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Abstract: In today’s business environment, reducing costs is crucial due to the variety of Internet of
Things (IoT) devices and security infrastructure. However, applying security measures to complex
business scenarios can lead to performance degradation, making it a challenging task. To overcome
this problem, we propose a novel algorithm based on deep reinforcement learning (DRL) for opti-
mizing cost in multi-party computation software-defined security middle platforms (MPC-SDSmp)
in real-time. To accomplish this, we first integrate fragmented security requirements and infrastruc-
ture into the MPC-SDSmp cloud model with privacy protection capabilities to reduce deployment
costs. By leveraging the power of DRL and cloud computing technology, we enhance the real-time
matching and dynamic adaptation capabilities of the security middle platform (Smp). This enables
us to generate a real-time scheduling strategy for Smp resources that meet low-cost goals to reduce
operating costs. Our experimental results demonstrate that the proposed method not only reduces
the costs by 13.6% but also ensures load balancing, improves the quality-of-service (QoS) satisfaction
by 18.7%, and reduces the average response time by 34.2%. Moreover, our solution is highly robust
and better suited for real-time environments compared to the existing methods.

Keywords: software-defined security; deep reinforcement learning; cost optimization; Internet of
Things; privacy protection

1. Introduction

In recent years, new infrastructure and digital transformation have enriched the
variety of information access devices. The Internet of Things (IoT) [1], big data [2], edge
computing, and machine learning technologies [3] are evolving rapidly [4,5]. The Internet
is getting closer to people’s lives, the risks to data are more complex and diverse, and the
fragmentation of security operations is increasing. With the proliferation of IoT devices,
vast amounts of data are being generated, and the number and types of these devices will
continue to expand in the future. As a result, traditional IoT systems may not be equipped
to adequately handle the associated challenges [6].

Fragmented security requirements and scenarios are significant challenges that Inter-
net security has been faced with in recent years [7]. In addition, the mismatch between
security assets and business scenarios is becoming more apparent [8]. In other words, as
the variety and quantity of IoT devices and security infrastructure continue to increase
rapidly, cost reduction has become the most pressing challenge for organizations. However,
the mismatch between security measures and business scenarios presents a critical issue in
cost optimization.

The Regulations on Security Protection of Critical Information Infrastructure highlight
the security challenges and essential protection requirements facing critical information
infrastructures. The traditional walled defense is not enough to cope with them, and it is
necessary to build an active, proactive, resilient, and responsive security defense system
with a security middle platform (Smp) as the core [8] to realize the protection concept
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from security monitoring, the global situation, and capability planning to the orchestrated
response.

Inspired by software-defined security (SDSec) and the security middle platform (Smp),
the software-defined security middle platform architecture (SDSmp) [9] is built for the
whole scenario, as shown in Figure 1. The purpose is to solve the problems of low utilization,
difficult reuse of security resources, and high fragmentation of security requirements and
scenarios to reduce costs. More importantly, the SDSmp provides a practical focus point to
solve the mismatch problem between security protection means and business scenarios to
improve the capability and flexibility of security protection.
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SDSmp architecture enables the virtualization of the infrastructure layer through
network functions virtualization (NFV) technology and cloud computing technologies such
as IaaS, PaaS, and SaaS [9]. The Smp [7,8] has the advantages of both a data middle platform
and a business middle platform, which can eliminate data silos, improve the resource reuse
rate, and reduce development difficulty and cost. The resource scheduling module is the
key to solving the mismatch problem between security protection and business scenarios.

The control plane scheduling module analyzes the required compute power based on
the characteristics of the security services coming from the security application plane. The
southbound application programming interfaces (API) allocates control to the available
Smp resources for execution via the middle platform resource pool, which physically
terminates at the infrastructure plane. Integrating all control components into the control
plane improves security by allowing multiple security controls to be driven by the same
data stream, and also reduces the overall cost of installing and configuring these controls
and policies on each host [10].

In software-defined security, achieving cost optimization has been a persistent chal-
lenge. SDSec is distinguished by its manageability, dynamism, cost-effectiveness, and
adaptability attributes. However, hardware-based security solutions for IoT devices are
impractical due to their high costs and extensive deployment requirements [11,12]. There-
fore, developing software-defined security technologies that can be easily configured in
low-power IoT devices and offer the flexibility of timely upgrades is imperative [13].
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Virtualizing security infrastructure reduces the need for physical deployment and
is better suited to high-traffic scenarios. By optimizing and providing Smp resources
on demand, virtual environments can significantly reduce the costs of security capital
expenditure through resource and intermediate device optimization [14].

SDSmp provides security protection capabilities through security services, where user
demands are transformed into security business requirements. Although the service of
Smp resources greatly enhances developer productivity, it faces three primary challenges:
privacy and security risks, information silos, and pricing mechanisms [15]. In the intercon-
nected device-based IoT, many services collect potentially sensitive and private information
of individual users due to differences in capacity, functionality, and security requirements of
IoT devices, leading to a lack of user privacy protection [16]. Users are a critical component
of the IoT [17], and they expect the security and privacy of their valuable data [18].

Multi-party computation (MPC) enables the secure computation of data while main-
taining data privacy, which has significant potential in machine learning applications [19,20].
With the escalation in IoT terminal devices, the issue of data security is becoming increas-
ingly prominent [21–23]. This paper presents a solution that lowers deployment costs
through the SDSmp architecture and outlines an MPC method for a secure application
plane that safeguards user privacy.

The Smp requires an appropriate scheduling policy to balance cost, resource reuse
rate, load balancing, and security protection capabilities. Smp resources scheduling has
not yet been studied, especially for real-time situations. The current protocols, including
Azure IoT [24], are based on cloud computing and may not be able to meet the quality-of-
service requirements of IoT systems. Given the real-time nature of network security attacks,
improving the security protection of the SDSmp places higher demands on the quality of
service, which is critical for security products with large security infrastructures and large
numbers of user accesses in a fragmented landscape [25]. With today’s increased challenges
of fragmentation and mismatch, the fragmentation of security protection departments and
vendors and the waste of resources due to security infrastructure deployed in multiple
locations are severe [26]. The high cost makes it difficult for the security field to face a
new security crisis. To address the above issues, a DRL-based algorithm for real-time
cost optimization of a multi-party computation software-defined security middle platform
(MPC-SDSmp) is proposed. A detailed algorithm design and implementation are provided,
and a comprehensive performance evaluation is performed through extensive simulations
of different types of workload scenarios.

To address the cost optimization challenges associated with software-defined security
(SDSec), we have made significant efforts to reduce the cost of the SDSmp. The contributions
can be summarized as follows:

• Architecturally, it reduces deployment costs by optimizing the architecture and in-
creasing the reuse of security infrastructure resources. Specifically, SDSmp proposes
an automated control architecture for fragmented security requirements and security
scenarios, realizes real-time scheduling and automatic control of Smp resources, and
makes the security infrastructure physically and geographically independent through
NFV and cloud computing technologies. Multi-party computation (MPC) ensures that
the security application layer is data agnostic and protects user privacy from leakage,
enabling the security infrastructure to achieve resource reuse by building Smp.

• In terms of modeling, an SDSmp cost optimization model is established based on
DRL algorithms so that the intelligent scheduler in the control plane can learn how to
rationally select Smp resources based on real-time experience. This reduces operational
costs and achieves high quality-of-service satisfaction, a low response time, and load
balancing.

• An experimental SDSmp environment is built for implementation. The proposed DRL-
based algorithm for real-time cost optimization of MPC-SDSmp is compared with
existing real-time job-scheduling algorithms under different workload patterns. The
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experimental results show that the proposed method outperforms existing real-time
methods regarding cost, average response time, QoS satisfaction, and load balancing.

Although this article makes commendable contributions, it has limitations. One such
limitation is that, like many other deep learning applications in various fields, the training
process of the proposed method is conducted offline. While offline training can help
minimize costs and prevent the consumption of valuable Smp resources, it also presents
a limitation. However, once the model is trained, it can be deployed in real time during
regular operations without additional offline training.

The rest of the paper is organized as follows: We report the related work in Section 2.
We discuss the problem statement and introduce the proposed architecture model in
Section 3. In Section 4, we formulate how intelligent job scheduling can be achieved with
DRL. We present the performance evaluation of our algorithm in Section 5 and conclude
this work in Section 6.

2. Related Work

Conventional approaches: In the past few decades, extensive research has been con-
ducted on optimizing security infrastructure and IoT devices, and efforts are underway
to enhance traditional methods. To address IoT heterogeneity, unify security infrastruc-
ture and IoT devices, decouple security operations and security control [27], and achieve
unified management of security devices, various custom frameworks have been devel-
oped [10,16,27–32]. However, these frameworks are all based on cybernetic methods, which
have limited performance improvements and are unsuitable for dynamic security scenarios.
The round-robin methods in [29,33] suffer from severe delays and poor service quality,
which is unacceptable for real-world security protection scenarios. Furthermore, the [30]
method lacks the elasticity and scalability required to meet the needs of modern network
security.

On the other hand, optimization algorithms based on linear programming and fixed
strategies [34–37], as well as metaheuristics [38–45], have demonstrated their powerful
capabilities in optimizing resource usage and job processing time. For instance, analyses
on DDoS attacks in software-defined security (SDSec) [26,28,46] have achieved security
protection through access control policies. However, the algorithm in [35] is strictly limited
with limited applicability scenarios, and high-dimensional vectors learned from the source
domain are unsuitable for the target domain. Likewise, the algorithm in [34] is strictly
limited and unsuitable for highly dynamic security scenarios. While that in [36] constructs
an anomaly detection module and a multi-level security response module to deal with
various attacks, the physical infrastructure of security protection needs to be redesigned,
and the control policies in the controller need to be reprogrammed, making it challenging
to deploy. As for the algorithm in [37], security protection is implemented in a single kernel,
with a narrow scope of application and easy to reach performance bottlenecks.

The heterogeneity of security infrastructure and IoT devices implies that deploying
and configuring appropriate security mechanisms requires significant overhead. These
methods often have strict limitations and cannot be used in different scenarios. Almost
all conventional methods aim to address batch processing jobs, which are unsuitable for
real-time, highly dynamic security capability services when processing transaction security
middle platform (Smp) workloads, due to the huge overhead of solving optimization
problems.

Particular methods have been developed to manage computing resources and jobs
autonomously and interactively based on the state of security systems, such as the Monitor–
Analyze–Plan–Execute (MAPE) loop [21,47–52]. Although monitoring the execution of
security capabilities in software-defined network infrastructure is possible [48], it has
limited functionality [49]. SDSec enhances the information security of vehicular ad hoc
networks in large-scale wireless environments with high dynamic topology, but its applica-
bility is limited. This method [50] is unsuitable for rapidly changing security environments
due to poor controller interaction. Therefore, their planning phase still relies on solving
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complex optimization problems. These problems have limited applicability and flexibility,
making them unsuitable for highly dynamic and real-time security environments.

DRL-based methods: In contrast, deep reinforcement learning (DRL) methods have
demonstrated high accuracy and the ability to handle complex control problems with high-
dimensional state space and low-dimensional action space using deep neural networks [53].
DRL technology can effectively address complex decision-making problems [54–56], requir-
ing only minimal training to solve various optimization problems [57]. Indeed, ref. [25]
proposes a method for optimizing quality of service in the cloud and suggests that DRL-
based algorithms are effective for cloud job scheduling in scenarios with variable workloads
and complex decision-making.

Furthermore, reinforcement learning algorithms have been employed in other security-
related fields to optimize routing and improve throughput [58–60], enhance the accuracy
of multiclass classification tasks in intrusion detection [61], defend against distributed
denial of service (DDoS) attacks in a software-defined network (SDN) [62], and improve
system load balancing [63]. In contrast to these previous works, our research aims to use
state-of-the-art DRL techniques to schedule heterogeneous security infrastructure and IoT
devices to reduce deployment and operational costs. This represents a new area of research
in SDSec and the IoT.

Efficient resource scheduling optimization is fundamental to improving the efficiency
of highly dynamic, real-time heterogeneous security infrastructure. This presents a chal-
lenging task. The proposed algorithm based on DRL and multi-party computation software-
defined security middle platforms (MPC-SDSmp) aims to address this issue. The algorithm
optimizes resource scheduling to improve the utilization of Smp resources and reduce
operating costs while protecting user privacy and ensuring security capabilities. Over-
all, the algorithm provides a comprehensive solution for cost optimization and security
enhancement in the IoT and SDSec.

3. Our Scheduling Model

For the SDSec cost optimization problem, from the SDSmp in Figure 1, the MPC-
SDSmp cost optimization architecture based on DRL was designed as shown in Figure 2.
The essence of separating the software-defined [64] control plane and the data plane
is to unify the control plane scheduling for Smp resources in the virtualized resource
pool [18]. On the one hand, it saves costs by avoiding duplicate infrastructure deployment
everywhere. On the other hand, optimizing resource scheduling during operation ensures
performance and reduces costs. Smp, the purpose of a sizeable middle platform and a
small front platform [9], fragmented security requirements, and security scenarios place
higher demands on resource scheduling. Different control plane scheduling algorithms
significantly impact the performance of SDSmp.

First, in the northernmost security application layer, as shown in Figure 2, users access
the system through the foreground application provided by the security application layer.
For SDSec to achieve cloud deployment and user privacy protection, MPC is required for
user data in the foreground application layer [19]. Each user submits data before local secret
generation, as (A) shown in Figure 2, such as homomorphic encryption [20]. Followed by
the grouping of similar terminal geographical locations, similar security business users
form a group, as (B) in Figure 2, leading to secret sharing and exchange. In addition, as (C)
in Figure 2, there is local aggregation by group, and the request of the group with lower
relevance to the user is submitted to the corresponding type of security business in the
security application layer.
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In addition, the foreground security business requests Smp resources in the form of
jobs, and the resources provide the appropriate security in the form of capabilities. Smp
resources encapsulate a specific security infrastructure, eliminating duplicate deployments
of traditional security defenses to reduce costs and ensure user privacy and security. With
the addition of cloud deployments, it is critical that security services can be successfully
provisioned to the right security business. Properly scheduling jobs to the appropriate Smp
resources is essential to solving this problem.

The control plane of MPC-SDSmp is with the security application plane on the north
side and the security middle plane on the south side. The optimization architecture is
shown in Figure 2, with three arrows to distinguish between the control information and
the actual working information during transmission, and the MPC process before the
security application plane is connected to the control plane. A dashed line indicates a
specific example of an Smp. The MPC-SDSmp cost optimization architecture consists of
users, a security application plane, a control plane, a security middle platform (Smp), and
an infrastructure plane. The critical part of the control plane for scheduling is the DRL
scheduler of the resource scheduling module. Other key components, such as job queues,
application management modules, and information collectors, include resource and job
monitors that collect information about Smp resources and foreground jobs in the middle
platform resource pool.

In actual operation, users continuously submit appropriate security business require-
ments to the foreground using endpoint security products in the security application plane
while protecting user privacy through the above MPC process before submission. The goal
of the control plane is to realize the docking of security business and security services,
and release the security protection capability by scheduling appropriate security business
foreground jobs to Smp resources of complementary capabilities.

Reusing resources and providing capabilities in the form of services is the main
thrust of the Smp. Take a network security defense as an example, as shown in Figure 2.
The Smp abstracts the capabilities into line-by-line services, and Smp resources of the
complementary capabilities provide the services. The requests from security applications
are first transformed into the appropriate class-by-class security operations. Then, the
various security services request all required services from the middle platform resource
pool as job requests.

Specifically, various security application requests are first transformed into security
operations by performing parallel classification and refinement at the security application
layer. The security operations submit requests for simple jobs that are highly decoupled,
relatively low demand, and fine-grained. Jobs are assigned to equally fine-grained Smp
resources during scheduling, and they complete the execution of each job in the form
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of provisioned services. The final unified assembly of jobs improves parallelism and
largely avoids the problems caused by logical dependencies, predecessor and successor
relationships, and resource contention between traditional jobs.

The application management module on the control plane analyzes foreground jobs
from the security business and job attributes such as resource utilization, compute power,
memory, required response time, and QoS. The virtualized Smp is deployed in the public
cloud to maximize the benefits of the SDSmp. Smp resources are modeled and encapsulated
into virtual machines (VMs) using IaaS, PaaS, and SaaS technologies.

The job-scheduling process for a complete middle platform pool is as follows. First,
the security business in the application layer completes the MPC and submits the job.
Immediately after that, the application management module analyzes the job type. Then,
the scheduler in the control plane resource scheduling module searches for an appropriate
encapsulated Smp resource virtual machine (VM) in the middle platform resource pool to
assign and execute the job to provide the required security services. Thus, the job scheduler
is the core module that makes decisions based on the QoS requirements of the security
service at a given time interval to make it as cost-effective as possible. In the operating
mechanism corresponding to DRL, the job scheduler assigns a foreground job to a particular
virtual machine in the Smp resource pool, on the basis of which the environment provides
rewards and updates the state, iteratively achieving intelligent learning of the scheduler.
In this process, resource and job monitors are responsible for managing the workload and
performance of the job queue, as well as the execution and assignment of jobs.

To model the optimization problem, the mathematical definitions of the foreground
job load and Smp resources are given below, along with the execution mechanism for
scheduling, using the notation shown in Table 1.

Table 1. Notations used in our scheduling model.

Notation Meaning

Jid The ID of the foreground job
Jat The arrival time of the foreground job
Jt The type of the foreground job
Jl The length of the foreground job
Jq The QoS requirement of the foreground job
Jrt The response time of the foreground job
Jet The runtime of the foreground job
Jwt The waiting time of the foreground job
Jcos t The cost of the foreground job
Vid The ID of Smp resource (VM)
Vt The type of Smp resource (VM)
Vp

com The computing processing speed of Smp resource (VM)
Vp

io The IO processing speed of Smp resource (e.g., instructions per second)
Vit The available time of Smp resource (VM)
cos tVMe The execution cost of Smp resource (VM) per time unit
cos tVMs The start-up cost of Smp resource (VM)
RQoS The reward function reflecting QoS satisfaction
Rcos t The reward function reflecting user satisfaction with costs
R The reward function of DRL

Sat Whether security operations are successfully dispatched and security protections
take effect

3.1. Foreground Job Characteristics

Security operations call security services as foreground jobs. The design of security
operations and security services dramatically reduces the coupling, correlation, and de-
pendency between jobs. Furthermore, since this paper focuses on using DRL to handle
security operations that require a real-time response in the SDSec domain, the cost of SDSec
is reduced in an automated, real-time, cost-aware manner. Based on the above, it can be
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assumed that the operations in the real-time scenario are independent of each other, and
operations cannot interfere with each other during execution. To reduce the myriad of possi-
ble actions in the DRL, an event-driven decision mechanism is introduced that analyzes the
foreground job in real-time as soon as it reaches the control plane. This information is used
to train the job-scheduling mechanism. For the proposed model, two typical types of jobs
are considered: compute-intensive jobs and I/O-intensive jobs. The following parameters
are modeled for the jobs coming from the foreground security operations:

Ji =
{

Jid
i , Jat

i , Jt
i , Jl

i , Jq
i

}
(1)

where Jid
i is the foreground job ID, Jat

i is the job arrival time, Jt
i is the job type, Jl

i is the job
length, and Jq

i is the QoS requirement of the job (fixed length period). Moreover, Jq
i reflects

the foreground service’s expected completion time and security level requirement.

3.2. Security Middle Platform Resources

Security middle platform (Smp) resources provide protection capabilities for security
operations through security services. Virtualized Smp is deployed in the public cloud
to maximize the benefits of a cloud-based, software-defined security middle platform
(SDSmp). Smp resources are encapsulated in virtual machines (VMs) using IaaS, PaaS,
and SaaS technology models. In the SDSmp job-scheduling model, Smp resources, which
correspond to clusters of virtual machines (VMs), are the logical execution units. The actual
physical execution unit is the specific infrastructure plane security appliance. The infras-
tructure plane is functionally mapped to different VM clusters through NFV technology
and cloud computing [65] to achieve logical device independence.

When scheduling jobs, because the jobs submitted by the foreground security oper-
ations may differ, they have different response times for execution on different types of
Smp VMs. Similar to the job load, consider two types of Smp resources: I/O-intensive
VMt1, which connects to data-intensive devices such as monitors at the infrastructure
layer, and compute-intensive VMt2, which connects to compute-intensive devices such as
data encryption and decryption modules at the infrastructure layer. Each Smp resource is
defined as:

Vj =
{

Vid
j , Vt

j , Vp
comj , Vp

ioj
, cos tVMe

j , cos tVMs
j

}
(2)

where Vid
j is the Smp resource ID, Vt

j is the Smp resource type, Vp
comj is the computing speed

of the Smp resource, and Vp
ioj

is the IO speed of the Smp resource. In addition, cos tVMe
j

is the hourly cost of using or renting Smp resources, which differs for different types of
security middle platform resources. cos tVMs

j is the start-up cost of the Smp resource (VM),
which is negligible.

3.3. Job-Scheduling Mechanism

After the scheduling decision, when a job is assigned to a particular Smp VM instance,
the job enters a wait queue, Li

j. Without loss of generality, it is assumed that each VM
instance can exclusively execute only one job in its wait queue at any given time. The job
scheduler is the core component that assigns jobs to Smp resources in the appropriate pool
of Smp resources on the basis of the requirements of the security business. If the wait queue
is empty, the assigned job will smoothly pass through the queue to the virtual machine and
be executed immediately; otherwise, it will enter the wait state first. According to the above
assumptions, the response time of a job consists of two parts: wait time and execution time,
and the response time can be expressed as:

Jrt
i = Jet

i + Jwt
i (3)

where Jrt
i is the job response time, Jet

i is the job execution time, and Jwt
i is the job wait

time. The job execution time varies depending on the scheduling of different types of Smp
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resources. As mentioned earlier, the job transfer time for an exact fixed type of foreground
job is negligible because each Smp resource operates in parallel [66]. Furthermore, the
main factor affecting the job execution time on the middle platform resource is the length
corresponding to that job type; the length of other types of jobs is truncated in comparison,
can be ignored, and has no practical impact. Therefore, the job execution time is defined as:

Jet
i = max(

Jl
comi

Vp
comj

,
Jl
ioi

Vp
ioj

) (4)

where Jet
i is the job execution time, Jl

comi
is the required computation length of the job, and

Jl
ioi

is the required IO length. Vp
comj is the computation processing speed of the Smp resource,

and Vp
ioj

is the IO processing speed of the Smp resource. The job type that corresponds to
the length is the primary influencing factor. However, a job can be scheduled to a matching
or different type of Smp resource, similar to Cannikin Law [67]. If the job type matches
the resource type, the job execution time is short due to the strong performance of the
corresponding type of Smp resource. If it does not match, the job execution time is much
longer due to the weak performance of the corresponding type of Smp resource. In addition,
the job wait time affects resource scheduling, and the wait time is defined as follows:

Jwt
i =

{
0, if Li

j= 0

∑i
n=0 Jet

n , else
(5)

where Jwt
i is the job wait time. If the wait queue is empty, the job is executed immediately.

Otherwise, it must wait. The wait time is the sum of the execution times of all the previously
arrived jobs. Jet

i is the job execution time. When the foreground job Ji is scheduled for
resource Vj and completes processing, the free time of the Smp resource is updated as
follows:

Vit
j = Jwt

i + Jat
i + Jet

i (6)

Smp resources enable the SDSmp in the form of services and provide appropriate
security protection for security services in foreground job execution. A proper balance of
cost, load balancing, and QoS is necessary for the Smp and scheduling systems. The SDSmp
allows end users to specify QoS requirements on the basis of security protection levels when
submitting foreground job requests. Security services often have strict deadline response
time requirements, especially in real-time environments. The QoS requirements for security
services are defined as the maximum acceptable response time for a foreground job. QoS
satisfaction is defined by the following formula to determine the success of scheduling each
foreground job:

Satij =

{
1, Jrt

i 6 Jq
i

0, Jrt
i > Jq

i
(7)

Each foreground job and service request of the security service has a different exe-
cution deadline (expectation) depending on the security protection level. Assume that
the execution result of the Smp resource can be returned within the deadline. In this case,
the scheduling execution is successful, the QoS requirements are met, and the security
protection capability takes effect. Otherwise, the job request is canceled, and this schedul-
ing execution fails. For the security service to execute successfully, contacting the front
office and re-executing the alternate job after updating the QoS requirements due to the
scheduling failure is necessary. Foreground job costs are defined as follows:

Jcos t
i = Jet

i × cos tVMe
j + cos tVMs

j (8)

where Jcos t
i is the execution cost of the job, and Jet

i is the actual execution time of the job on
the Smp resource. cos tVMe

j is the usage cost of the target Smp resource to which the job is
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dispatched, and cos tVMs
j is the startup cost of the target Smp resource. Since Smp resources

are deployed in the cloud, they are occupied when scheduled and released immediately
after use, and each startup time is short. The data transfer and job execution are parallel
to the design of the wait queue, and the transfer time is negligible compared to the run
time [66]. Thus, only the run-time cost needs to be considered in the actual job operation
cost.

4. Methodology

As shown in Figure 2, in the SDSmp, Smp resources of different capabilities provide
different services, and all these capabilities constitute various security protection means.
Furthermore, specific security business scenarios correspond to specific security applica-
tions, which submit jobs in the form of security business to apply for the services of the
Smp.

Security research has identified various fragmented security infrastructure functions
spread across multiple locations and with many redundancies. How to efficiently utilize
them to reduce redundancy and cost has always been a problem. The purpose of creating
reusable and geo-physically independent Smp resource pools is to address the challenge of
security infrastructure fragmentation and reuse. The proliferation of new fragmentation
attacks is creating a dizzying array of security protection requirements, and individual
companies and organizations are acting like isolated information silos [15], repeatedly
building wheels. Therefore, all kinds of security operations are designed in the SDSmp.
The development and deployment of security applications in the security application layer,
similar to the portal that provides users with multiple security protection means, solve the
problem of repeated development and fragmentation.

In this paper, the MPC-SDSmp is used to reduce the deployment cost. Then, we
reduce the operating cost of Smp by automating the real-time cost awareness and ensuring
high-security service QoS satisfaction and low load balancing rate. Finally, a reliable and
low-cost real-time scheduling policy is generated for Smp resources. The QoS scheduling
is considered successful if each security service corresponding to the security protection
completes the service within the expected time, as shown in Equation (7). If the services
are completed within the expected time, the scheduling is considered successful, the
security protection fails, and the job requirements can be satisfied. The quality-of-service
requirements for security services are positively correlated with the security level. The
higher the level, the higher the real-time responsiveness required for security services
and the tighter the time constraints. In addition, security business quality-of-service
requirement is negatively correlated with cost and load balancing, which are in direct
conflict. The higher the QoS requirement, the tighter the deadline, the greater the number
of redundant Smp resources required, and the higher the load balancing rate.

Cost optimization in multivariate real-time environments is a significant challenge
in SDSec because the fragmentation and mismatch between security protection means
and business scenarios lead to difficulties applying mainstream cost optimization schemes
and performance degradation. Traditional cybernetic and heuristic-based scheduling
algorithms are difficult to apply, so we propose a DRL-based algorithm for real-time
cost optimization of MPC-SDSmp. In addition, the model training phase is performed
offline, and the operational decision phase is performed online, which means only valuable
common Smp resources are occupied and the algorithm can be better adapted to changing
security scenarios.

For the sake of clarity, the definitions of all symbols used in our DRL-based algorithm
are given in Table 2.
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Table 2. Notations used in our DRL-based scheduling.

Notation Meaning

RQoS The reward function reflecting QoS satisfaction
Jet The runtime of the foreground job
Jrt The response time of the foreground job
Jq The QoS requirement of the foreground job
Rcos t The reward function reflecting user satisfaction with costs
λ The hyperparameter is used to indicate the maximum cost max(Jcos t) of the job
Jcos t The cost of the foreground job
R The reward function of DRL
Ruturn The return function of DRL
γ The discount factor of DRL
Q The Q-value function of DRL
A Action space
S State space
t The current time
θ The random parameters of Q
B The training minibatch
φφtarget Fixed parameters when calculating the MSE loss
ε The exploration rate
f The learning frequency
S∆ The minibatch
η The replay period
∆ The replay memory

4.1. Basics of DRL

Deep Q-learning (DQN) is a model-free reinforcement learning (RL) [53] algorithm
where the agent requires little input of a priori knowledge. The reinforcement learn-
ing model consists of environment, agent, action, state, reward, and a value function,
Q : S×A⇒ R , that aims to predict the action that maximizes the reward. The return
function, Ruturn, is based on the reward function. The agent makes decisions through
trial-and-error interactions, and after each executed action, the environment moves to the
next new state, St+1. At the same time, the agent receives a reward, Rt. The experimental
replay mechanism is continuous [25].

Ruturn =
n

∑
t=0

Rtγ
t (9)

where γ is the discount factor that weights future rewards to guide whether the model
focuses more on current or on possible future rewards, and Ruturn is a weighted accumu-
lation of all Rt from start to finish. The most common loss used for training is the mean
squared error (MSE) loss, which can be expressed as:

minφ

|B|

∑
i=1

(rti + γmaxâ∈AQφtarget(sti+1, â)−Qφ(sti , ati ))
2 (10)

where B is the training minibatch and φtarget is fixed when calculating the MSE loss, rt is
the reward obtained by taking action for state st, and γ is the discount factor, and its value
lies in (0,1). The agent uses the rewards generated by the deep neural network (DNN) to
feedback to the environment and makes decisions about specific states. All state–action
pairs are correlated.

4.2. Our DRL-Based Scheduling

As shown in Figure 3, two types of arrows are used to indicate the data transmitted
and the functions represented. Cost marked in red is the main optimization objective. The
SDSmp control plane schedules the foreground jobs from the security application plane’s
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security operations. First, the application management module cleanses and categorizes
them into different job types. Agents in the resource scheduling module coordinate with
the resource pool management module to assign each job to an Smp resource in the resource
pool of the most appropriate type. Smp resources provide automized security services that
provide appropriate security capabilities to foreground jobs. The final job is executed in the
encapsulated, mapped security infrastructure layer.
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In an Smp environment, the characteristics and types of incoming workloads are un-
predictable. RL-based models perform well in such variable scenarios because they require
minimal input of a priori experience, such as state shifts and other system information. In
each decision iteration, the RL agent observes the current state of the environment and then
uses DNN to estimate the Q-values of all Smp resources available in the pool. It also trains
itself to improve future decisions.

Depending on the policy, an instance is selected from the Smp resources pool to
perform the job and receive the reward. Due to the ample state space, the training time of the
DNN can also be considerable. To avoid this situation, an event-driven decision mechanism
is used. Based on this mechanism, the intelligent agent of the resource scheduling module
makes a real-time decision when a new job arrives. All jobs follow the first-come, first-
served (FCFS) principle. When a job arrives, it must be assigned to the SDSmp resource
pool. The real-time decision mechanism also reduces the number of optional actions. The
proposed approach is divided into two phases: decision and training, as described below.

The deep Q-learning technique assigns jobs to appropriate VM instances of Smp
resources. Decisions are made based on specific requirements, and agents are rewarded
accordingly. The agent checks to update the current state of the environment to make the
next possible decision. The following are the critical components of the reinforcement
learning model.

4.2.1. Action Space

Action space (A) is the set of actions that an agent can perform in a given environ-
ment [53]. Action space can be represented as the set of the total number of Smp resource
VM instances in all resource pools described by A, and includes assigning a foreground
security operation to a particular instance in the Smp resources pool. The length can be
represented as the number of all available Smp resources [25]. Each virtual machine has
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its queue to hold incoming job requests. There is no limit to the length of incoming job
requests.

A = { ati |ati ∈ VMt1 ∪VMt2} (11)

where VMt1 and VMt2 refer to different types of Smp resources to provide security services
to different types of foreground jobs, for example, set VMt1 as a high-CPU-type Smp
resource and VMt2 as a high-I/O-type Smp resource.

4.2.2. State Space

State space (S) is the set of all possible states that the agent updates based on actions
that generate a finite state space [53]. For an SDSmp, a new foreground security service
submission of job i arrives at time t. The overall state of Smp resources and the job’s current
state can describe the state space at that time.

S =
{

sti |sti ∈ Sjob ∪ SVM

}
(12)

where SVM is the state of all Smp resources for the job i arriving at time t, and Sjob is the
current state of jobs to schedule.

4.2.3. Action Selection and State Transition

Our model takes actions considering the current state and the predicted future state
from the Q-value from the DNN. Firstly, the algorithm allocates the jobs randomly on
the Smp resource VM for which the probability would be ε, and the value of ε gradually
decreases as the algorithm learns. The agent randomly allocates the jobs and explores
several possibilities with the greedy policy. The highest predicted Q-value would be
selected here. As the jobs are allocated, the state changes. The state will transfer from St to
St+1.

4.2.4. Reward Function

Reward function (Ri). After acting on the current state, St, the system updates to state
St+1 and receives a reward, Ri, from the environment. In each iteration, the environment
gives a reward. The reward is positive or negative, depending on the action. The agent
can receive different rewards for actions, and the reward function guides the agent to
make intelligent decisions for the goals of the job-scheduling framework. In this model,
the optimization goal of job scheduling is low cost with high QoS. Therefore, the reward
function Ri consists of two components, Rcos t

i and RQoS

i . The lower the cost, the higher the
Rcos t

i , and the higher the QoS satisfaction, the higher the RQoS

i . The execution failure for Ri
is 0. For each job that satisfies the QoS requirements, the smaller the response time and the
higher the service quality satisfaction. Based on this, the QoS reward for a job is defined as
follows:

RQoS
i =

{ Jet
i

Jrt
i

, Jrt
i 6 Jq

i

0, Jrt
i > Jq

i

(13)

where Jrt
i is the job response time, Jq

i is the QoS requirement time, and Jet
i is the job

execution time. If, and only if, the job response time is less than the QoS requirement time,
the scheduling meets the QoS requirement, and the scheduling succeeds; otherwise, it fails.
This is critical to the security business because a failure of the foreground job scheduling
means that Smp resources cannot successfully provide the security protection capability to
the security business within the specified time. For the security service to run successfully,
it must report back to the foreground and re-execute the alternate job after updating the
QoS requirements due to the scheduling failure.

Rcos t

i = − 2
π

arctan(Jcos t
i − λ) (14)
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where Jcos t
i is the job execution cost and λ is the hyperparameter representing the maximum

cost, max(Jcos t
i ), of the job. As shown in Figure 4, the image of the reward function, Rcos t

i ,
decreases nonlinearly with the job cost, Jcos t

i . When the cost tends to 0, the user is more
tolerant of the cost change, and Rcos t

i changes very slowly. When max(Jcos t
i ) cost tends to

be maximum, Jcos t
i
λ tends to be 1, and the user can hardly accept the high price, and Rcos t

i
drops to 0 quickly.
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The reward function, Ri, is defined as follows:

Ri = Rcos t
i ×RQoS

i (15)

If RQoS

i = 0, scheduling fails and Ri is 0; otherwise, scheduling succeeds. RQoS

i corre-
sponds to QoS satisfaction. The higher the satisfaction is, the higher RQoS

i and Ri are. Rcos t
i

responds to user satisfaction with the price. The lower the cost is, the higher Rcos t
i and Ri

are, and the trend of Rcos t
i is shown in Figure 4.

4.3. Training Phase

The details are shown in Algorithm 1. To learn from experiences, DRL stores the
transition values of the current state, action, reward, and next state in the replay memory ∆
with capacity N∆. Moreover, the parameter θ of the DQN is updated using a minibatch data
set that contains S∆ samples randomly chosen from replay memory ∆. The storage time is
after each U decision set to avoid excessive time complexity, U > 1. The experience replay
mechanism learns from random samples, which reduces data correlation and reduces
the variance of θ. Q-values are generated using the target network, and the divergence
and oscillations of the DNN are eliminated using the target network and the evaluation
network, which have the same structure but different parameters [55].

As with deep learning applications in other domains, the training process of the
proposed method is performed offline, which maximizes cost savings and avoids tying up
valuable Smp resources. Once the model is trained, it can be scheduled in real time and
does not need to be trained offline again in subsequent normal operations. Specifically,
the hidden layer of the model uses 20 neurons, and the overhead is close to 0 when the
model is not large, while the scheduling time is always less than 10 ms, which is practically
negligible.
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Algorithm 1: The DRL-based algorithm for real-time cost optimization of the MPC-SDSmp

1: Input: initial ε, α, γ, learning frequency f , start learning time τ, minibatch S∆, replay period η

2: Initialize replay memory ∆ with capacity N∆
3: Initialize evaluation value function Q with random parameters θ

4: Initialize target value function Q̂ with random parameters θ′

5: for each new job j arrives at tj do
6: with probability ε randomly choose an action; otherwise Aj = argmaxAQ(Sj, A; θ)

7: Schedule job j according to action Aj, receive reward Rj, and observe state transition at
next decision time tj+1 with a new state Sj+1

8: Store transition (Sj, Aj+1, Rj+1, Sj+1) in ∆
9: if j > t and j ≡ 0 mod f then
10: if j ≡ 0 mod η then
11: Reset Q̂ = Q
12: end if
13: randomly select samples S∆ from N∆
14: for each transition (Sj, Aj+1, Rj+1, Sj+1) in S∆ do
15: targetk = rk + γmaxA′ Q̂(Sk + 1, A′; θ′)

16: update DNN parameters θ with a loss function of targetk −Q(Sk, Ak; θ)2

17: end for
18: Gradually decrease ε until to the lower bound
19: end if
20: end for

5. Evaluation

A series of experiments were conducted to evaluate the proposed DRL-based real-time
cost optimization algorithm of the MPC-SDSmp and to compare it with five standard real-
time job-scheduling methods. First, the experiments were reasonably set up and simplified
as necessary to ensure they were smooth and convincing. Then, the proposed model and
parameters in the comparison method were illustrated, the five control methods and each
parameter description were introduced, and then three different workload models were set
up to simulate the actual situation. Good simulation experiments were conducted to verify
that the proposed algorithm can adapt to different types of environments. In the experi-
mental results of each set of simulated environments, the reader can see the advantages
and improvements of the proposed method for the SDSmp. Long-term experiments were
also conducted to demonstrate the performance of the algorithm further. The experimental
hardware–software configuration was Python3 (Python Software Foundation), TensorFlow
(Google), using a 2.7 GHz Intel Core i5 processor and a machine (DELL) with 16 GB of
RAM.

5.1. Experimental Framework

Consider the Smp resources pool that has been pooled and virtualized on the Smp,
shown as different types of application programming interfaces (API) with different perfor-
mances invoked uniformly for the resource pool management module on the control plane.
To simplify the experiment, Smp resources of the pool were set to be of high-CPU type and
high-I/O type. The jobs passed to the control plane from the application plane application
management module were always compute-intensive and I/O-intensive.

The control plane schedules jobs from the northbound application plane to the Smp
for execution. Security business foreground jobs run fast when scheduled on the same
type of Smp resources and run slowly when running different types of jobs. The average
processing capacity of Smp resources to handle different types of jobs is shown in Table 3.
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Table 3. Average processing capacity of security middle platform resources.

Computing-Intensive Job IO-Intensive Job

High-CPU Smp resource AVG 1000 MIPS
STD 100 MIPS

AVG 500 MIPS
STD 50 MIPS

High-IO Smp resource AVG 500 MIPS
STD 50 MIPS

AVG 1000 MIPS
STD 100 MIPS

In the experiments, job lengths were generated by default from a normal distribution
with a mean of 100 MIPS and a standard deviation of 20 MIPS. Each job’s QoS requirements
(i.e., acceptable maximum response time) were generated uniformly and randomly between
250 ms and 350 ms. New arrival job types were chosen uniformly and randomly between
compute-intensive and IO-intensive types. The probability distributions of job arrival rates
and job types were refreshed every 5 s in a cycle. For each simulated workload pattern, the
experiments randomly generated 20 instances of safe middle resource VMs and tracked
each safe resource for 300 s from start to finish of operation.

Moreover, the MPC-SDSmp cost optimization architecture based on DRL uses a
feedforward neural network to construct the underlying DNN, which has a fully connected
hidden layer with 20 neurons. We set the capacity of reply memory N∆ to be 1000, and
the size of the minibatch, which helped to reduce the correlation in data S∆ to be 40. The
AdamOptimizer algorithm was used to evaluate the network parameters with a learning
rate of 0.01. Moreover, parameters were cloned from the evaluation network to the target
network every 50 decision sets. After enough transition samples were accumulated in
the replay memory, the DNN started training. We set τ = 500, f = 1, γ = 0.9, and ε to be
decreased from 0.9 by 0.002 in each learning iteration.

5.2. Baseline Solutions

To evaluate the performance of the proposed MPC-SDSmp cost optimization ar-
chitecture based on DRL (denoted as DQN), we compared it with five other standard
methods: random scheduling method [28,30], round-robin scheduling method [29,33],
earliest scheduling method [10,16,31,32], suitable scheduling method [42,45], and sensible
scheduling method [44].

Among the standard cybernetic scheduling algorithms, the random scheduling
method [28,30] is straightforward and chooses a random VM instance for each job. The
round-robin scheduling approach focuses primarily on scheduling jobs to VM instances. As
a result, VM instances are selected in a round-robin [29,33] order to execute incoming jobs.
The earliest scheduling method [10,16,31,32] is a first-come, first-served policy in which
newly arriving jobs are scheduled on the earliest available VM instance.

The suitable scheduling method [42,45] is a greedy algorithm that tries to make the best
choice. Unlike the earliest scheduling methods, the suitable scheduling method considers
two factors, the time factor and whether the type of the selected VM instance matches
the type of the newly arrived job. It always reduces execution time by finding the local
optimum, not the overall optimum, and by assigning the job to the correct type of VM
instance. This means the suitable scheduling method assigns newly arrived jobs to the first
busy VM instance of the correct type.

The sensible scheduling method [44] is an adaptive heuristic algorithm that uses a
random routing policy based on the expected QoS, i.e., the average job response time. Jobs
are assigned to VM instances with a higher probability of a lower average response time.
The sensible scheduling method requires a continuous observation time D and a discount
factor a. The experimental settings were D = 5 s, a = 0.7, and D = 0.2 s, a = 0.7.

We used four different metrics to evaluate the performance of each method [25]. The
first metric was QoS satisfaction, which measures how many jobs are completed. This
scheduling satisfies the QoS requirements, and the scheduling is successful if and only
if the response time of a job is less than the predefined QoS requirements. The second
metric was average response time, which measures the average time it takes to process
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each job. The third metric was cost, which measures the cost of operating all Smp resources.
The fourth metric was the load balancing rate, which measures Smp resources utilization.
Generally, the lower the load balancing rate is, the better the scheduling method is. In other
words, to handle jobs of the same intensity, an efficient scheduling method will use fewer
resources in the scheduling process and ultimately have a lower load balancing rate.

In addition, we set up three different workload patterns [25], and the job arrival rates
of the workloads were randomly generated according to a regular pattern, as summarized
below in Table 4, showing the parameters of the three simulated workload patterns of
the experimental environment. The probability distribution of the job types changed
continuously with time.

Table 4. Generation of load modes.

Workload Modes Arrival Rate AVG (%) STD (%)

Random [0, 100] 53.53 29.51
Low-frequency [20, 40] 30.07 6.36
High-frequency [60, 80] 70.32 5.57

5.3. Experiment Results and Analysis

The experimental results are shown in the following figures. In job arrival rate figures,
which correspond to the job type distribution and job arrival rate, the line graph shows
the job arrival rate, and the bar graph shows the actual number of jobs. Blue indicates
compute-intensive jobs, and yellow indicates I/O-intensive jobs. The horizontal coordinate
corresponds to the time (s) variation. In other figures, the average response time and
QoS satisfaction, which are the focus of the SDSmp, correspond to the time (s) variation
in the horizontal coordinate and the average response time or satisfaction in the vertical
coordinate, and the different shapes of the line graph correspond to the performance of
different methods.

In addition to the three workload modes in a shorter period, we also conducted
experiments over a longer time. In addition, Table 5 shows the result in three workload
modes, random, low-frequency, and high-frequency, for up to 2 h in addition to the first
40 s. The reason for removing the first 40 s was to eliminate the interference caused by the
offline training phase on the real-time scheduling and formal operation. Compared with
the existing methods, the proposed method can reasonably schedule the foreground jobs to
Smp resources cost-consciously and improve the performance in all the different workload
modes after a short learning adaptation. Specifically, it not only reduces the cost by 13.6%
but also ensures load balancing, improves the quality-of-service satisfaction by 18.7%, and
reduces the average response time by 34.2%.

Table 5. Experimental results of the different workload modes.

Workload Modes Metric DQN Random RR Earliest Suitable SensibleR

Literature Proposed [28,30] [29,33] [10,16,31,32] [42,45] [44]

Random

Cost 312.82 363.32 365.46 364.77 346.01 369.39
QoS satisfaction 96.2% 51.3% 75.3% 74.4% 81.2% 47.8%
Balancing rate 62.8% 73.1% 72.6% 75.7% 68.1% 78.2%
Response time 0.203 0.712 0.426 0.421 0.275 1.116

Low-frequency

Cost 109.30 123.32 122.32 128.57 118.56 121.74
QoS satisfaction 99.9% 99.5% 99.9% 99.9% 99.9% 98.4%
Balancing rate 26.8% 29.8% 27.7% 29.4% 28.6% 33.7%
Response time 0.115 0.237 0.163 0.158 0.057 0.254

High-frequency

Cost 556.52 893.13 895.25 871.77 817.08 893.14
QoS satisfaction 93.7% 11.4% 12.6% 13.8% 70.3% 12.2%
Balancing rate 73.2% 98.4% 91.7% 97.4% 76.8% 98.1%
Response time 0.357 11.637 10.362 3.527 0.658 11.246
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5.3.1. Random Workload Mode

First, a random workload model with significant variations was used to test the
model’s performance.

As shown in Figure 5, the job arrival rate for the random workload mode was randomly
generated in the range of [0, 100]% with a mean of 266.65 (requests/s) and a standard
deviation of 147.56 (requests/s). The job type was refreshed every five seconds, and the job
and workload types were randomly generated.
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As shown in Figures 6 and 7, all load queues are empty for initialization, and the first
five seconds are flooded with jobs, all methods perform poorly but function, usually taking
5 to 20 s, and the requested job arrival rate is low at 8% to 35%/s; none of the methods
can make up the difference and perform well. Between 25 and 125 s, due to a sudden
increase in jobs and being kept in a high-frequency state, the waiting queues are overloaded
and all methods are affected by the blockage. From 125 s to the end of 300 s, jobs are not
continuously entered at a high frequency, the job queue is no longer severely blocked, and
the Smp scheduling is orderly, with the best results for the suitable and DQN methods.
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Overall, the proposed method is in an active training phase before 50 s and cannot pull
apart. Around 50 s, it can be seen that the DQN method gradually completes its training,
adapts to this workload pattern, and pulls away from the other methods. After that, during
the high- and low-frequency variations the proposed model performs best and is better
than the suitable method.

As shown in Table 5 for the random load pattern, DQN achieves the lowest cost, an
average response time and load balancing rate, and the highest QoS satisfaction. Suitable
performs second best, while the random and sensitive methods perform relatively poorly.

5.3.2. Low-Frequency Workload Mode

A low-frequency workload mode was set to test the algorithm’s performance in the
Smp’s most common low-frequency idle usage scenarios.

As shown in Figure 8, the job arrival rate for the low-frequency workload model was
randomly generated in the range of [20, 40] with a mean of 30.07% and a standard deviation
of 6.36%.
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Combined with the low-frequency load pattern shown in Table 5, several algorithms
perform well in the low-frequency state, with generally low average response times, high
QoS satisfaction, and low load balancing. The suitable method achieves the lowest average
response time and the best performance; DQN has the lowest cost. As shown in Figure 9,
after the initial 40 s training period, the DQN method gradually exceeds the average
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response time of all methods except the suitable method. Then, it runs smoothly close to
the best-performing suitable method. As shown in Figure 10, the QoS satisfaction of the six
methods in the low-frequency mode fluctuates only slightly for the sensible method, and
the overall performance is good.

Information 2023, 14, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 8. Job arrival rate in low-frequency workload mode. 

 
Figure 9. Average response time in low-frequency workload mode. 

 
Figure 10. QoS satisfaction in low-frequency workload mode. 

Figure 9. Average response time in low-frequency workload mode.

Information 2023, 14, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 8. Job arrival rate in low-frequency workload mode. 

 
Figure 9. Average response time in low-frequency workload mode. 

 
Figure 10. QoS satisfaction in low-frequency workload mode. Figure 10. QoS satisfaction in low-frequency workload mode.

5.3.3. High-Frequency Workload Mode

A high-frequency workload mode was set to test the algorithm’s performance in
demanding usage scenarios in the Smp, such as explosive user usage and consistently high
frequency.

As shown in Figure 11, the job arrival rate for the high-frequency workload model
was randomly generated in the range of [60, 80] with a mean of 70.32% and a standard
deviation of 5.57%.
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As shown in Table 5 for the high-frequency load pattern, the extremely high frequency
state of the settings brings the environment close to collapse, and most algorithms have
difficulty adapting to this ultra-high-intensity pattern. All methods other than DQN and
suitable fail to work correctly, with low load balancing rate and low QoS satisfaction perfor-
mance. In contrast, DQN and suitable work normally, and suitable suffers from degraded
performance due to high frequencies. DQN has the highest QoS satisfaction, lowest aver-
age response time, lowest load balancing rate, lowest cost, and superior performance in
uncertain or extreme environments.

As shown in Figures 12 and 13, the average response times of random, round-robin,
and earliest continue to increase until the system fails. Their QoS satisfiers are all close
to 0 after 80 s. While suitable stays up and running in high-frequency workload mode,
the average response time is almost always below 2500 ms. The QoS satisfiers are almost
always above 40%, but fluctuate widely. The DQN algorithm, on the other hand, always
performs at a very high level, with QoS satisfaction ranging from 70% to 95% for the first
30 s, but close to 100% for the rest of the time, and the training time to adapt to the new
workload mode is reduced to 20 s.
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5.3.4. Experimental Analysis

In the experimental results of the above three workload modes, by comparing the
proposed method with five existing real-time methods, it can be seen that the proposed
Smp resource scheduling algorithm is suitable for various scenarios and outperforms other
algorithms, and the following conclusions can be summarized:

• As the number or frequency of input jobs increases, the average response time of the
DRL-based algorithm for real-time cost optimization of the MPC-SDSmp increases.
Comparing the low-frequency and high-frequency workload modes, the proposed
algorithm shows a more significant advantage in the high-frequency workload mode,
especially when it is already obvious that the other methods do not work correctly.
Suitable and the proposed algorithm still meet the availability. The proposed method
is the only one among the six methods that maintains a high performance and stability,
has a low average response time, the lowest load balancing rate, the lowest cost, and
the highest QoS satisfaction.

• Compared to the random high-frequency workload model, the proposed algorithm is
based on training experience. It has good robustness after training, making it easier to
handle an unknown number of job types and more suitable for real-time environments.
By encapsulating the structure, the software definition also removes the Smp from the
application and infrastructure layers, improving security.

• The complete training phase from 0 s to 40 s and the subsequent execution phase
during the experiment are shown in Figures 5–13 instead of showing the real-time
scheduling separately from the offline pretraining. It is important to emphasize that
the focus is on real-time scheduling, cost, and QoS optimization of Smp resources, not
offline training. Because the offline training is done locally and does not occupy the
cloud Smp resources, the consumption of Smp resources is almost 0. After the training
is completed, the scheduling can be done directly. In addition to the training being
completed offline, as shown in Figure 8 in low-frequency time (late at night), the Smp
business and service switching process provides optional smooth online senseless
deployment. The advantage of online deployment is that redeployment of the new
Smp service does not interrupt the original service. There is no need to shut down
the system to retrain. Only the new service needs to be online after offline training.
The training copy can be senselessly switched during the regular operation of the
original service, which has better scalability and fault tolerance with minimal cost
difference. Therefore, the method shows good stability and robustness in the variable
SDSmp environment and itself has a specific resistance to attacks and disaster recovery
capabilities, making it more applicable.
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• The load balancing rate metric visualizes the degree of resource utilization and over-
head during the actual operation of the different schemes. As shown in Table 5, both
this and the suitable method achieve advantages over existing real-time methods in
terms of long-term operational performance under the three workload modes. The
low-frequency simulation of the quiescent environment is performed smoothly by all
methods, and the load balancing rates are similar. In the high-frequency and random
load modes, because both the present method and suitable have the characteristic of
learning, in the continuous operation process the other methods fall far behind. In
the high-frequency load mode, the other methods enter the performance bottleneck
and cannot operate normally. However, the current and suitable methods still work,
proving they are still available in large-scale, high-load operation scenarios. The
advantages of this method in terms of cost and load balancing are apparent.

6. Conclusions and Future Works

We address the security challenges and essential protection requirements of critical
information infrastructure to solve the difficulty of applying existing cost-optimized solu-
tions and performance degradation in SDSec and IoT scenarios. To address the mismatch
problem between security protection means and business scenarios, we propose the SDSmp
automatic control framework for fragmented security requirements and security scenarios
to reduce deployment costs by improving the reuse rate of security infrastructure resources.
We use MPC to protect user privacy from leakage. We propose an MPC-SDSmp cost
optimization architecture to achieve real-time automated control and reduce costs. The
DRL-based algorithm for real-time cost optimization of the MPC-SDSmp is proposed to
further reduce the operation cost.

Furthermore, it is compared with the current mainstream real-time methods. The
experimental results under three load modes show that the proposed method not only
reduces the cost by 13.6% but also improves the quality-of-service satisfaction by 18.7%,
reduces the average response time by 34.2%, has load balancing, and has good robustness
more suitable for the real-time environment.

As future works, to enhance the effectiveness of the proposed DRL algorithm in op-
timizing Smp resource scheduling, our plans include applying it in a more diverse and
fragmented highly dynamic real-time security scenario. We will also train our agents to ad-
dress complex real-world problems, such as partial security protection failure, foreground
job pre- and post-related issues, and cloud-based automatic configuration, with the aim of
reducing costs even further. This will provide a more comprehensive and efficient solution
for cost optimization and security enhancement in IoT and SDSec.
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