
Citation: Shi, K.; Wang, M.; Tan, X.;

Li, Q.; Lei, T. Efficient Dynamic

Reconfigurable CNN Accelerator for

Edge Intelligence Computing on

FPGA. Information 2023, 14, 194.

https://doi.org/10.3390/

info14030194

Academic Editors: Lorenzo

Carnevale and Massimo Villari

Received: 3 February 2023

Revised: 8 March 2023

Accepted: 13 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Efficient Dynamic Reconfigurable CNN Accelerator for Edge
Intelligence Computing on FPGA
Kaisheng Shi 1 , Mingwei Wang 1,*, Xin Tan 1, Qianghua Li 2 and Tao Lei 1,3

1 College of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology,
Xi’an 710021, China

2 College of Electrical and Control Engineering, Shaanxi University of Science and Technology,
Xi’an 710021, China

3 Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology,
Xi’an 710021, China

* Correspondence: wangmingwei@sust.edu.cn

Abstract: This paper proposes an efficient dynamic reconfigurable CNN accelerator (EDRCA) for
FPGAs to tackle the issues of limited hardware resources and low energy efficiency in the deployment
of convolutional neural networks on embedded edge computing devices. First, a configuration layer
sequence optimization method is proposed to minimize the configuration time overhead and improve
performance. Second, accelerator templates for dynamic regions are designed to create a unified
high-speed interface and enhance operational performance. The dynamic reconfigurable technology
is applied on the Xilinx KV260 FPGA platform to design the EDRCA accelerator, resolving the
hardware resource constraints in traditional accelerator design. The YOLOV2-TINY object detection
network is used to test the EDRCA accelerator on the Xilinx KV260 platform using floating point data.
Results at 250 MHz show a computing performance of 75.1929 GOPS, peak power consumption of
5.25 W, and power efficiency of 13.6219 GOPS/W, indicating the potential of the EDRCA accelerator
for edge intelligence computing.

Keywords: FPGA; CNN; dynamic reconfiguration; hardware accelerator; target detection

1. Introduction

The field of machine vision has seen the growth of convolutional neural network
(CNN) algorithms, leading to the development of new models like LeNet, AlexNet, R-CNN
series, YOLO series, and SSD series [1–5], which are widely used in tasks such as image
classification, target detection, and biological feature recognition [6–8]. As big data drives
the need for advanced algorithmic functions, CNN networks have become larger and
more complex, posing a challenge to current hardware systems in terms of computational
performance. The traditional approach of improving performance through additional
hardware devices has reached a bottleneck due to hardware limitations [9]. To meet this
challenge, researchers have turned to dynamically reconfigurable FPGA systems which
offer improved resource utilization, performance, and the ability to dynamically combine
different hardware processing architectures during operation [10].

In recent years, the research of FPGA-based convolutional neural network accelerators
has been split into two main areas: model compression and efficient hardware architecture
design. Model compression aims to maintain accuracy while reducing the hardware require-
ments for computation and storage. Techniques used for model compression include model
pruning [11], knowledge distillation [12], and model quantization [13]. However, these
methods only provide limited improvement for deploying algorithmic models on FPGAs.
On the other hand, efficient hardware architecture design is divided into general-purpose
and dedicated architectures. For general purposes, the Caffine framework proposed by

Information 2023, 14, 194. https://doi.org/10.3390/info14030194 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14030194
https://doi.org/10.3390/info14030194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0001-3726-032X
https://orcid.org/0000-0002-2104-9298
https://doi.org/10.3390/info14030194
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14030194?type=check_update&version=1

Information 2023, 14, 194 2 of 13

ZHANG et al. [14] accelerates CNN model inference using shrinkage variable processing el-
ements, but requires significant hardware resources, making FPGA deployment expensive.
SHARMA et al. [15], proposed DnnWeaver architecture that uses a set of coarse processing
units to perform convolutional operations and communication with DRAM through a
standard AXI bus. The architecture was verified with a 16-bit fixed point precision VGG-16
model. WANG et al. [16] proposed a DPU-based YOLOv3 acceleration architecture using
the Vitis AI development tool, which has a rich deep learning development foundation,
supports fast development processes, and provides convenient development for acceler-
ating the YOLOv3 inference network. The architecture was deployed and evaluated on
the ZCU104 evaluation board, achieving good detection frame rates, but with an energy
efficiency of only 2.47 GOPS/W, and it lacks flexibility in handling diverse tasks. Dedicated
architectures include the reconfigurable ARM+FPGA-based CNN accelerator proposed
by ZHANG et al. for the YOLOV2-TINY model [17], which reduces data moves and off-
chip storage access through time-configured computing layers and 16-bit quantization.
WANG et al. [18], proposed a Sparse-YOLO architecture that optimizes the YOLOV2
model using a sparse convolution method, generating parallel computation soft cores with
OpenCL and deploying the model through the CPU. This architecture achieves 61.9 fps
detection speed with 26 W operating power but sacrifices energy efficiency.

A high-performance dynamic reconfigurable CNN accelerator (EDRCA) architecture
based on FPGAs is proposed to address the problems of limited hardware resources and
low energy efficiency in existing studies. The EDRCA uses dynamic reconfiguration to
speed up convolutional neural network inference and optimizes layer sequences for better
system design. The accelerator also has a reconfigurable module interface for improved
performance and is tested using the YOLOV2-TINY target detection model on a Xilinx
KV260 FPGA platform, demonstrating its high engineering value.

The rest of this paper is organized as follows: In Section 2, the convolutional neu-
ral network model YOLOV2-Tiny and dynamic reconfigurable techniques are presented.
In Section 3, the dynamically reconfigurable CNN accelerator (EDRCA) architecture is
proposed, and its hardware design and design methodology are described in detail. In
Section 4, the EDRCA architecture is deployed on a Xilinx KV260 FPGA hardware platform
and the YOLOV2-Tiny algorithm is used as the deployment algorithm to obtain experimen-
tal results and compare the hardware performance with different accelerator synthesized
from related studies. In Section 5, it concludes with a short summary containing conclusions
and discussion of possible future research work.

2. CNN Model and Dynamic Reconfigurable Technology
2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of deep-structured feedforward
artificial neural network that can process large amounts of pixel data from 3D images and
demonstrate superior scalability and feature extraction compared to traditional artificial
neural networks [19]. As a result, they are widely used in machine vision. CNNs typically
consist of several operational layers, including pooling layers, convolutional layers, fully
connected layers, and activation layers [20]. This paper evaluates the feasibility of the
EDRCA architecture by using YOLOV2-Tiny, a classic CNN architecture, and the VOC2012
public dataset [21] as the training and validation data.

YOLOV2-Tiny is a one-stage target detection network based on CNN that employs
the anchor boxes method of Faster R-CNN to optimally predict the classification and
localization of candidate boxes by generating a series of predefined boxes at different
scales and proportions to serve as candidate target boxes, with a 7% improvement in
recall compared to YOLOV1. To maintain spatial and location information, the fully
connected layer in YOLOV1 has been removed. The last pooling layer was also removed to
improve the resolution of the output feature map, and the input image size of 448 × 448
in YOLOv1 was changed to 416 × 416, ensuring that the pixels of the feature map width
and height is odd, resulting in a centralized network. The network structure of YOLOV2-

Information 2023, 14, 194 3 of 13

Tiny, which consists of 9 convolution layers and 6 max-pooling layers, is illustrated in
Table 1. Compared to YOLOV2, which has 23 convolutional layers and 5 max-pooling
layers, YOLOV2-Tiny simplifies the network structure and significantly reduces the number
of network parameters, making it ideal for deployment on FPGA platforms.

Table 1. The network structure of Yolov2-Tiny.

Name Number of
Convolution Kernels

Convolution Kernel
Size/Step/Fill

Input
Feature Maps

Input
Feature Maps

Conv1 16 3 × 3/1/1 416 × 416 × 3 416 × 416 × 16
Pool1 2 × 2/2/0 416 × 416 × 16 208 × 228 × 16
Conv2 32 3 × 3/1/1 208 × 208 × 16 208 × 208 × 32
Pool2 2 × 2/2/0 208 × 208 × 32 104 × 104 × 32
Conv3 64 3 × 3/1/1 104 × 104 × 32 104 × 104 × 64
Pool3 2 × 2/2/0 52 × 52 × 64 52 × 52 × 128
Conv4 128 3 × 3/1/1 52 × 52 × 128 26 × 26 × 128
Pool4 2 × 2/2/0 26 × 26 × 128 26 × 26 × 256
Conv5 256 3 × 3/1/1 26 × 26 × 256 13 × 13 × 256
Pool5 2 × 2/2/0 13 × 13 × 256 13 × 13 × 256
Conv6 512 3 × 3/1/1 13 × 13 × 256 13 × 13 × 512
Pool6 2 × 2/2/0 13 × 13 × 512 13 × 13 × 512
Conv7 1024 3 × 3/1/1 13 × 13 × 512 13 × 13 × 1024
Conv8 1024 3 × 3/1/1 13 × 13 × 1024 13 × 13 × 1024
Conv9 125 1 × 1/1/0 13 × 13 × 1024 13 × 13 × 125

2.2. Dynamic Reconfigurable Technology for FPGAs

The concept of dynamic reconfigurable technology [22] was first introduced to enhance
the logic capacity and reduce reconfiguration time. With the advent of FPGAs by XILINX
in 1984, the main challenge faced in implementing large designs was the limited resources
available on FPGAs. Developers solved this issue by creating a prototype architecture
that utilized dynamic reconfigurable FPGAs, which increased the number of profiles and
thus, the logic capacity [23]. Over time, hardware advancements improved the availability
of resources and researchers shifted their focus to other aspects such as scalability of
dynamically reconfigurable systems, maintaining communication during reconfiguration,
and the system’s ability to adapt to various computational tasks.

Dynamic reconfiguration in FPGAs can be categorized into full and partial reconfigu-
ration [24]. Full dynamic reconfiguration involves altering the functionality of an FPGA
by reconfiguring all its hardware resources, while partial dynamic reconfiguration (DPR)
divides the FPGA into a static logic area and a dynamic logic area. The dynamic logic
area, also referred to as the partially reconfigurable partition, can have its circuit structure
modified by loading and unloading different hardware profiles. During real-world im-
plementation, DPR enables modifications to running FPGA applications through loading
dynamic configuration files, without disrupting or affecting the running applications in
the static logic area. Concept of design for dynamic partial reconfiguration is depicted
in Figure 1, which separates the FPGA into two reconfigurable regions, A and B, each
with adequate resource space. Reconfigurable modules A1, A2, B1 and B2 can be dynam-
ically configured from the bitstream library during system operation [25], enabling the
dynamic combination of hardware systems to form various hardware architectures with-
out interrupting the system. This also effectively resolves the challenge of limited FPGA
hardware resources.

Information 2023, 14, 194 4 of 13Information 2023, 14, x FOR PEER REVIEW 4 of 12

Static logic

area

 Interfaces
FPGA

Reconfigurable

Module A

 Interfaces

Reconfigurable

Module B

A1.BIT

A2.BIT

B1.BIT

B2.BIT

Figure 1. Concept of design for dynamic partial reconfiguration.

3. Design of Dynamic Reconfigurable CNN Accelerator

3.1. Hardware Design

The EDRCA architecture is a dynamic reconfigurable accelerator for convolutional

neural networks, as shown in Figure 2. The entire hardware system is deployed on the

Xilinx KV260 FPGA hardware platform. The EDRCA accelerator is divided into FPGA

and ARM ends. Its ARM controller uses an ARM Cortex-A7 architecture processor, spe-

cifically the Allwinner A20 model, which is responsible for controlling, configuring, and

completing data transmission with the FPGA through the AXI communication bus. The

memory device used is 4 GB of DDR4, which provides ample cache space for the entire

hardware system. Communication between the FPGA side and the ARM side is done

through the 128-bit AXI4 bus protocol, using the M_AXI_HPM0_FPD,

M_AXI_HPM0_LPD, and S_AXI_HPC0_FPD high-performance interfaces. As for the

FPGA end, it is divided into three parts: dynamic area 1, dynamic area 2, and static area.

The static region mainly handles the management of interrupt, clock, and reset signals, as

well as logic decoupling for the dynamic regions. In signal management, the system uti-

lizes the Clocking Wizard IP for clock signal management and the AXI Interrupt Control-

ler IP for interrupt signal management. When an interrupt signal is triggered, the system

saves the current hardware system state and transfers control to the interrupt handler,

which is responsible for handling the interrupt event. The system then restores the previ-

ous program state so that the program can continue executing before the interrupt oc-

curred. On the DDR4, 256 MB of address space is allocated to each dynamic region to meet

the data dumping needs. Three 250 MHz clock signals are established in the EDRCA to

drive the static region, dynamic region 1, and dynamic region 2, respectively. The reset

signal is divided into static and dynamic areas, with the static area’s clock reset signal

synchronized by the processor reset module and the dynamic area’s clock reset signal

managed by the Xilinx’s SIHA Manager IP core. To ensure that the accelerator operates

smoothly, a Decoupler module is used for logic decoupling between reconfigurable and

static modules, and the DFX_Shutdown Manager module manages the AXI4-Lite and

AXI4 bus interfaces to provide a safe environment for the accelerator.

Figure 1. Concept of design for dynamic partial reconfiguration.

3. Design of Dynamic Reconfigurable CNN Accelerator
3.1. Hardware Design

The EDRCA architecture is a dynamic reconfigurable accelerator for convolutional
neural networks, as shown in Figure 2. The entire hardware system is deployed on the
Xilinx KV260 FPGA hardware platform. The EDRCA accelerator is divided into FPGA and
ARM ends. Its ARM controller uses an ARM Cortex-A7 architecture processor, specifically
the Allwinner A20 model, which is responsible for controlling, configuring, and completing
data transmission with the FPGA through the AXI communication bus. The memory device
used is 4 GB of DDR4, which provides ample cache space for the entire hardware system.
Communication between the FPGA side and the ARM side is done through the 128-bit AXI4
bus protocol, using the M_AXI_HPM0_FPD, M_AXI_HPM0_LPD, and S_AXI_HPC0_FPD
high-performance interfaces. As for the FPGA end, it is divided into three parts: dynamic
area 1, dynamic area 2, and static area. The static region mainly handles the management
of interrupt, clock, and reset signals, as well as logic decoupling for the dynamic regions. In
signal management, the system utilizes the Clocking Wizard IP for clock signal management
and the AXI Interrupt Controller IP for interrupt signal management. When an interrupt
signal is triggered, the system saves the current hardware system state and transfers control
to the interrupt handler, which is responsible for handling the interrupt event. The system
then restores the previous program state so that the program can continue executing before
the interrupt occurred. On the DDR4, 256 MB of address space is allocated to each dynamic
region to meet the data dumping needs. Three 250 MHz clock signals are established in the
EDRCA to drive the static region, dynamic region 1, and dynamic region 2, respectively.
The reset signal is divided into static and dynamic areas, with the static area’s clock reset
signal synchronized by the processor reset module and the dynamic area’s clock reset signal
managed by the Xilinx’s SIHA Manager IP core. To ensure that the accelerator operates
smoothly, a Decoupler module is used for logic decoupling between reconfigurable and
static modules, and the DFX_Shutdown Manager module manages the AXI4-Lite and AXI4
bus interfaces to provide a safe environment for the accelerator.

In order to ensure stability and high bandwidth in the EDRCA accelerator, the reconfig-
urable module in the dynamic region is designed with a fixed signal interface and register
address. A dedicated accelerator template, created using High-Level Synthesis (HLS) on
the VIVADO HLS development tool, provides a uniform interface for each computation
layer. To achieve efficient sequential data transfer, the hardware interface specification
employs the m_AXI communication protocol with a 32-bit address width and burst trans-
fer mode, achieving a maximum operational bandwidth of 17GB/s. The YOLOV2-TINY
model consists of pooling and convolutional activation layers, with the latter accounting for
76.31% of the model. Figure 3 illustrates the calculation method of the convolutional layer.
First, two input feature maps are used as inputs and fed into the convolution activation
accelerator through a buffer. Each input feature map is convolved with a H ×W convolu-
tional kernel moving window. The parallel computation of the convolution activation layer
is designed in Algorithm 1, aiming to improve its performance through pipelining and full
parallelization operations. The hardware design of the layer was created using High-Level
synthesis (HLS), then converted to Verilog by the VIVADO HLS development tool, and

Information 2023, 14, 194 5 of 13

finally, the operation layer accelerator IP core was generated. The optimal sequence of
layers with minimum time overhead was determined through the optimal configuration
sequence method, and the reconfigurable module in the dynamic region was constructed
with a focus on minimizing configuration times.

Information 2023, 14, x FOR PEER REVIEW 5 of 12

CPUCPU

DDR4

ARM

Datamover

Accelerator1

FPGA

Decoupler

AXI4 Interconnect

DFX_shutdown_HP0 DFX_shutdown_HP1

Static Area

Clock Reset

Dynamic Area 1

Datamover

Accelerator2

Dynamic Area 2

Interrupt

Figure 2. Overall architecture of CNN accelerator.

In order to ensure stability and high bandwidth in the EDRCA accelerator, the recon-

figurable module in the dynamic region is designed with a fixed signal interface and reg-

ister address. A dedicated accelerator template, created using High-Level Synthesis (HLS)

on the VIVADO HLS development tool, provides a uniform interface for each computa-

tion layer. To achieve efficient sequential data transfer, the hardware interface specifica-

tion employs the m_AXI communication protocol with a 32-bit address width and burst

transfer mode, achieving a maximum operational bandwidth of 17GB/s. The YOLOV2-

TINY model consists of pooling and convolutional activation layers, with the latter ac-

counting for 76.31% of the model. Figure 3 illustrates the calculation method of the con-

volutional layer. First, two input feature maps are used as inputs and fed into the convo-

lution activation accelerator through a buffer. Each input feature map is convolved with a

H × W convolutional kernel moving window. The parallel computation of the convolution

activation layer is designed in Algorithm 1, aiming to improve its performance through

pipelining and full parallelization operations. The hardware design of the layer was cre-

ated using High-Level synthesis (HLS), then converted to Verilog by the VIVADO HLS

development tool, and finally, the operation layer accelerator IP core was generated. The

optimal sequence of layers with minimum time overhead was determined through the

optimal configuration sequence method, and the reconfigurable module in the dynamic

region was constructed with a focus on minimizing configuration times.

Figure 2. Overall architecture of CNN accelerator.

Algorithm 1. Convolutional activation unit parallel acceleration algorithm pseudocode

INPUT InputFeature[too][trr][tcc],
Weighs[Tcout][Tcin][H][W];
OUTPUT OutFeature[Tcout][Tcout][Tyout];
1.FOR(i = 0; i < H; i++){
2. FOR(j = 0; j < W; j++){
3. FOR(trr = row; trr < min(row + Tr,R); trr++){
4. FOR(tcc = col; tcc < min(col + Tm,C); tcc++){
5.#PRAGMA HLS PIPELINE // Pipeline
6. FOR(too = to; too < min(to + Tn,M); tii++){
7.#PRAGMA HLS UNROLL // Full Parallelization Operations
8. FOR(tii = ti; tii < min(ti + Tn,N); tii++){
9.#PRAGMA HLS UNROLL // Full Parallelization Operations
10.LOOP: OutFeature[too][trr][tcc] +=\
11. Weights[too][tii][i][j] * InputFeature [tii][S*trr+i][S*tcc+j];
13.}}}}}}

Information 2023, 14, x FOR PEER REVIEW 6 of 12

Figure 3. The calculation method of a convolutional layer.

Algorithm 1. Convolutional activation unit parallel acceleration algorithm pseudocode

INPUT InputFeature[too][trr][tcc],

Weighs[Tcout][Tcin][H][W];

OUTPUT OutFeature[Tcout][Tcout][Tyout];

1.FOR(i=0; i<H; i++){

2. FOR(j=0; j<W; j++){

3. FOR(trr=row; trr<min(row+Tr,R); trr++){

4. FOR(tcc=col; tcc<min(col+Tm,C); tcc++){

5.#PRAGMA HLS PIPELINE // Pipeline

6. FOR(too=to; too<min(to+Tn,M); tii++){

7.#PRAGMA HLS UNROLL // Full Parallelization Operations

8. FOR(tii=ti; tii<min(ti+Tn,N); tii++){

9.#PRAGMA HLS UNROLL // Full Parallelization Operations

10.LOOP: OutFeature[too][trr][tcc] +=\

11. Weights[too][tii][i][j] * InputFeature [tii][S*trr+i][S*tcc+j];
13.}}}}}}

3.2. Reconfigurable Modules

The reconfigurable module (RM) in Figure 4 has two buses for communication—a 128-

bit M_AXI data bus and a 32-bit S_AXI_Control command bus. Both buses connect to DDR4

through the 128-bit system bus, allowing the internal accelerator group of the RM to be ac-

cessed and activated via address register. The RM operates at a reference clock frequency of

250 MHz and is supplied with the control clock from the hardware platform’s clock through

the internal PLL. The system’s reset signal is triggered by the reset button outside the FPGA.

Upon power-on, the hardware platform initializes the DDR4 controller and sends a reset

signal to the reset module, putting the RM and the FPGA’s peripherals in a ready state.

The EDRCA accelerator’s reconfigurable module can be equipped with varying spec-

ifications of convolutional and pooling operation accelerators based on the computational

task at hand. To improve integration of the RM, the convolutional operation and activa-

tion function layers are combined into a single convolutional activation layer. When as-

signing reconfigurable modules to different reconfiguration regions, the number of hard-

ware resources they occupy should be as close as possible to optimize their computational

performance and minimize hardware waste. Figure 4 shows the top-level design interface

specification of the reconfigurable module template. The accelerator system loads a con-

figuration file to trigger the execution process after grouping the computing layer acceler-

ators, and a Decoupler module is used in the static region to prevent logic overlap between

Figure 3. The calculation method of a convolutional layer.

Information 2023, 14, 194 6 of 13

3.2. Reconfigurable Modules

The reconfigurable module (RM) in Figure 4 has two buses for communication—a
128-bit M_AXI data bus and a 32-bit S_AXI_Control command bus. Both buses connect
to DDR4 through the 128-bit system bus, allowing the internal accelerator group of the
RM to be accessed and activated via address register. The RM operates at a reference clock
frequency of 250 MHz and is supplied with the control clock from the hardware platform’s
clock through the internal PLL. The system’s reset signal is triggered by the reset button
outside the FPGA. Upon power-on, the hardware platform initializes the DDR4 controller
and sends a reset signal to the reset module, putting the RM and the FPGA’s peripherals in
a ready state.

Information 2023, 14, x FOR PEER REVIEW 7 of 12

the dynamic logic region and the reconfigurable module. The Decoupler module decou-

ples the logic of the reconfigurable module in the static area.

Clock

Reset

S_AXI_Control

Interrupt

M_AXI_GMEM

RM

32 bit
128 bit

250MHz

0/1

0/1

Figure 4. Top-level design interface specification of the single reconfigurable module group.

3.3. Optimized Configuration Sequence Method

In designing the EDRCA accelerator, the time overhead of reconfiguration must also

be taken into account. When implementing a large-scale target detection algorithm, the

system may need to undergo multiple reconfigurations, which can severely impact its op-

erational efficiency. To mitigate this, the design of the dynamic reconfiguration region

must be optimized. This can be achieved by minimizing the number of reconfigurations

through optimizing the configuration sequence of the reconfigurable accelerator in the

dynamic region to produce a faster accelerator.

The dynamically reconfigurable system has a considerable optimizable execution time

overhead that is caused by the latency in using accelerators with limited computational re-

sources and slower operation speed, as well as the overhead from multiple reconfiguration

files. The reconfiguration file’s execution time overhead depends on the size of the bitstream

file and the bandwidth of the configuration port. Hence, optimizing the configuration se-

quence involves reducing the number of reconfigurations and assigning more computational

resources. This approach optimizes the configuration sequence by identifying the optimal se-

quence of layer operator profiles with the lowest execution time overhead, allocating more

computational bandwidth to each layer operator, and reducing the reload time overhead in

the full sequence, thus improving the operation speed of dynamic reconfigurable accelerators.

The optimization of the configuration sequence is broken down into two parts: layer

clustering and layer sequence. As shown in Algorithm 2, layer clustering involves using a

clustering algorithm to classify layer accelerators with low execution time overhead. The

computing accelerators of pre-defined CNN layers are divided into several sets (Dj) based

on their types, and the execution time for each accelerator (X) in the set is measured. The

fastest accelerator with the least execution time overhead (Tx) is identified, and all other

layers are grouped into the same set (Ci) based on the same configuration as X. This pro-

cess is repeated until all layers are clustered into their respective sets. The EDRCA accel-

erator can simultaneously reconfigure multiple computing layer accelerators in each of

the two dynamic reconfiguration regions. The layer sequence involves analyzing the

YOLOV2-Tiny CNN model and combining the accelerators in each set (C) into one or

more profiles, creating an optimal layer sequence with minimal time overhead and mini-

mum reconfiguration frequency based on the CNN architecture.

Figure 4. Top-level design interface specification of the single reconfigurable module group.

The EDRCA accelerator’s reconfigurable module can be equipped with varying speci-
fications of convolutional and pooling operation accelerators based on the computational
task at hand. To improve integration of the RM, the convolutional operation and activation
function layers are combined into a single convolutional activation layer. When assign-
ing reconfigurable modules to different reconfiguration regions, the number of hardware
resources they occupy should be as close as possible to optimize their computational per-
formance and minimize hardware waste. Figure 4 shows the top-level design interface
specification of the reconfigurable module template. The accelerator system loads a config-
uration file to trigger the execution process after grouping the computing layer accelerators,
and a Decoupler module is used in the static region to prevent logic overlap between the
dynamic logic region and the reconfigurable module. The Decoupler module decouples
the logic of the reconfigurable module in the static area.

3.3. Optimized Configuration Sequence Method

In designing the EDRCA accelerator, the time overhead of reconfiguration must also
be taken into account. When implementing a large-scale target detection algorithm, the
system may need to undergo multiple reconfigurations, which can severely impact its
operational efficiency. To mitigate this, the design of the dynamic reconfiguration region
must be optimized. This can be achieved by minimizing the number of reconfigurations
through optimizing the configuration sequence of the reconfigurable accelerator in the
dynamic region to produce a faster accelerator.

The dynamically reconfigurable system has a considerable optimizable execution time
overhead that is caused by the latency in using accelerators with limited computational
resources and slower operation speed, as well as the overhead from multiple reconfig-
uration files. The reconfiguration file’s execution time overhead depends on the size of
the bitstream file and the bandwidth of the configuration port. Hence, optimizing the
configuration sequence involves reducing the number of reconfigurations and assigning
more computational resources. This approach optimizes the configuration sequence by
identifying the optimal sequence of layer operator profiles with the lowest execution time
overhead, allocating more computational bandwidth to each layer operator, and reducing
the reload time overhead in the full sequence, thus improving the operation speed of
dynamic reconfigurable accelerators.

Information 2023, 14, 194 7 of 13

The optimization of the configuration sequence is broken down into two parts: layer
clustering and layer sequence. As shown in Algorithm 2, layer clustering involves using
a clustering algorithm to classify layer accelerators with low execution time overhead.
The computing accelerators of pre-defined CNN layers are divided into several sets (Dj)
based on their types, and the execution time for each accelerator (X) in the set is measured.
The fastest accelerator with the least execution time overhead (Tx) is identified, and all
other layers are grouped into the same set (Ci) based on the same configuration as X. This
process is repeated until all layers are clustered into their respective sets. The EDRCA
accelerator can simultaneously reconfigure multiple computing layer accelerators in each
of the two dynamic reconfiguration regions. The layer sequence involves analyzing the
YOLOV2-Tiny CNN model and combining the accelerators in each set (C) into one or more
profiles, creating an optimal layer sequence with minimal time overhead and minimum
reconfiguration frequency based on the CNN architecture.

Algorithm 2: Layer Clustering Pseudocode

Input: Set of layers, D = {X1, X2, X3, ..., Xm}
Output: Set of classes, C = {C1, C2, C3, ..., Ci}
1. Group the layers of the same type into set D
2. Set class count, I = 1
3. REPEAT
4. Find the fastest layer X in set D
5. Place X into a new set, Ci
6. Calculate the execution time overhead of other layers using the same configuration as X
7. IF the redundant time overhead is less than the reconfiguration time overhead THEN
8. Add the layer to set Ci
9. END IF
10. IF all other layers have been processed THEN
11. Remove set Ci from the total set C
12. END IF
13. Increment class count, i++
14. UNTIL the current set D is empty
15. Return set Ci

4. Experiments and Results
4.1. Experimental Settings

The performance of the EDRCA accelerator is evaluated using the Xilinx KV260
FPGA platform (Figure 5) as the experimental hardware. The YOLOV2-TINY model is
deployed and runs on the platform. The XCK26-SFVC784 chip model, with 4 GB DDR4
SDRAM memory, operates the accelerator at a frequency of 250 MHZ. The experiment
utilizes AMD-XILINX’s development tools VIVADO (2022.1) and VIVADO HLS (2022.1)
for engineering design and hardware module design, with comprehensive verification
performed on the FPGA side. The PETALINUX operating platform is deployed, using the
PYNQ-Kira framework for soft and hard co-design. The generated configuration file is
loaded onto the Xilinx KV260 development board, and YOLOV2-TINY uses the VOC2012
public dataset as the experimental data.

4.2. Experimental Flow

To implement the EDRCA accelerator application YOLOV2-Tiny, the steps are as
follows, as shown in Figure 6: first, the YOLOV2-TINY model is built using the Tensorflow
framework and the model parameters are obtained by training on the VOC2012 dataset with
an input image resolution of 416× 416. The model parameters are saved as binary files with
floating-point data. Next, the optimal configuration sequence method is used to generate
the optimal layer sequence with minimum time overhead, resulting in a reconfigurable
module configuration file with the minimum number of reconfigurations. Finally, the

Information 2023, 14, 194 8 of 13

EDRCA accelerator is deployed on the Xilinx KV260 FPGA platform using hardware-
software co-design to perform the target detection task of YOLOV2-TINY.

Information 2023, 14, x FOR PEER REVIEW 8 of 12

Algorithm 2: Layer Clustering Pseudocode

Input: Set of layers, D = {X1, X2, X3, ..., Xm}

Output: Set of classes, C = {C1, C2, C3, ..., Ci}

1. Group the layers of the same type into set D

2. Set class count, I = 1

3. REPEAT

4. Find the fastest layer X in set D

5. Place X into a new set, Ci

6. Calculate the execution time overhead of other layers using the same configu-

ration as X

7. IF the redundant time overhead is less than the reconfiguration time overhead

THEN

8. Add the layer to set Ci

9. END IF

10. IF all other layers have been processed THEN

11. Remove set Ci from the total set C

12. END IF

13. Increment class count, i++

14. UNTIL the current set D is empty

15. Return set Ci

4. Experiments and Results

4.1. Experimental Settings

The performance of the EDRCA accelerator is evaluated using the Xilinx KV260

FPGA platform (Figure 5) as the experimental hardware. The YOLOV2-TINY model is

deployed and runs on the platform. The XCK26-SFVC784 chip model, with 4 GB DDR4

SDRAM memory, operates the accelerator at a frequency of 250 MHZ. The experiment

utilizes AMD-XILINX’s development tools VIVADO (2022.1) and VIVADO HLS (2022.1)

for engineering design and hardware module design, with comprehensive verification

performed on the FPGA side. The PETALINUX operating platform is deployed, using the

PYNQ-Kira framework for soft and hard co-design. The generated configuration file is

loaded onto the Xilinx KV260 development board, and YOLOV2-TINY uses the VOC2012

public dataset as the experimental data.

Figure 5. Xilinx KV260 FPGA hardware platform.

4.2. Experimental Flow

To implement the EDRCA accelerator application YOLOV2-Tiny, the steps are as fol-

lows, as shown in Figure 6: first, the YOLOV2-TINY model is built using the Tensorflow

framework and the model parameters are obtained by training on the VOC2012 dataset

with an input image resolution of 416 × 416. The model parameters are saved as binary

Figure 5. Xilinx KV260 FPGA hardware platform.

Information 2023, 14, x FOR PEER REVIEW 9 of 12

files with floating-point data. Next, the optimal configuration sequence method is used to

generate the optimal layer sequence with minimum time overhead, resulting in a recon-

figurable module configuration file with the minimum number of reconfigurations. Fi-

nally, the EDRCA accelerator is deployed on the Xilinx KV260 FPGA platform using hard-

ware-software co-design to perform the target detection task of YOLOV2-TINY.

Build and Train

YOLOV2-TINY

Optimized Configuration

Layer Sequence Method

Design/Generation

Reconfigurable Module

Files

Initialize EDRCA

Accelerator System

Initializing The

Configuration File

Initialize The Prediction

Image Buffer

Load Original Image

Load Weight Files To

DDR4

Image Processing Pre-

Processing

Sending Images To

EDRCA Accelerator

Get Output Results Of

EDRCA Accelerator

YOLOV2-TINY Algorithm

Post-Processing

Output Predicted Images

Design/Generation Layer

Computing Accelerator

Figure 6. Implementation flow for hardware deployment of YOLOV2-Tiny.

4.3. Results

The final result of the design flow in Figure 5 was the construction of YOLOV2-TINY

on the EDRCA accelerator system. The FPGA was synthesized and verified using VI-

VADO. Table 2 shows the actual hardware resource consumption of the EDRCA acceler-

ator on the FPGA for the static region, dynamic region1, and dynamic region2, with 100%

utilization for FF, 99.4% for LUT, 100% for BRAM, 100% for DSP, and 100% for URAM.

These resources are essential for digital circuits, Flip-Flop (FF) is used to store the changes

in state or signals of digital circuits; Lookup table (LUT) is used to implement logical func-

tions; Block Random Access Memory (BRAM) is used to store large data structures; Digital

Signal Processor (DSP) is used for high-speed digital signal processing and computing

tasks; Ultra-Random Access Memory (URAM) is used to store large amounts of data. The

dynamic reconfigurable design with reconfigurable modules that can be dynamically con-

figured effectively addressed the resource constraint problem, enabling full utilization of

the hardware resources of the Xilinx KV260 FPGA.

Figure 6. Implementation flow for hardware deployment of YOLOV2-Tiny.

4.3. Results

The final result of the design flow in Figure 5 was the construction of YOLOV2-TINY
on the EDRCA accelerator system. The FPGA was synthesized and verified using VIVADO.
Table 2 shows the actual hardware resource consumption of the EDRCA accelerator on the
FPGA for the static region, dynamic region1, and dynamic region2, with 100% utilization
for FF, 99.4% for LUT, 100% for BRAM, 100% for DSP, and 100% for URAM. These resources
are essential for digital circuits, Flip-Flop (FF) is used to store the changes in state or
signals of digital circuits; Lookup table (LUT) is used to implement logical functions;
Block Random Access Memory (BRAM) is used to store large data structures; Digital
Signal Processor (DSP) is used for high-speed digital signal processing and computing
tasks; Ultra-Random Access Memory (URAM) is used to store large amounts of data.
The dynamic reconfigurable design with reconfigurable modules that can be dynamically

Information 2023, 14, 194 9 of 13

configured effectively addressed the resource constraint problem, enabling full utilization
of the hardware resources of the Xilinx KV260 FPGA.

Table 2. Hardware resource consumption of EDRCA accelerator in Xilinx KV260 FPGA.

Resource Type FF LUT BRAM DSP URAM

Static Area 65,280 32,640 0 384 0
Dynamic Area 1 84,480 41,888 72 432 32
Dynamic Area 2 84,480 41,888 72 432 32

Resource Utilization 234,240 116,416 144 1248 64
Total Resource Volume 234,240 117,120 144 1248 64
Resource Utilization

Rate (%) 100 99.4 100 100 100

The optimal layer sequence is generated using the optimal configuration layer se-
quence method discussed in Section 3.3. The general accelerator typically refers to a
multi-operation layer accelerator that speeds up the entire CNN network, and connects
the operation layer accelerators in the order of the CNN network to form a complete CNN
network accelerator in an FPGA. The general accelerator performs the computational task
by reconfiguring the operation kernels of the CNN network architecture in the order of the
operational layers. As demonstrated by YOLOV2-TINY, the EDRCA accelerator reduces
the number of configurations to 22.22% compared to the general accelerator, as shown in
Figure 7. By using the optimal layer sequence method, the reconfiguration execution time
is also reduced to 12.08% compared to the general accelerator, thus significantly reducing
the reconfiguration-induced time overhead.

Information 2023, 14, x FOR PEER REVIEW 10 of 12

Table 2. Hardware resource consumption of EDRCA accelerator in Xilinx KV260 FPGA.

Resource Type FF LUT BRAM DSP URAM

Static Area 65,280 32,640 0 384 0

Dynamic Area 1 84,480 41,888 72 432 32

Dynamic Area 2 84,480 41,888 72 432 32

Resource Utilization 234,240 116,416 144 1248 64

Total Resource Volume 234,240 117,120 144 1248 64

Resource Utilization Rate (%) 100 99.4 100 100 100

The optimal layer sequence is generated using the optimal configuration layer se-

quence method discussed in Section 3.3. The general accelerator typically refers to a multi-

operation layer accelerator that speeds up the entire CNN network, and connects the op-

eration layer accelerators in the order of the CNN network to form a complete CNN net-

work accelerator in an FPGA. The general accelerator performs the computational task by

reconfiguring the operation kernels of the CNN network architecture in the order of the

operational layers. As demonstrated by YOLOV2-TINY, the EDRCA accelerator reduces

the number of configurations to 22.22% compared to the general accelerator, as shown in

Figure 7. By using the optimal layer sequence method, the reconfiguration execution time

is also reduced to 12.08% compared to the general accelerator, thus significantly reducing

the reconfiguration-induced time overhead.

Figure 7. Comparison of EDRCA and general accelerator.

After conducting the experimental steps, the performance of the YOLOV2-TINY target

detection application was evaluated on the EDRCA accelerator. The prediction results of

YOLOV2-TINY were compared with the original graph and the prediction graph when im-

plemented on the AMD Ryzen7 CPU and NVIDIA GeForce RTX2060 hardware platform, as

shown in Figure 8. Table 3 shows the results of separate tests conducted on the FPGA, CPU,

and GPU. At a clock frequency of 250 MHz, the EDRCA accelerator on the Xilinx KV260 plat-

form achieved a computing performance of 75.1929 GOPS, which was 10.17 times higher than

the AMD Ryzen7 CPU. The peak power consumption was 5.25 W, which was only 3.08% of

the NVIDIA GeForce RTX2060 GPU, while consuming only 3.08% of the GPU’s power.

Number of configurations (times)

Configuration execution time(s)

0

2

4

6

8

10

General
Accelerator

EDRCA
Accelerator

Number of configurations (times) Configuration execution time(s)

Figure 7. Comparison of EDRCA and general accelerator.

After conducting the experimental steps, the performance of the YOLOV2-TINY
target detection application was evaluated on the EDRCA accelerator. The prediction
results of YOLOV2-TINY were compared with the original graph and the prediction graph
when implemented on the AMD Ryzen7 CPU and NVIDIA GeForce RTX2060 hardware
platform, as shown in Figure 8. Table 3 shows the results of separate tests conducted on the
FPGA, CPU, and GPU. At a clock frequency of 250 MHz, the EDRCA accelerator on the
Xilinx KV260 platform achieved a computing performance of 75.1929 GOPS, which was
10.17 times higher than the AMD Ryzen7 CPU. The peak power consumption was 5.25 W,
which was only 3.08% of the NVIDIA GeForce RTX2060 GPU, while consuming only 3.08%
of the GPU’s power.

Information 2023, 14, 194 10 of 13Information 2023, 14, x FOR PEER REVIEW 11 of 12

(a) (b)

(c) (d)

Figure 8. Comparison of original graph and predicted results on Xilinx KV260 FPGA, AMD Ryzen7

CPU, and NVIDIA GeForce RTX2060; (a) Original image; (b) Xilinx KV260 FPGA Predicted results;

(c) AMD Ryzen7 CPU Predicted results; (d) NVIDIA GeForce RTX2060 Predicted results.

Table 3. Performance comparison results of different platforms.

Category EDRCA CPU GPU

Hardware Platform XCK26-SFVC784 AMD Ryzen7 4800 H NVIDIA GeForce RTX2060

Operating Frequency (MHz) 250 2900 7010

Throughput (GOPS) 75.1928 7.3926 100.1748

Power Consumption (W) 5.520 45 175

Single Picture Inference time (s) 0.0918 0.9455 0.0698

Frames Per Second(fps) 10.893 1.058 14.327

The EDRCA accelerator performance experiment verifies its performance using the Xil-

inx KV260 FPGA platform management tool. The tool monitors the running frequency (250

MHz) and power consumption (5.520 W) of the FPGA. The power consumption of AMD

Ryzen7 4800 H and NVIDIA GeForce RTX2060 was monitored by the power management

tool in the computer server. The flux indicator measures the computational capability of the

CNN algorithm model on each hardware platform, while the energy efficiency indicator

measures the overall performance of the algorithm on each hardware platform. The hard-

ware performance of EDRCA is compared to other accelerators in a comprehensive manner

and the results are shown in Table 4. One study [16] designed a general-purpose architecture

using PE array design, which performs better in terms of computation but consumes 2.14

times more power than EDRCA. Another study [26] used 16-bit fixed-point quantization

and a pipelined design to improve computing throughput and low-power performance, but

Figure 8. Comparison of original graph and predicted results on Xilinx KV260 FPGA, AMD Ryzen7
CPU, and NVIDIA GeForce RTX2060; (a) Original image; (b) Xilinx KV260 FPGA Predicted results;
(c) AMD Ryzen7 CPU Predicted results; (d) NVIDIA GeForce RTX2060 Predicted results.

Table 3. Performance comparison results of different platforms.

Category EDRCA CPU GPU

Hardware Platform XCK26-SFVC784 AMD Ryzen7 4800 H NVIDIA GeForce RTX2060
Operating Frequency (MHz) 250 2900 7010

Throughput (GOPS) 75.1928 7.3926 100.1748
Power Consumption (W) 5.520 45 175

Single Picture Inference time (s) 0.0918 0.9455 0.0698
Frames Per Second (fps) 10.893 1.058 14.327

The EDRCA accelerator performance experiment verifies its performance using the
Xilinx KV260 FPGA platform management tool. The tool monitors the running frequency
(250 MHz) and power consumption (5.520 W) of the FPGA. The power consumption of
AMD Ryzen7 4800 H and NVIDIA GeForce RTX2060 was monitored by the power manage-
ment tool in the computer server. The flux indicator measures the computational capability
of the CNN algorithm model on each hardware platform, while the energy efficiency indi-
cator measures the overall performance of the algorithm on each hardware platform. The
hardware performance of EDRCA is compared to other accelerators in a comprehensive
manner and the results are shown in Table 4. One study [16] designed a general-purpose
architecture using PE array design, which performs better in terms of computation but

Information 2023, 14, 194 11 of 13

consumes 2.14 times more power than EDRCA. Another study [26] used 16-bit fixed-point
quantization and a pipelined design to improve computing throughput and low-power per-
formance, but it underutilizes resources and has less computing performance than EDRCA,
which is 1.46 times more energy efficient. A third study [27] designed an accelerator at the
RTL level with a method to find optimal convolutional chunking parameters, improving
computational performance and data transfer bandwidth but consuming 2.15 times more
resources than EDRCA and being 2.15 times less energy efficient.

Table 4. Results of EDRCA versus related work.

Category Ref. [16] Ref. [26] Ref. [27] EDRCA

Algorithm Model YOLOV2-TINY YOLOV2-TINY YOLOV2-TINY YOLOV2-TINY
Hardware Platform ZCU102 MZ7035 XC7Z045 XCK26-SFVC784

Operating Frequency (MHz) 300 142 200 250
Fixed Data Precision (bit) 16 16 16 32

Giga Operations Per Second (GOPS) 102 25.64 121.2 75.1928
Single picture inference time (s) 11.8 2.754 19.2 5.520

Power consumption (W) 11.8 2.754 19.2 13.6219
Peak Energy Efficiency (GOPS/W) 8.6441 9.310 6.3125 13.6219

5. Discussion

This paper proposes the EDRCA, a high-performance, dynamically reconfigurable
FPGA-based CNN accelerator architecture, to address the limitations of hardware resources
and energy efficiency in embedded edge computing devices. Using the YOLOV2-TINY
target detection algorithm for verification, the EDRCA leverages dynamic reconfiguration
techniques on Xilinx KV260 FPGAs to overcome hardware constraints and optimize resource
utilization. The paper also proposes an optimal configuration layer sequence method for
CNNs and a unified high-speed interface template for the EDRCA accelerator to improve
performance and bandwidth. The experiments show that the EDRCA can significantly
enhance computing performance and resolve resource limitations through dynamic recon-
figuration, achieving a peak energy efficiency of 13.6219 GOPs/W at 250 MHz.

Future research can focus on two areas. Firstly, we will investigate ways to optimize
the EDRCA for target detection algorithms, aiming to enhance the performance of the
dynamically reconfigurable hardware accelerator and minimize the initialization phase
time overhead, to meet the demands of more complex industrial and military applica-
tions. Secondly, we plan to add encryption capability to EDRCA through dynamically
reconfigurable technology, thereby improving the data security in edge computing systems.

Author Contributions: Conceptualization, K.S. and M.W.; methodology, K.S.; software, K.S.; vali-
dation, X.T., Q.L. and T.L.; formal analysis, T.L; investigation, X.T.; resources, M.W.; data curation,
X.T.; writing—original draft preparation, K.S.; writing—review and editing, K.S., M.W. and Q.L.;
visualization, X.T.; supervision, M.W.; project administration, M.W., T.L. and X.T.; funding acquisition,
X.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by various grants from the Shaanxi Provincial Department
of Science and Technology, including the Key R&D Project (No. 2023-YBGY-215, No.2020-GY091,
21JK0548), as well as the Shaanxi Provincial Department of Education Service Local Special Program
Project (No. 21JC002). Additionally, support was provided by Xi’an City Science and Technology
Plan Project (No. 21XJZZ0006, No. 21XJZZ0005), Xianyang City Science and Technology Bureau
Unveiling hanging major special project (L2022-JBGS-GY-01), Xianyang City Science and Technology
Bureau plan project (No. 2020K02-64), and Xi’an City Weiyang District Science and Technology Plan
Project (No. 202115).

Data Availability Statement: All data are contained within this article.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2023, 14, 194 12 of 13

References
1. Nisar, A.; Nehete, H.; Verma, G.; Kaush, B.K. Hybrid Multilevel STT/DSHE Memory for Efficient CNN Training. IEEE Trans.

Electron. Devices 2023, 70, 1006–1013. [CrossRef]
2. Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S. Alexnet feature extraction and multi-kernel learning for object-oriented classification.

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 277–281. [CrossRef]
3. Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]
4. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
5. Cheng, C. Real-Time Mask Detection Based on SSD-MobileNetV2. In Proceedings of the 2022 IEEE 5th International Conference

on Automation, Electronics and Electrical Engineering, Shenyang, China, 18–20 November 2022; pp. 761–767.
6. Zhang, J.H.; Zhang, F.; Xie, M.; Liu, X.Y.; Feng, T.Y. Design and Implementation of CNN Traffic Lights Classification Based on

FPGA. In Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology,
Xi’an, China, 18–20 August 2021; pp. 445–449.

7. Pestana, D.; Mirand, P.R.; Lopes, J.D.; Duarte, R.P.; Vestias, M.P.; Neto, H.C.; Sousa, J.T. A Full Featured Configurable Accelerator
for Object Detection With YOLO. IEEE Access 2021, 9, 75864–75877. [CrossRef]

8. Chen, Y.H.; Fan, C.P.; Chang, R.C. Prototype of Low Complexity CNN Hardware Accelerator with FPGA-based PYNQ Platform
for Dual-Mode Biometrics Recognition. In Proceedings of the 2020 International SoC Design Conference, Yeosu, Republic of
Korea, 21–24 October 2020; pp. 189–190.

9. Xiao, Q.; Liang, Y. Fune: An FPGA Tuning Framework for CNN Acceleration. IEEE Des. Test 2019, 37, 46–55. [CrossRef]
10. Zeng, T.H.; Li, Y.; Song, M.; Zhong, F.L.; Wei, X. Lightweight tomato real-time detection method based on improved YOLO and

mobile deployment. Comput. Electron. Agric. 2023, 205, 107625. [CrossRef]
11. Anwar, S.; Hwang, K.; Sung, W. Structured pruning of deep convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst.

(JETC) 2017, 13, 1–18. [CrossRef]
12. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
13. Fan, A.; Stock, P.; Graham, B.; Grave, E.; Gribonval, R.; Jegou, H.; Joulin, A. Training with Quantization Noise for Extreme Model

Compression. arXiv 2020, arXiv:2004.07320.
14. Zhang, C.; Sun, G.; Fang, Z.; Zhou, P.P.; Pan, P.C.; Cong, J.S. Caffeine: Towards Uniformed Representation and Acceleration for

Deep Convolutional Neural Networks. Trans. Comput. Aided Des. Integr. Circuits Syst. 2019, 38, 2072–2085. [CrossRef]
15. Sharma, H.; Park, J.; Mahajan, D.; Amaro, E.; Kim, J.K.; Shao, C.; Mishra, A.; Esmaeilzadeh, H. From High-Level Deep Neural

Models to FPGAs. In Proceedings of the ACM International Symposium on Microarchitecture, Taipei, Taiwan, 15–19 October
2016; pp. 1–16.

16. Wang, J.; Gu, S. FPGA Implementation of Object Detection Accelerator Based on Vitis-ai. In Proceedings of the 2021 11th
International Conference on Information Science and Technology (ICIST), IEEE, Chengdu, China, 21–23 May 2021; pp. 571–577.

17. Zhang, S.; Cao, J.; Zhang, Q.; Zhang, Q.; Zhang, Y.; Wang, Y. An FPGA-Based Reconfigurable CNN Accelerator for YOLO. In
Proceedings of the 2020 IEEE 3rd International Conference on Electronics Technology, Chengdu, China, 8–12 May 2020; pp. 74–78.

18. Wang, Z.; Xu, K.; Wu, S.X.; Liu, L.Z.; Wang, D. Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for
YOLOv2. IEEE Access 2020, 8, 116569–116585. [CrossRef]

19. Aloysius, N.; Geetha, M. A Review on Deep Convolutional Neural Networks. In Proceedings of the 2017 International Conference
on Communication and Signal Processing, Chennai, India, 6–8 April 2017; pp. 588–592.

20. Wang, X.; Deng, J.Y.; Xie, X.Y. Design and implementation of reconfigurable CNN accelerator. Transducer Microsyst. Technol. 2022,
41, 82–85, 89.

21. Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2012
(VOC2012) Results. 2, 5. Available online: http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html
(accessed on 2 February 2023).

22. Yuan, F.L.; Gong, L.; Lou, W.Q. Performance Cost Modeling in Dynamic Reconfiguration Hardware Acceleration. Comput. Eng.
Appl. 2022, 58, 69–79.

23. Chong, W.; Ogata, S.; Hariyama, M.; Kameyama, M. Architecture of a Multi-Context FPGA Using Reconfigurable Context
Memory. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, Denver, CO, USA, 4–8
April 2005; p. 7.

24. Sunkavilli, S.; Chennagouni, N.; Yu, Q. DPReDO: Dynamic Partial Reconfiguration enabled Design Obfuscation for FPGA Security.
In Proceedings of the 2022 IEEE 35th International System-on-Chip Conference, Belfast, UK, 5–8 September 2022; pp. 1–6.

25. Yuan, F.L. Convolutional Neural Network Accelerator Based on Dynamic Hardware Reconfiguration; University of Science and Technol-
ogy of China: Hefei, China, 2021.

http://doi.org/10.1109/TED.2023.3236331
http://doi.org/10.5194/isprs-archives-XLII-3-277-2018
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1109/ACCESS.2021.3081818
http://doi.org/10.1109/MDAT.2019.2908549
http://doi.org/10.1016/j.compag.2023.107625
http://doi.org/10.1145/3005348
http://doi.org/10.1007/s11263-021-01453-z
http://doi.org/10.1109/TCAD.2017.2785257
http://doi.org/10.1109/ACCESS.2020.3004198
http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html

Information 2023, 14, 194 13 of 13

26. Xu, H.D. Research and Implementation of Target Detection Algorithm Based on Zynq Platform; School of Information and Communication
Engineering: Chengdu, China, 2021.

27. Chen, T.S. Design and Implementation of a Reconfigurable Convolutional Neural Network Accelerator Based on FPGA; Guangdong
University of Technology: Guangzhou, China, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	CNN Model and Dynamic Reconfigurable Technology
	Convolutional Neural Networks
	Dynamic Reconfigurable Technology for FPGAs

	Design of Dynamic Reconfigurable CNN Accelerator
	Hardware Design
	Reconfigurable Modules
	Optimized Configuration Sequence Method

	Experiments and Results
	Experimental Settings
	Experimental Flow
	Results

	Discussion
	References

