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Abstract: Several supervised machine learning models have been proposed and used to detect
Android ransomware. These models were trained using different datasets from different sources.
However, the age of the ransomware datasets was not considered when training and testing these
models. Therefore, the detection accuracy for those models is inaccurate since they learned using
features from specific ransomware, old or new ransomware, and they did not learn using diverse
ransomware features from different ages. This paper sheds light on the importance of considering the
age of ransomware datasets and its effects on the detection accuracy of supervised machine learning
models. This proves that supervised machine learning models trained using new ransomware dataset
are inefficient in detecting old types of ransomware and vice versa. Moreover, this paper collected
a large and diverse dataset of ransomware applications that comprises new and old ransomware
developed during the period 2008–2020. Furthermore, the paper proposes a supervised machine
learning model that is trained and tested using the diverse dataset. The experiments show that the
proposed model is efficient in detecting Android ransomware regardless of its age by achieving an
accuracy of approximately 97.48%. Moreover, the results shows that the proposed model outperforms
the state-of-the-art approaches considered in this work.

Keywords: Android malware; information security; supervised machine learning; ransomware

1. Introduction

The rapid development of computer networks and technology has led to the exposure
of smartphone functionalities, which are provided by different applications and operating
systems. The Android operating system ranks first in terms of market share, followed by
iOS and Samsung operating systems [1]. As shown in Table 1, as of July 2022, Android has
gained more than 72% of the market share. The reason behind this is the flexibility that
Google Play offers for developers in comparison to other stores [2].

The spread and flexibility of functionalities of smartphones made smartphones more
convenient to the public; however, it has also brought security risks due to malicious
applications. One of the most severe malicious applications is Android ransomware, which
steals data and encrypts it, where users have only one choice by paying a ransom to the
criminal to decrypt their data [3]. Figure 1 shows the process of Android ransomware
attack. Android ransomware is gaining in momentum because of its increasing spread and
severity on both individuals and companies assets. Therefore, there is a need for effective
mechanisms that can prevent and detect Android ransomware.

Kaspersky, which is one of the most common antiviruses, has detected more than 17 k
new mobile ransomwares out of three millions malicious applications in 2021 [4]. Cyber-
criminals keep increasing their profits by implementing more and more applications [5],
where we can find different types of Android ransomwares such as WannaCry, Locky,
Cryptwall, etc. For this reason, the detection of Android ransomware has become one of
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the most prominent research topics in cybersecurity. The most common antiviruses are
using signature-based approaches for detecting ransomware applications [6]. However,
signature-based approaches have a limitation regarding detection, as these can only detect
well-known applications. However, this makes it easier for the criminals to develop new
ransomware applications to launch their cyberattacks.

Table 1. The percentage of market share for mobile operating systems.

Mobile Operating Systems Percentage Market Share

Android 72.11%

IOS 27.22%

Samsung 0.42%
 

Figure 1. Android ransomware attack.

More research has been focusing on developing new approaches for the detection of
Android ransomware applications. Machine learning methods have proved their efficiency
in detecting Android malware such as the work in [7–10]. The efficiency of these approaches
differs based on the extracted features from applications, besides the algorithms used for
the detection task. Two analytical methods are used for feature extraction, which are
the static and dynamic analyses. The static analysis works by decompiling ransomware
applications to gather their metadata [11], where different types of features can be extracted
from the manifest file such as signatures, permissions, and API-calls. Meanwhile, dynamic
analysis requires a virtual environment to run applications and trigger their behavior to
extract features [12]. Figure 2 shows the different features of static and dynamic analysis.
One of the advantages of static analysis is the time consumption, since it consumes less
time in comparison with the dynamic approach. Moreover, the permissions features, which
are extracted in static analysis, are considered an efficient indicator that can be utilized for
the detection of ransomware applications [13].

There are different studies conducted based on the permission features to detect An-
droid ransomware. However, these studies used different datasets, where the ransomware
were collected over specific periods from open source websites or acquired manually. These
studies did not consider the variation of permission features requested by ransomware. In
fact, once the implemented ransomware is detected by the models, the cybercriminals try to
develop new types of ransomware. Moreover, as the Android operating system is updated
and smartphones’ functionalities are increased or enhanced, new permissions arise and are
used by different malicious applications. That is, new applications may request new a set
of permissions that did not exist in previous versions. Therefore, it is important to include
the features of old and new ransomware applications in training the detection model, so
that it accurately performs the task. Otherwise, there will be a gap in the models trained on
old features and other models trained on new features to detect each other.
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Figure 2. Static and Dynamic Analysis Features.

An interesting work in this direction was proposed by Ceschin et al. [14]. The authors
discussed the concept drift in Android malware in general. The authors used two datasets,
namely Drebin [15] and Androzoo [16], collected during the period (2008–2018). The
datasets were used to train and test the adaptive random forest classifier (ARF) and
stochastic gradient descent (SFD). Moreover, they used four drift detectors (DDM, EDDM,
ADWIN, andKSWIN) to prove their claim. Based on the results, the authors recommended
updating the classifiers based on the emerging features to enhance the accuracy of the
classifiers. Moreover, the authors recommended that resetting the classifiers when drift
changes were detected is better than periodically resetting them based on a time window.
Although their paper achieved significant findings, its scope is different from the scope
of this paper that focuses on Android ransomware. Similarly, Kouliaridis et al. [17] used
diverse datasets to train and test their proposed machine learning model. They collected
features from different Android malware datasets as follows: Drebin dataset [15] from 2010
to 2012, VirusShare [18] from 2014 to 2017, and Androzoo [16] from 2017 to 2020. Their
paper achieved high accuracy, however, its scope is different from the scope of this paper
that focuses on Android ransomware, which is a severe problem nowadays. Moreover, this
paper used more diverse Android ransomware samples from 2008 to 2020 by considering
instances from ever year during this period. This paper considers one of the most prominent
problems these days due to the high risk it poses to individuals, companies, organizations
and countries. This highlights the problem of old classifiers in detecting new emerging
ransomware, which could be a flaw of a high risk. Therefore, this paper, based on the
achieved results, highly recommends retraining the classifiers to enhance their accuracy in
preventing or detecting new and old Android ransomware. The contributions of this work
are summarized as follows.

1. The paper evaluates the efficiency of features extracted from old ransomware applica-
tions in detecting new ransomware applications.

2. The paper evaluates the efficiency of features extracted from new ransomware appli-
cations in detecting old ransomware applications.

3. The paper proves that supervised machine learning classifiers only trained by the
old ransomware dataset is not effective in detecting new ransomware. Moreover,
the paper proves that supervised machine learning classifiers trained by the new
ransomware dataset only is not effective in detecting old Android ransomware.

4. The paper creates a balanced and mixed dataset of old and new ransomware to
effectively train supervised machine learning classifiers.
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5. The paper proposes a permission-based Android ransomware detection model that
can detect the ransomware applications of different ages. It used the top most super-
vised machine learning models, which are SVM, decision tree (DT), logistic regression
(LG), K-near neighbor (K-NN) and random forest (RF) [19]. Moreover, it shows how
the proposed model outperforms the state-of-the-art approaches in detecting Android
ransomware applications.

The rest of the paper is organized as follows. Section 2 discusses some related work
about Android ransomware detection. Section 3 demonstrates and discusses the proposed
framework. Section 4 demonstrates and discusses the experiments and results, and com-
pares between the efficiency of the proposed approach and some state-of-the-art approaches.
Finally, Section 5 concludes the work.

2. Related Work

The use of machine learning algorithms and deep learning algorithms to detect An-
droid malware have been studied extensively. Many of these approaches achieved very
high accuracy, such as the work in [20–22]. However, The HelDroid tool [23], which was
implemented in 2015, was the first method used to detect ransomware in the Android
operating system. It was based on using the behavioral analysis of ransomware. HelDroid
used textual features with natural language processing, and a Smali emulation technique
to detect the locking scheme as indicators for file-encrypting flows and ransomware. More-
over, it used monitoring encryption calls and ransom text as static analysis for ransomware.
HelDroid achieved a good accuracy of approximately 86%. However, this highly depends
on the availability of textual features which is not always available, especially in some
languages such as Chinese and Japanese. Furthermore, using encryption and other obfus-
cation methods can bypass HelDroid [24]. Recently, many approaches and research were
proposed to enhance the detection of ransomware. This section discusses some related
work about Android ransomware detection, and separates them according to the analysis
approaches they used: namely the static, dynamic or hybrid approach.

2.1. Static Analysis

This section discusses some related work that used static features and machine learning
algorithms to detect Android ransomware.

Zhang et al. [25] proposed a machine learning model that uses random forest to
detect Android ransomware and their families. The proposed approach is based on using
term frequency (TF) and N-gram to form a feature vector, and using opcode sequences as
features. Different machine learning algorithms were tested to evaluate their effectiveness
against the proposed model, which are DT, K-nearest neighbor (KNN), NB, and gradient
boosting decision tree (GBDT). The results showed that RF outperformed other algorithms
by achieving an accuracy of approximately 99.3%. However, the proposed model had some
limitations in detecting some ransomware families such as exclusively locky, cryptowall,
and reventon. The authors justified this limitation as due to the binary classification of the
model. Similarly, Scalas et al. [26] proposed a random forest model for Android ransomware
detection. Different static features were fed to the model such as API calls, packages, classes,
and methods. The results show that random forest outperformed stochastic gradient
descent (SGD) and SVM classifiers, which were tested in the experiments. However, the
proposed model has some flaws that affect the accuracy of the API-based model because it
replaces system-related entities with semantically equivalent or user-implemented entities.

Gaur et al. [27] proposed a machine learning model and extracted static features,
such as opcodes and imported dlls, from a large dataset of about 23,000 ransomwares.
The authors tested several conventional machine learning algorithms and neural network
algorithms such as KNN, SVM, RF, DBSCAN, and neural networks. They claimed that
their model achieved an accuracy of 99.68%.

Alsoghyer et al. [24] proposed an approach, called API-RDS, that uses static analy-
sis for Android malware detection. The proposed approach used API calls as features to
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discriminate ransomware. The approach tested different algorithms, which are the naïve
Bayes, decision tree, and random forest, and used three datasets collected from VirusTo-
tal [28], RProber [29], and Koodous [30]. The authors claimed that their model achieved
an accuracy of approximately 97%, and reduced the classification complexity by 26% after
features reduction.

Su et al. [31] proposed a light-weight method for locker-ransomware detection. The
authors performed a comprehensive analysis of ransomware behaviors and extracted dis-
play texts and background operation to avoid the obfuscation problem. Moreover, the
authors applied the ensemble learning of different machine learning algorithms, which are
logistic regression, support vector machines, random forests, and decision trees. These algo-
rithms were tested using two datasets, which are the Anzhi Market [32] and Ransomware-
transaction QQ groups [33]. The authors claimed that their approach achieved an accuracy
of 99.98%.

Table 2 summarizes more related work about the static analysis of Android ransomware.

2.2. Dynamic Analysis

This section discusses some related work that used dynamic features and machine
learning algorithms to detect Android ransomware.

Zakaria et al. [34] proposed a machine learning framework, called RENTAKA, that
uses dynamic analysis to detect Android ransomware. The proposed approach extracted
the used features based on the phases of ransomware lifecycle. The selected features
are API calls, registration key, dropped file, files and directory operation, and embedded
strings. These features were fed to several machine learning algorithms for testing, which
are naïve Bayes, kNN, SVM, random forest, and J48. The algorithms were tested using
a dataset collected from the Resilient Information System Security (RISS) research group
from Imperial College London [35]. The authors claimed that support vector machines
(SVMs) outperformed other algorithms by achieving the best accuracy of approximately
97.05%.

Abdullah et al. [36] proposed an Android ransomware detection model based on
dynamic features. The proposed approach used system calls only as features extracted from
a dataset collected by VirusTotal [28]. The selected features were fed to several machine
learning algorithms for testing, which are random forest, J48, and naïve Bayes. The experi-
mental results provided by the authors claimed that random forest algorithm outperformed
other algorithms and achieved an accuracy of 98.31%.

Bibi et al. [37] proposed a deep learning malware detection model for Android ran-
somware using the long short-term memory (LSTM) algorithm. The proposed model used
eight different algorithms to select features from the Packets information and Headers. A
majority voting method was used to select approximately nineteen features. The model
was tested using a dataset collected by the Canadian Institute of Cybersecurity [38]. The
authors claimed that their model achieved an accuracy of approximately 97.08%.

Chen et al. [29] proposed a model called RansomProber that analyzes user interface
widgets and users’ finger movements of related activities, and coordinates them to check
whether encryption operations are performed by users or by a crypto-ransomware. The
model was tested using a dataset of 2721 ransomware collected from HelDroid [23] as
well as some ransomware collected by the authors. The authors argued that some anti-
virus tools perform poorly in ransomware detection. Meanwhile, they claimed that their
approach detects crypto-ransomware with a high accuracy of approximately 99%.

Table 2 summarizes more related work about the dynamic analysis of Android ransomware.
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Table 2. A comparison between some related work.

Work Year Analysis Feature(s) Dataset(s) Algorithms Accuracy Ransomware Dataset Age

Gaur et al. [27] 2021 Static Structural features such as
imported dlls, opcode Virusshare [18] KNN, SVM, RF, DBSCAN,

and neural networks 99.68% Virusshare: Unknown

Alsoghyer and
Almomani [24] 2019 Static API calls and their

frequencies

VirusTotal [28],
RProber [29], and

Koodous [30]
NB, DT, SMO, and RF 97%

RProper:HelDroid 2010–2014,
HelDroid: collected 2010–2014,

VirusTotal: Submitted 2017–2018,
Koodous: Unknown

Su et al. [31] 2019 Static
Text, system operations,

admin operations,
permissions

Ransomware-transaction
QQ groups [33] LR, SVM, RF, and DT 99.98% Ransomware-transaction QQ groups:

Collected 2019

Kim et al. [39] 2019 Static API calls, Permissions,
opcodes, and environment

Malgenome [40]
VirusShare [18]

SVM, RF, and multimodal
deep learning 98% Malgenome: 2010–2011,

VirusShare: unknown

Scalas et al. [26] 2019 Static API calls, classes, and
methods

VirusTotal [28] and
HelDroid [23] RF 97% VirusTotal:Unknown,

HelDroid 2010–2014.

Zhang et al. [25] 2019 Static Opcode sequences VirusTotal [28] DT, RF, K-NN, naïve Bayes,
and GBD 99.3% VirusTotal: 2012–2017

Zakaria et al. [34] 2022 Dynamic API, registration key,
embedded strings RISS [35,41] Naïve Bayes, kNN, SVM, RF,

and J48 97.05% RISS: 2016

Abdullah
et al. [36] 2020 Dynamic System calls VirusTotal [28] NB, J48 and RF 98.31% VirusTotal: Unknown

Bibi et al. [37] 2019 Dynamic Packets information and
headers CIC-ANDMal2017 [38] LSTM 97.08% CIC-ANDMal2017: 2017

Chen et al. [29] 2018 Dynamic widget, activity, texts,
buttons

HelDroid [23] and
private dataset

User interface UI analysis
technique to judge the
legality of encryption

operations.

99% HelDroid 2010–2014, private dataset:
2013–2015

Aurangzeb
et al. [42] 2022 Hybrid DLLs, strings, and PE

header,
VirusShare [18],

EldeRan [43]
SVM, RF, KNN, XGBoost,

and neural network 98.7% VirusShare: unknown, EldeRan: 2016

Deepa et al. [15] 2019 Hybrid System calls Koodous [30] and
Drebin [44] RF, AdaBoost 99.9% Koodous: unknown, Drebin: 2010–2012
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Table 2. Cont.

Work Year Analysis Feature(s) Dataset(s) Algorithms Accuracy Ransomware Dataset Age

Gharib et al. [45] 2017 Hybrid Permissions, text, and API
calls

R-PackDroid [46],
HelDroid [23] and

Contagio [47] Koodous [30]
NB, SVM, RF, and DNN 97.5%

R-PackDroid: 2015–2016, HelDroid:
2014–2015, Contagio: unknown,

Koodous: Unknown

Ferrante et al. [48] 2017 Hybrid Opcodes, CPU usage, and
network traffic HelDroid [23] DT, LR, NB 100% HelDroid: 2014–2015
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2.3. Hybrid Analysis

This section discusses some related work that used both static and dynamic features
and machine learning algorithms to detect Android ransomware.

Aurangzeb et al. [42] proposed BigRC-EML, which is a framework for ransomware
detection using static and dynamic features. The proposed framework used ensemble
machine learning methods and a big dataset to train several machine learning algorithms for
ransomware detection. The machine learning algorithms that were tested are SVM, random
forests, KNN, XGBoost, and neural network. These algorithms were tested using two
datasets, namely VirusShare [18] and EldeRan [43], where many features were extracted. To
decrease the number of features and select the most effective ones, the principle component
analysis (PCA) was performed. The experiments showed that the best accuracy, which is
98%, was achieved by neural networks.

Deepa et al. [? ] proposed a novel two-step feature selection approach, called RSST,
which is based on a rough set and statistical test. The proposed approach used a hybrid tech-
nique that uses both dynamic and static system calls. Moreover, to reduce the complexity
of feature space, the authors proposed a feature selection approach. The proposed methods
were tested using the machine learning algorithms random forest and AdaBoost on the
datasets Koodous [30] and Drebin [44]. Moreover, the authors tested the proposed feature
selection method against different features’ selection algorithms, which are information
gain, CFsSubsetEval, ChiSquare, FreqSel, and symmetric uncertainty. Furthermore, the
authors derived other features such as permissions, opcodes, API, methods, call graphs,
Droidbox attributes, and network traces, and tested the proposed approach using this
set of features and the derived system calls features. The experiments showed that the
proposed approach using the proposed features algorithm and the derived system calls
outperformed other feature selection algorithms and feature sets. The accuracy achieved
by the proposed method was approximately 99.9%.

Gharib et al. [45] proposed a two-layer detection framework for Android malware,
called the DNA-Droid. In this model, a dynamic analysis layer that works on the top of the
static analysis layer was implemented. The DNA-droid used features such as permissions,
text, images of logos, system, and API calls. In addition, it tested the algorithms NB,
SVM, RF, and DNN. To profile ransomware families, DNA-Droid used sequence alignment
techniques, which help in the detection of ransomware behavior early before the infection.
The proposed method was tested using different datasets, which are PackDroid [46],
HelDroid [23], and Contagio [47]. The results show that DNA-Droid achieved an accuracy
of approximately 97.5%.

More research on using the hybrid analysis of Android ransomware detection was
proposed, such as Sun et al. [49], who proposed a hybrid Android ransomware detection
method, called MONET. The model was based on monitoring the Android application
behavior and compared it against the behavior of malicious application. The method
used API calls as features to distinguish malicious apps from benign ones. Similarly, the
SAMADroid [33] and StormDroid [48] techniques offered hybrid analysis tools to detect
Android ransomware. Table 2 summarizes more related work about the hybrid analysis of
Android ransomware.

2.4. Issues in Related Work

Table 2 compares between some related works in the field of Android ransomware
detection using machine learning models. Besides the different important information
that is shown in the table, the table shows the collection date of the ransomware datasets
used in the mentioned approaches. Obviously, many approaches did not even mention
the age or the collection date of some or all of the used dataset, such as the datasets used
in [15,26,27,36,42,45]. Generally speaking, mentioning the age of the ransomware dataset
was not an important issue in many of the considered related works. Moreover, most of the
mentioned related work approaches used a dataset collected in a specific period and did
not consider extracting features from both old and new ransomware datasets. However,
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some approaches used datasets collected over a long period such as the work in [24], which
used datasets collected from 2010 to 2014 and from 2017 to 2018, and the work in [25],
which used a dataset collected from 2012 to 2017. However, they did not discuss the effect
of the age of the Android ransomware dataset on the efficiency of their models. Meanwhile,
this work used a ransomware dataset which was collected from 2008 to 2020 to show the
importance of considering the age of the ransomware dataset on the detection accuracy of
supervised machine learning models.

3. The Proposed Framework

The proposed framework aims to assess the robustness of old and new ransomware
features in detecting each other. Furthermore, it aims to devise a detection model that can
outperform the state-of-the-art work in terms of Android ransomware detection. Figure 3
shows the proposed methodology in detail. The following subsections presents a compre-
hensive discussion of the proposed framework.

Figure 3. The methodology of the proposed work.

3.1. Dataset Acquisition

The dataset of this work was manually acquired from the AndroZoo [16], which is an
open source repository that provides researchers with an extensive amount of malicious
APKs. AndroZoo contains more than 19 million APKs, where these APKs may be benign or
malicious applications. AndroZoo provides users with an up-to-date compressed CSV file
that contains different fields. The collected malicious APKs were checked using VirusTotal
to label ransomware ones.

VirusTotal is an open source website that offers a scanning service using approximately
70 third-party antivirus scanners [50]. This allows users to perform the submission in
different ways, namely file, URL, and search. In this work, the search property was used
for scanning, allowing users to perform scanning through searching using URL, IP address,
domain, or file hash. The dataset was acquired as follows.

1. Use the up-to-date compressed CSV file provided by AndroZoo to create two lists of
sha256 hash code for benign and malicious APKs.

2. Start scanning each malicious APK using the VirusTotal website.
3. Clean malicious list by excluding APKs which was not detected by at least one scanner

as a ransomware.
4. Split the malicious list based on the dex date into two lists; the first one is the new list

of ransomware APKs with a dex date after 2016–2020, whereas the remaining APKs
are in the second list of old ransomware APKs.
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5. Start downloading the APKs of the three lists, which are benign, new ransomware, and
old ransomware datasets, and store them in distinct folders, where the downloading
process is conducted using the official link provided by AndroZoo.

According to the process of data acquisition described above, two datasets will be
produced, which are benign and ransomware APKs datasets. The ransomware dataset is
labeled based on the dex_date in the compressed CSV file. Then, the ransomware dataset is
separated into two datasets: the old dataset, which contains ransomware APKs that existed
on or before 2015, and the new dataset, which contains ransomware APKs which existed
between 2016 and 2020.

3.2. Feature Engineering

This paper used Androguard for the feature extraction. Androguard is an open
source Python library that helps in performing the static analysis of APK files [51]. It
provides a Dex2jar4 function, which works by decompiling the Dalvik bytecode into a
compiled code of Java (.jar file). One of Androguard’s functionalities is extracting the
static features from the files inside the package file of the APK. Therefore, the permission
features were extracted from each APK file in benign APKs, old ransomware APKs, and
new ransomware APKs. Then, three datasets were constructed in CSV files; the first one
contains permission features for both old ransomware and benign APKs; the second one
contains permission features for both new ransomware and benign APKs; and the third
contains the mixture of old and new ransomware, besides the benign APKs. Figure 4
demonstrates the methodology of generating the three datasets in this work.

 

Figure 4. The methodology of creating the datasets.

There is a difference between each APK source code, which implies that each APK file
requests different permissions. Therefore, the aggregation of permission features for all
APK files, benign and ransomware APK files, in one dataset produces a huge number of
features, which supervised machine learning algorithms cannot handle [52]. Moreover, the
inappropriate features included in the dataset may affect the performance of supervised
machine learning algorithms.

The final form of the CSV files contains categorical features with binary values that
indicate the status of requesting each permission. Therefore, chi-square is utilized for
feature selection [53]. chi-square is a statistical method that is used to rank the features
based on their importance in predicting the target class. It is a statistical method that is
used to assess the significance of a relationship between categorical variables. The dataset
of this work contains the features of Boolean values, in which each feature has true or false
values, which that is why chi-square is the best technique that can be performed for feature
selection. Basically, the test identifies the significant difference between expectations E and
observations O of the two categorical variables, where the high distance between E and
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O indicates the strong correlation between variables. First, two hypotheses are defined
as follows.

H0 (null): Accept the independency between variables (irrelevant feature).

H1 (alternative): Reject the independency between variables (relevant feature).

The score of Chi-square is calculated as follows.

∑ =
(O − E)2

E
(1)

where O is the observed value and E is the expected value.
The rejection of the H0 depends on the p-value, where H0 is rejected in case (p-

value < 0.05), which means the feature is important for the detection task.

3.3. Detection Models

The final phase of this work is that of building the supervised machine learning detec-
tion models based on the dataset generated by the feature engineering phase. supervised
machine learning algorithms help in detecting the unusual patterns, besides predicting the
future behaviors to prevent criminals from doing their cyber-attacks [54]. In this work, the
top supervised machine learning algorithms [19] were utilized for detecting ransomware
files, which are decision tree, logistic regression, K-NN, SVM, and random forest.

3.3.1. Decision Tree

Decision tree (DT) is a supervised learning algorithm that is used for classification
tasks. It is a rule-based algorithm that works by splitting the input into distinct output
classes. The structure of the tree consists of root and leaf nodes, where the top feature is
selected for node creation based on the values of entropy. The data points of the highest
value of entropy exist in the tree root. Thus, it is split into smaller pieces for entropy value
reduction, and this step is performed until the entropy value of the leaf node becomes zero.
The entropy of low value indicates the higher value of the information gain, whereas the
maximum value of the information gain indicates the optimal path in the decision tree. The
entropy and information gain are computed as follows:

Entropy(T) =
T

∑
i=0

−Pi × log2(pi) (2)

Entropy(T, S) =
C

∑
i=0

−P(C)× Entropy(C) (3)

In f ormation Gain(T, S) = Entropy(T)− Entropy(T, S) (4)

where P is the probability function of class samples from the total number samples.

3.3.2. Logistic Regression

Logistic Regression (LR) is a supervised machine learning algorithm that is used for
binary classification tasks. Suppose that X represents the features of datapoints, the logistic
regression performs the binary classification and generates the output as follows:

ŷ = sigmoid(WTX + b) (5)

where X represents the features, WT is the transposed N-dimensional vector, and b is
the bias.
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3.3.3. K-Nearest Neighbor

K-nearest neighbors (KNN) is a supervised machine learning algorithm that is used
for classification tasks. It is considered a lazy learner, as it performs instance-based classi-
fication. The classification process works by finding the similarity of two datapoints in a
single category, which is computed based on distance metrics. Then, a number k of nearest
neighbors votes for which category the datapoints belong to. The number k of nearest
neighbors is computed based on distance metrics and the cross-validation technique.

3.3.4. Support Vector Machine

Support vector machine (SVM) is a supervised machine learning algorithm that is
used for the classification and regression tasks. Suppose that datapoints are distributed in
space, the SVM works by finding a hyperplane that has the maximum margin between the
classes. The margin is called the support vector, and it is defined as the distance between
data points close to the class and the hyperplane that separates the data points into groups
belonging to different classes.

3.3.5. Random Forest

Random forest (RF) is a supervised ensemble learning algorithm that is used for
classification and regression tasks. It combines the decisions based on multiple construction,
which can derive stronger results than a single decision tree. It uses the bagging technique,
where the decision tree models are combined in parallel to avoid any dependency.

4. Experimental Results

The experiments were carried out using a 2.21 GHz CPU Intel Core (TM) i7-850H,
with 32 GB memory. The operating system used is Windows 11, and the software that was
used is Python (3.9) in the Anaconda environment.

The GridSearchCV technique [55] was used to tune each model by selecting the op-
timal hyperparameters that can generate the optimal results for the detection tasks. This
works by creating a matrix that represents the combinations of all possible predefined hy-
perparameters values. In addition, it applies the cross-validation technique to the training
set and split it into training and validation sets to avoid overfitting and underfitting issues.
By the end of the training and validation process, the GridSearchCV keeps the best com-
bination of hyperparameters that has achieved the best detection results. The predefined
values of hyperparameters are shown in Table 3 for each machine learning algorithm.

Table 3. The predefined values of hyperparameters for the used supervised machine learning algorithms.

Machine Learning Algorithm Hyperparameter Values

SVM
Kernel ‘Linear’

C (1, 0.25, 0.5, and 0.75)
gamma 1, 2, 3, and ‘auto’

DT

max_features ‘auto’, ‘sqrt’, and ’log2’
ccp_alpha (0.1, 0.01, and 0.001)

max_depth (5, 6, 7, 8, and 9)
Criterion ‘Gini’ and ‘entropy’

LG C log(−3,3, and 7)
Penalty l1 and l2

KNN K [1–30]

RF n_estimators (10, 100, 1000, 2000)
Criterion ‘Gini’ and ‘entropy’

Several experiments were performed based on both datasets to assess the robustness
of the old and new ransomware features in detecting each other. Furthermore, the final
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experiment was conducted using the mixed dataset, which contains all ransomware sam-
ples besides the benign samples for the ransomware detection task. Figure 5 shows the
distribution of the training and testing sets in each part of the experiments.

Figure 5. The distribution of the training and testing datasets in each part of experiments.

The aforementioned algorithms, SVM, DT, LG, KNN, and RF, were trained and tested
based on the explained sets. Moreover, the performances of each detection model were
evaluated by calculating the appropriate metrics, namely the accuracy, precision, recall,
and f1-score. These metrics are evaluated based on the results of the confusion matrix,
which compute the true positive, false positive, true negative, and false negative rates for
classes of binary classification. The evaluation metrics are computed as follows.

Accuracy =
TP + TN

TP + TN + FN + FP
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

f 1_score =
2 × Precision × Recall

Precision + Recall
(9)

where TP denotes true positive, TN denotes true negative, FP denotes false positive, and
FN is denotes false negative rates.

For a better understanding of the results, comparative analytics were conducted based
on the evaluation results. The most efficient detection model will be presented to clarify
the power of the proposed model in outperforming the previous studies. Moreover, the
model with the best performance was trained on the old and new ransomware datasets,
which were used to detect each other. Finally, the findings will be well explained to come
up with a competitive stand in terms of Android ransomware detection, besides explaining
the efficiency of having old and new ransomware features in our models for detecting
ransomware files.

The experiments were divided into two parts. The first part aims at showing the effect
of the age of ransomware dataset on the detection accuracy. Moreover, it aims at showing
that supervised machine learning models developed based on old ransomware only or
new ransomware only are not efficient in detecting ransomware. The second part aims to
develop a supervised machine learning model that is trained using features extracted and
selected from old and new ransomware to efficiently detect ransomware.
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4.1. The Effect of the Ransomware Age on the Detection Accuracy

The collected dataset consists of 6340 ransomware and 2300 benign APK files. In this
part, the dataset was divided into two datasets: old and new ransomware datasets, as
shown in Table 4. The first one is the old ransomware dataset which consists of ransomware
samples that existed between 2008 and 2015, and the second one is the new ransomware
dataset which consists of ransomware samples which existed between 2016 and 2020. The
benign samples were added to each dataset for classification purposes, and the permission
features were extracted for each dataset separately.

Table 4. The distribution of ransomware APKs based on dex date.

Dataset Year Num. of Samples

Old Ransomware

2008 212
2009 3
2010 3
2011 110
2012 288
2013 201
2014 1412
2015 2222

New Ransomware

2016 1001
2017 490
2018 232
2019 325
2020 46

The features used for classification in this work are the permissions. Table 5 shows the
total number of permission features extracted from both datasets. As shown in the table,
a huge number of features of approximately 4604 features were extracted. To reduce the
number of features, chi-square technique was used. After the feature selection process,
the number of features selected from the old ransomware was 161 out of 2521 permission
features. Similarly, the number of selected features from the new ransomware dataset was
274 out of 2083 permission features. Hence, these features include the benign features in
each dataset.

Table 5. The distribution of extracted and selected features for old and new ransomware APKs.

Dataset Num. of Extracted Features Num. of Selected Features

Old Ransomware 2521 161

New Ransomware 2083 274

The contribution of this paper is based on the assumption that there is a difference
in the permissions requested by old ransomware and new ransomware. Therefore, before
introducing the results of the experiments that support this assumption, we show in Table 6
the top-10 frequent permission features that distinguish each of the old and new Android
applications. As shown in the table, the most frequent permissions that are requested by
new ransomware are totally different from those requested by old ransomware. Therefore,
training classifiers using old ransomware should affect their accuracy in detecting new
ransomware and vice versa. The following subsections demonstrate the results of the
experiments conducted on each dataset.
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Table 6. Top-10 frequent permission features for old and new ransomware APKs.

Old Ransomware New Ransomware

INSTALL_PACKAGES MMOAUTH_CALLBACK

READ_GSERVICES READ_COARSE_LOCATION

ACCESSORY_FRAMEWORK WRITE_APN_STORAGE

ENABLE_NOTIFICATION MAPS_RECEIVE

CHANGE_CONFIREAD_PHONE_STATEGURATION RECEIVE_KEAT

RECEIVE_ADM_MESSAGE GET_DETAILED_TASKS

UA_DATA LOCAL_MAC_ADDRESS

SYSTEM_ALERT_WINDOW HKBC_SEND

REMOVE_TASKS UNINSTALL_SHORTCUT

QUICKBOOT_POWERON INSTALL_SHORTCUT

4.1.1. Part I: Training Models Using Old Ransomware Dataset

The first part of the experiments was performed to assess the robustness of the old
ransomware, where the algorithms were trained on the features extracted from the old
ransomware dataset and benign samples only. Table 7 shows the datasets used for training
and testing in this part. In the first experiment, the algorithms were trained using 100% of
the old ransomware dataset and tested using 100% of the new ransomware dataset. While,
in the second experiment, the algorithms were trained using 70% of the old ransomware
dataset and tested using the remaining 30% of the old ransomware dataset.

Table 7. Dataset Distribution for the Experiments of Part I.

Experiment Training Set Testing Set

Experiment I Old dataset (100%) New dataset (100%)

Experiment II Old dataset (70%) Old Dataset (30%)

Figure 6 shows the results of the first experiment. As shown in the figure, the detection
accuracy after training the algorithms using the old ransomware dataset ranges from
68.72% to 83.36%. The RF algorithm outperformed the remaining algorithms by achieving
an accuracy of 83.36%, and it was able to correctly predict 85.86% of the testing samples.
Meanwhile, the worst detection accuracy, which is 68.72%, was achieved by DT. Obviously,
the detection accuracy is poor for all algorithms tested in this work. This means that
old supervised machine learning models or supervised machine learning models that are
trained using old datasets are not effective in detecting new ransomware applications. This
means that countermeasures that employ such models are vulnerable, and companies that
use such systems must address these vulnerabilities and patch their systems with new or
updated countermeasures.

Figure 7 shows the results of the second experiment, which was conducted to enhance
the findings of the first experiment and show that the tested algorithms are effective in
ransomware detection when trained using the proper dataset. In this experiment, the
models were trained using 70% of the old dataset and benign apps only, and tested using
30% of the old dataset and benign apps only. As shown in the figure, all algorithms except
DT achieved very high accuracy using the old ransomware for training and testing, where
they achieved 99.99% accuracy, and they were able to predict 99.99% of the testing samples
correctly. The lowest detection accuracy (95.91%) was achieved by the DT, which is much
higher than the best accuracy achieved in the first experiment. This experiment enhances
the findings of the first experiment and assures that training models using the old dataset
are not effective in detecting new ransomware.
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Figure 6. The performance of supervised machine learning algorithms trained on 100% of the old
dataset and tested on 100% of the new dataset.
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Figure 7. The performance of the supervised machine learning algorithms trained on 70% of the old
dataset and tested on 30% of the old dataset.

The results reveal the fact that training algorithms using the features of old ransomware
samples does not help in predicting new ransomware samples. The detection model of the
highest performance predicted 14.14% of the new ransomware samples incorrectly.

4.1.2. Part II: Training Models Using New Ransomware Dataset

This part of the experiments was performed to assess the robustness of the new ran-
somware dataset, where the algorithms were trained on the features extracted from a new
ransomware dataset and benign samples. This experiment was conducted to answer the
question: can the training of supervised machine learning models using a new ransomware
dataset lead to the efficient differentiation between new and old ransomware? Table 8
shows the datasets used for training and testing in this part. In the first experiment, the
algorithms were trained using 100% of the new ransomware dataset and tested using 100%
of the old ransomware dataset. In the second experiment, however, the algorithms were
trained using 70% of the new ransomware dataset and tested using the remaining 30% of
the new ransomware dataset.

Table 8. Datasets’ Distribution for Experiments of Part II.

Experiment Training Set Testing Set

Experiment I New dataset (100%) Old dataset (100%)

Experiment II New dataset (70%) New dataset (30%)

Figure 8 shows the results of the first experiment. As shown in the figure, the detection
accuracy after training the algorithms using the new ransomware dataset ranged from
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58.13% to 70.96%, which was even worse than the accuracy achieved in part I when the
model was trained using the old dataset and tested using the new dataset. The LR algorithm
outperformed the remaining algorithms by achieving an accuracy of 70.96%, and it was able
to predict 70.33% of the testing samples correctly. Meanwhile, the worst detection accuracy,
which is 58.13%, was achieved by RF. Obviously, the models in this experiment learned
new features which are not sufficient to detect old ransomware with old features. This was
because the learning process was not correct. This may explain the unusual behavior of the
models in this paper, where RF has the best accuracy.
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Figure 8. The performance of supervised machine learning algorithms trained on 100% of the new
dataset and tested on 100% of the old dataset.

The results in this experiment assure that the results obtained in the first part by
showing that training the supervised machine learning model using either only the new
ransomware dataset only or only the old dataset is not enough to build a robust and efficient
model for detecting ransomware.

Figure 9 shows the results of the second experiment, which was conducted to verify
the findings of the first experiment and show that the tested algorithms are effective in
ransomware detection when trained and tested using the right dataset. In this experiment,
the models were trained using 70% of the new dataset and benign apps only, and tested
using 30% of the new dataset and benign apps only. That is, the new ransomware dataset
and benign apps were used for training and testing. As shown in the figure, the detection
accuracy ranges from 77.34% to 92.52%, which is significantly better than the accuracy
range achieved in the first experiment in this part. The highest detection accuracy, which is
92.52%, was achieved by RF, while the lowest detection accuracy, of 77.34%, was achieved
by the DT.
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Figure 9. The performance of supervised machine learning algorithms trained on 70% of the new
dataset and tested on 30% of the new dataset.
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Two important findings can be inferred from the results in this experiment. The first
one assures the previous findings from the first experiment, which is that using a new
ransomware dataset for training is not enough to build an accurate supervised machine
learning model to detect various ransomware. The second one can be inferred by comparing
the results of Figure 9 and the results of Figure 7, where the detection accuracy by training
and testing the models only using the old ransomware dataset is much higher than the
accuracy obtained by training and testing the models only using the new ransomware
dataset. This may explain the variance in permission features in both datasets. This means
that the permission features requested by ransomware that existed from 2008 to 2015 are
close or have low variance, while there may be a higher variance in permission features
that are requested by ransomware applications which existed from 2016 to 2020.

4.2. Building an Effective Model Using Old and New Ransomware Datasets

This section aims to build a robust model that can efficiently detect ransomware
regardless of the age of the ransomware. In addition, this section discusses the accuracy of
the state-of-the-art considered in this work and how the proposed model outperforms the
state-of-the-art. Therefore, to achieve this task, both datasets, old and new ransomware
datasets, were merged to train and test the model.

The experiments were performed to assess the robustness of the combination of new
and old ransomware together, where the algorithms trained on both features were extracted
from new and old ransomware datasets as well as benign samples. The dataset was divided
into two main datasets: the training dataset, which represents 70% of the dataset, and the
testing dataset, which represents the remaining 30% of the dataset.

Figure 10 shows the results of the experiment. As shown in the figure, the detection
accuracy ranged from 89.08% to 97.48%. The highest detection accuracy, which was
97.48%, was achieved by RF, while the lowest detection accuracy, which was 89.08%, was
achieved by the DT. Obviously, the accuracy result (for all classifiers) achieved by this
experiment is better than the accuracy result achieved by training the models only using
the old ransomware dataset and testing them only using the new ransomware dataset
(see Figure 6), or by training the classifiers only using the new dataset and testing the
classifiers only using the old ransomware dataset (see Figure 8). Moreover, the accuracy
results (for all classifiers) achieved by training the models using both new and old datasets
is better than the accuracy results when training and testing the classifiers only using the
new ransomware dataset, as shown in Figure 9.
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Figure 10. The performance of the supervised machine learning algorithms trained on 70% of the
mixed dataset and tested on 30% of the mixed dataset.

4.3. Comparing the Proposed Approach with the State of Art Models

This paper considers recent and important state-of-the-art models in Android malware
detection. It aims to show the significance of this work and raise awareness of the effects of
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omitting of the ransomware dataset age used in previous models. Table 9 shows a compari-
son between the performance of the proposed model and the state-of-the-art models seen in
Sharma et al. [56], Alsoghyer et al. [24] and Alsoghyer et al. [57]. As shown in the table, the
proposed approach used a large ransomware dataset, comprising 6340 ransomware, while
the other approaches used a relatively small ransomware dataset of approximately 500
ransomware [24], 500 ransomware [57], and 2721 ransomware [56]. The proposed approach
outperformed the state-of-the-art models [24,57] in terms of ransomware detection by 1%
and 0.6%, respectively. However, the proposed approach used a larger number of features.
The state of art model [56], outperformed our approach in terms of accuracy. However,
the authors in [56] used a very large number of features—1045—in their comparison with
the proposed model which only used 241 features. Moreover, the authors in [56] used a
small ransomware dataset of 2721 ransomware in the comparison with that used in the
proposed approach, which used 2721 ransomware. Furthermore, their work included only
two types of Android ransomware, namely locker and crypto. Similarly, the state-of-the-art
model [25] outperformed the proposed model in terms of accuracy. However, the authors
used a relatively small dataset of only 1787 ransomware compared to the 6340 ransomware
used in the proposed work. Furthermore, they used a very large number of opcode se-
quences as features, while the proposed work only used 241 features. In addition, the type
of features used in the proposed approach, which is permissions, is different from the type
of features used by the state-of-the-art model, which used opcode sequences. Moreover, the
age of the used ransomware dataset used by the state-of-the-art model spans over five years
only—from 2012 to 2017. Meanwhile, the used ransomware dataset used in the proposed
work is from 2008 to 2020.

For a fair comparison, none of the previous state-of-the-art models or the discussed
related work considered the age factor in ransomware acquisition. Although the state of
art models mentioned the collection dates of some of their datasets, however, they did not
extract the build date of the ransomware applications to check the ransomware age. That
is, their models may use features that are inefficient in detecting the ransomware of age
different than those used in the testing dataset. Therefore, the accuracy they obtained needs
to be reviewed.

4.4. Recommendations and Work Limitations

The results of this work prove that there is a need to consider a diverse dataset that has
features from ransomware of different ages when training and testing supervised machine
learning models. In addition, it shed light on the inaccuracy of the previous work that used
features from specific and not diverse ransomware datasets.

Section 4.2 presented the accuracy of the classifiers that learned using the features
extracted from both new and old ransomware. The mixed dataset consists of an approx-
imately equal number of features from both new and old ransomware. However, there
is a trade-off between the weight given to the old features and new features. Classifiers
that learn using a high number of new features in comparison to a smaller number of
old features may have degraded accuracy in terms of detecting old ransomware and vice
versa. This is an optimization problem that needs to be considered when building success-
ful classifiers or in continual learning classification. The work in this direction is left to
future work.

Another limitation of this work is the point of split between old and new ransomware
datasets. We chose half of the period 2008–2020, which is 2015, to differentiate between old
ransomware and new ransomware. However, there is a need to choose different split points
to evaluate the effect of the split point on the accuracy. This is also left to future work.
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Table 9. A comparison between the recent state-of-the-art works and the proposed study.

Work Year Ransomware
Samples Benign Samples Features Number of

Selected Features
Classification

Algorithm Accuracy Dataset Age

[24] 2019 500 2959 API calls 173 Random forest 96.5% HelDroid: collected 2010–2014; VirusTotal: submitted
2017–2018; Koodous: unknown

[25] 2019 1787 NA Opcode sequences 695,945 Random forest 99.3% VirusTotal: 2012–2017

[57] 2020 500 500 Permissions 115 Random forest 96.9% HelDroid: collected 2010–2014; VirusTotal: submitted
2017–2018; Koodous: unknown

[56] 2020 2721 2000 Permissions 1045 Logistic regression 99.5% RansomProber: collected from HelDroid 2010–2014

The Proposed Work 2022 6340 2300 Permissions 241 Random forest 97.5% AndroZoo: 2008–2020
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5. Conclusions

There has been significant development in the detection of Android ransomware
applications. Moreover, there is growing research in using machine learning algorithms
to build intelligent detection models. However, there is a discrepancy in the performance
of these models due to the abundance of data, preprocessing techniques, type of analysis,
features extraction methods, and classification approaches. As a result of this huge effort,
supervised machine learning models are able to obtain a high level of accuracy in detecting
Android ransomware. However, there are still shortcomings in the different aspects in these
models. This paper has addressed one important issue of these shortcomings, which is the
age of Android ransomware dataset. The paper has proved that not considering this issue
when training and testing supervised machine learning models may produce incorrect
accuracy. For this purpose, the paper collected a large and diverse ransomware dataset
with different ransomware ages from 2008 to 2020. This dataset was been split into two
datasets, comprising the new dataset of ransomware that were developed between 2015
and 2020, and an old dataset of Android ransomware that were built between 2008 and 2015.
These datasets were interchangeably used for training and testing. The experiments have
shown that training supervised machine learning classifiers using one of these datasets
and using the other for testing achieved poor detection accuracy. However, training the
classifiers using a mixed dataset of new and old ransomware achieved a high accuracy
of approximately 97.48% in detecting new or old ransomware. The interesting results
was achieved using random forest classifier. This successful model was compared with
interesting state-of-the-art models and showed that the proposed methodology achieved a
competitive accuracy compared to the state-of-the-art models, although the state-of-the-art
model did not use diverse datasets for either training or testing. Therefore, based on
this work and results, the paper recommends that the accuracy of supervised machine
learning models should be reviewed using the diverse datasets of different ages to achieve
more authenticity.

The proposed work may be extendable to cover more cases. For example, in addition
to supervised machine learning, neural networks may be used to test the contribution of
the paper. Moreover, finding the optimal split date between old and new ransomware may
be conducted. Furthermore, exploring different training dataset sizes may enhance the
quality of the work. These ideas shape the future work stemming from this paper.
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