their claims through extensive empirical experiments on various CV/NLP
datasets (CIFAR-10/100, ImageNet, AG News, SST2) and settings (heterogeneous mod-
els/data) by showing that the server model can be trained much faster, requiring fewer
communication rounds than any existing FL technique known to them. Actually, ref. [19]
inspired our work a lot.

Giovanni Paragliola and Antonio Coronato contributed a series of three papers [33–35]
founded on the same kernel skills, targeting reducing communication costs in a federated
healthcare environment. The inputs of the learning system were ECG waveforms of patients
with various levels of risk associated with hypertension. The proposed FL framework
comprised different learning strategies (varying in the numbers of cascaded dense layers
and shared parameters).

To reduce the required communication costs in FL, ref. [33] presented an FL algorithm,
TFedAvg, to train a time series (TS)-based model for the early identification of the level
of risk associated with patients with hypertension in a federated healthcare environment.
The primary framework of [33] consisted of two learning strategies, The FullNet Strategy
and the PartialNet Strategy, for which TFedAVG exploits the whole model and a portion of
the model to both guarantee the privacy and security of healthcare data, and reduce the
communication costs between clients and aggregation server, respectively. Under three
split local datasets conditions, ref. [33] presented two different settings concerning the types
of data distribution across the regional nodes: (1) an IID setting where each node had 33%
of the total samples, (2) a non-IID setting in which one of the nodes had 50% of the total
samples while the other two nodes only had 25% each. Experimental results showed that
the proposed approach improved from 3.01% to 11.09% in terms of classification accuracy
and with a reduction of about 34% in terms of communication costs compared to the
benchmarked works. Another contribution from [33] came from its summarization and
comparative analyses of recent FL-related research statuses: Table 1 of [33] summarizes the
studies on federated learning published between 2018 and 2022 regarding applications,
adopted approaches, pros, and cons.

Yoshida et al. [6] continued and extended the discussion initiated in [33] concerning
reducing the communication overhead with a further analysis, evaluating the trade-off
between the performance and the communication costs. Such an analysis suggested a
new learning strategy (LS) to reduce the total number of parameters shared during the FL
process. The basic idea of [34] was to exploit subparts of the model in [33] by measuring the
contribution of a subset of layers defining an ML model during the training process instead
of the whole set of layers. To estimate the weight and the contribution of each layer, ref. [6]
defined seven different learning strategies (LSs) aimed at selecting which parameters to
transmit to the central server for the aggregation process, such that a trade-off between the



Information 2023, 14, 234 18 of 20

requirement to bring down communication costs and the need to guarantee the highest
classification performance could be reached. Compared with Google’s FedAvg algorithm,
experimental results show that the accuracy of the approach proposed in [34] ranges from
89.25% to 96.6%. In comparison, the improvements in reducing communication overheads
range from 95.64% to 6%.

The catastrophic forgetting (CF) phenomenon occurs during an ML training process
when the characteristics or distribution of new input instances differ significantly from
previously observed ones. CF-induced new information may overwrite the previously
learned knowledge of a neural network. A similar situation might occur in FL when the
local data of each client cannot be considered representative of the overall data distribu-
tion due to class imbalance, distribution imbalance, and size imbalance, that causes the
well-known non-IID data challenge to FL. By successfully transferring the problem of
analyzing the occurrence of CF in FL as the analysis of the DNNs’ training in a federated
environment when dealing with non-stationary data, ref. [35] extended the use case sce-
nario in [6] for evaluating the nature of CF events, and provided a quantification of when
and how a CF event may happen during an FL process. Finally, the experimental results
in [35] depicted an improvement in accuracy ranging from 2% to 28% among local clients
affected by a CF event.

5.2. Conclusions and Possible Contributions of This Work

Federated learning, constrained by security and communication costs, has flourished
recently. As the above section addresses, obtaining a standard solution for various and
complex Non-IID types is still challenging and worthy of further exploration.

In practice in the past, the federated learning architecture that adopted knowledge
distillation usually caused incomplete interclass relationships learned by the local model
due to the imbalance of local training data, which in turn made the global model learning
in the aggregation stage preliminary. Therefore, we started from the uncertainty analysis
of DNNs, evaluated their effects on FL, and proposed a new architecture for model aggre-
gation. The proposed scheme improves FL’s performance by combining the knowledge
distillation and the DNN’s uncertainty quantification methods. A series of experiments on
the image classification task confirms that our proposed model aggregation scheme can
effectively solve the problem of non-IID data, especially when the affordable transmission
cost is limited.

The possible contributions of our work can be summarized as follows:

1. We built an effective, adaptable aggregation scheme to deal with the inhomogeneity
of client side models based on the proposed quantifiable network uncertainty of the
uploading client;

2. Based on the evaluated sample quality, we introduced an effective sample sieve
scheme to the server to suppress the influences of data uncertainty and improve the
learning efficiency;

3. As a knowledge distillation aggregation architecture, our work can effectively separate
the information of uncertainty and the inter-class relationships. This separation helps
solve the non-IID data issue and provides a good learning performance while limiting
the transmission cost;

4. Through a series of experiments on the image classification task, we confirmed that the
proposed model aggregation scheme could effectively solve the problem of non-IID
data, especially when the affordable transmission cost is limited.

In summary, in handling the problem of Non-IID, we hope that the uncertainty
measurement and sample evaluation we propose can help consider real-world user data.
They provide more information in the aggregation stage and make learning more effective.
However, our current discussion only applies to the task of image classification. Moreover,
lacking enough computing resources and practical use cases are difficult to find, we have
yet to be able to experiment with more complex image datasets. Nevertheless, it may
be possible to combine the advantages of the uncertainty method and distillation-based
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federated learning to create different collaboration models, that will be the main direction
of our future efforts.
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