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Abstract: Semi-supervised learning is a technique that utilizes a limited set of labeled data and a large
amount of unlabeled data to overcome the challenges of obtaining a perfect dataset in deep learning,
especially in medical image segmentation. The accuracy of the predicted labels for the unlabeled data
is a critical factor that affects the training performance, thus reducing the accuracy of segmentation.
To address this issue, a semi-supervised learning method based on the Diff-CoGAN framework was
proposed, which incorporates co-training and generative adversarial network (GAN) strategies. The
proposed Diff-CoGAN framework employs two generators and one discriminator. The generators
work together by providing mutual information guidance to produce predicted maps that are more
accurate and closer to the ground truth. To further improve segmentation accuracy, the predicted
maps are subjected to an intersection operation to identify a high-confidence region of interest, which
reduces boundary segmentation errors. The predicted maps are then fed into the discriminator, and
the iterative process of adversarial training enhances the generators’ ability to generate more precise
maps, while also improving the discriminator’s ability to distinguish between the predicted maps
and the ground truth. This study conducted experiments on the Hippocampus and Spleen images
from the Medical Segmentation Decathlon (MSD) dataset using three semi-supervised methods:
co-training, semi-GAN, and Diff-CoGAN. The experimental results demonstrated that the proposed
Diff-CoGAN approach significantly enhanced segmentation accuracy compared to the other two
methods by benefiting on the mutual guidance of the two generators and the adversarial training
between the generators and discriminator. The introduction of the intersection operation prior to the
discriminator also further reduced boundary segmentation errors.

Keywords: semi-supervised learning; medical image segmentation; co-training; GAN; Diff-CoGAN

1. Introduction

Semi-supervised learning is favored when labeled data are scarce or expensive to
obtain, but a large amount of unlabeled data are available, such as in the case of medical
image segmentation [1–5]. When performing image segmentation using semi-supervised
learning, the accuracy of predicted map is crucial as it determines the predicted labels
for the unlabeled data points in the dataset. For example, the authors in [1] combined
post-processing with self-training to train a segmentation network with labeled data, then
unlabeled data were fed into the network to get the predicted map. Then, the predicted map
was optimized by post-processing. The refined map was directly taken as additional ground
truth for updating the network parameters. In [2], the authors proposed a two-stream
network and a hybrid method based on model distillation and data distillation to generate
a predicted map for unlabeled data, which was then fed into the network for training.
Even though additional operations, such as post-processing and hybridization, were used,
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predicting labels of an unlabeled dataset for a training model remains a challenge. Due to
the lack of ground truth, it is difficult to generate a high-confidence predicted map. The
generation of a high-quality predicted map is vital in semi-supervised learning as it affects
the performance of training a segmentation model.

Co-training of semi-supervised models introduced by Blum and Mitchell [6] is also
beneficial for image segmentation as the predicted map generated by one model can be
used by another model to improve its own prediction. Co-training firstly trains multiple
models by using labeled data, in which each model is trained sufficiently with one data view
(e.g., data source and rotation). Then, the predicted maps generated from different views
should be agreed upon for the same unlabeled data, which enforces multiple models to be
generalized well to unlabeled data [7–17]. For medical image segmentation, the authors
in [7] proposed an uncertainty-aware multi-view co-training framework to segment 3D
medical images in which an uncertainty-weighted label fusion mechanism was proposed
to estimate the reliability of a predicted map for each view. In [8], the authors proposed a
deep adversarial co-training method for 2D medical image semantic segmentation. The
authors used multiple models to generate predicted maps and then fused them to get
the mean results. At the same time, adversarial samples were introduced to capture the
difference between the models, thereby enabling the models to learn more complementary
information in the training process. Although the fusion of predicted maps can improve
training performance, the measurement to accurately estimate the confidence of predicted
maps is still an essential problem [17]. During fusion, several predicted maps with low
segmentation performance will affect the training outcome. Therefore, improving the
accuracy of generated predicted maps is one of the aims of our proposed research.

Generative adversarial network (GAN) is a deep learning algorithm comprising a
generator network and a discriminator. GAN uses adversarial training [18] between the gen-
erator and the discriminator and has shown that the generator can influence the generation
of a reliably predicted map on unlabeled data to fool the discriminator. With adversarial
training, the discriminator’s ability to distinguish true and fake data is improved, and it
promotes the generator to produce higher-quality fake data that are closer to the true data.
Consequently, the overall performance of GAN is improved. In [19], GAN was proposed to
generate a dataset of synthetic embryo images by training on real human embryo images.
The aim was to perform data augmentation for future work of classification, analysis, and
training. The proposed model achieved the highest quality of synthetic images for single-
cell embryo images. GAN has also been used in medical image segmentation in recent
years [20–26]. For example, the authors in [20] proposed a deep adversarial network (DAN)
to achieve the medical image segmentation task. The authors designed an adversarial
loss function, which better controlled the training process using unlabeled data. In [21],
the authors further optimized the discriminator to output confidence maps of predicted
maps. Only predicted maps with high confidence values participated in the model training.
In [26], the authors fine-tuned a pix2pix-GAN model, and then a trained GAN model was
used to automatically segment lung infection from CT images. All the abovementioned
work used GAN consisting of one generator corresponding to one discriminator to achieve
medical image segmentation. There have also been many medical image segmentation
approaches based on the extension of GAN, as described in the paper [27]. All except
CycleGAN [28] contained one generator and one discriminator in their proposed extended
GANs. CycleGAN comprised two sets of generator–discriminator in which one generator
corresponded to one discriminator, meaning the adversarial training was between one
generator and one discriminator. Meanwhile, the adversarial training in our proposed
Diff-CoGAN is between two generators and one discriminator, which further facilitates the
three networks’ feature extraction ability by mutual influence.

The strengths of adversarial training of GAN and co-training strategy are complemen-
tary and are the aim of this paper. Thus, the combination of a co-training strategy and GAN
was proposed and named Diff-CoGAN to produce high-quality predicted maps for medi-
cal image segmentation. In Diff-CoGAN, two different generators and one discriminator
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were adopted and compared to the classic and extended GANs as reviewed in [27]. The
two different generators utilize the co-training strategy to provide mutual segmentation
information. Furthermore, the adversarial training between the two generators and the
discriminator allows better interaction among them. In [8], one generator corresponds
to one discriminator in each stream of co-training, thus the mutual guidance is limited.
The adversarial training in Diff-CoGAN is between two generators and one discriminator,
which further facilitates the three networks’ feature extraction ability by mutual influence.
Thus, the generators could learn more features extracted from each other under the guid-
ance of one discriminator, which consequently improves the quality of the predicted maps.
Furthermore, Diff-CoGAN can save computing space by using one discriminator when
compared to the work by [8] in which two discriminators were adopted.

The major contributions of this paper are concluded as follows:

(1) In Diff-CoGAN, there are two different generators and one discriminator (See
Figures 1 and 2), in which the generators generate predicted maps for medical im-
ages, and the discriminator is used to discriminate between the ground truth and the
predicted maps.

(2) In Diff-CoGAN, the two generators provide mutual segmentation information, which
also supervises each other. In this paper, we introduced the intersection of two pre-
dicted maps with high confidence region produced by the outputs of the two gen-
erators as the input to the discriminator (see Section 2.3.3). Diff-CoGAN achieves
higher segmentation accuracy through adversarial training because the discriminator
can guide the generators to generate more accurate predicted maps, and the mutual
information guidance of the two generators can also promote the improvement of
segmentation performance.

(3) The two generators adopt different networks (see Sections 2.3.1 and 2.3.2) to increase
the diversity of extracted features, consequently providing complementary informa-
tion for the same data along with the strategy of co-training.
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Figure 2. Configurations of Diff-CoGAN framework showing two generators and one discriminator.
The input data comprise 2D labeled and unlabeled image datasets. The input to Generator 1 is the
original dataset, while Generator 2 is fed the transformed (TX) dataset. T(X) is a 180◦ rotation of
the original dataset. Consequently, predicted maps are generated by the two generators and are
intersected (notated by the intersection, ∩) to be the input to the discriminator. Prior to intersection,
the predicted map output from Generator 2 is inversed, which is notated by T-1.

2. Materials and Methods

This section describes our proposed Diff-CoGAN in detail. Firstly, the overview of the
Diff-CoGAN framework is explained in Section 2.1. The networks’ configuration details of
Diff-CoGAN are described in Section 2.2. Finally, the training strategy of Diff-CoGAN is
introduced in Section 2.3.

2.1. Overview of Diff-CoGAN Framework

Figure 1 shows the overall framework of Diff-CoGAN. There are two different genera-
tors and one discriminator in Diff-CoGAN. For each generator, it accepts one view of data
to achieve segmentation. The data view for Generator 1 is the original image. The data
view for Generator 2 is the rotated original image, and the rotation angle is 180◦. The aim
of the two generators is to achieve correct segmentation for the region of interest (ROI), and
the output of each generator is a predicted map. The aim of the discriminator is to evaluate
the quality of the predicted maps.

In classic GAN, one generator commonly corresponds to one discriminator. The
generator is mainly expected to achieve segmentation (predicted map) with high similarity
to the ground truth. The discriminator is expected to distinguish between the predicted
map and the ground truth. The output of the discriminator is an evaluation score, ranging
from 0 to 1. The predicted map has a higher similarity to the ground truth if the evaluation
score is closer to 1. A score closer to 0 indicates a fake predicted map that is less similar
to the ground truth. During the adversarial training process between the generator and
discriminator, the performance of the generator and the discriminator is both improved by
iterative optimization. The best training performance is when the generator generates a
predicted map that is closest to the ground truth and can fool the discriminator, making it
fail to distinguish between the predicted map and the ground truth.

Diff-CoGAN uses two generators to generate predicted maps and one discriminator to
achieve quality evaluation for the generated predicted maps. Besides the basic functions in
classic GAN, there are other aims of the generators and the discriminator in Diff-CoGAN.
Firstly, the two generators provide mutual guidance to each other. The generators have
different structures and accept different views of the data to realize segmentation. Thus,
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the predicted maps from the two generators have differences, containing complementary
information. During the training process, the predicted map from each generator can be
taken as a fake ground truth to the other generator to learn complementary information.
Then, the two generators reach a consensus for the same data segmentation through
iterative optimization. Secondly, the adversarial training between the two generators and
the discriminator allows them to interact with each other and improves their own feature
extraction ability by mutual influence. The final difference between Diff-CoGAN and classic
GAN is the input to the discriminator. In Diff-CoGAN, the intersection of the two predicted
map outputs from the two generators is the input to the discriminator. The two generators
both agree that the intersection region has high confidence of being the ROI. Thus, this can
alleviate the effect of wrong evaluation for the discriminator.

2.2. Configurations of Diff-CoGAN Framework

Figure 2 illustrates the configuration of Diff-CoGAN framework and how the labeled
and unlabeled data are used by the generators and discriminator to conduct image seg-
mentation. The segmentation performances of the generators and the discriminator are
measured using loss values, which are the segmentation loss, similarity loss, adversarial
loss, and evaluation loss. Segmentation loss 1 and segmentation loss 2 are used to measure
the segmentation performance of Generator 1 and Generator 2 by using fully supervised
learning (training models using labeled data only) during the training of the Diff-CoGAN
framework. A smaller segmentation loss value indicates a better segmentation performance.
The similarity loss is used to evaluate the similarity between the predicted maps from
the two generators. Similar predicted maps generate smaller similarity loss values. A
smaller similarity loss means the two generators can reach an agreement for the input
data. The adversarial loss is used to estimate the predicted map from either the labeled
data or unlabeled data to appear like the ground truth. Because Diff-CoGAN only has
one discriminator, the performance of the discriminator can guide the optimization of the
two generators at the same time. Generator 1 and Generator 2 can influence each other
through an adversarial training process and mutual guidance from similarity loss. Finally,
the evaluation loss is used to measure the performance of the discriminator.

Medical image segmentation using deep learning models has commonly adopted
an encoder–decoder structure, in which the encoder part is used to extract low-level
and high-level feature maps and the decoder is used to recover the information of the
image [29,30]. A typical model is Unet [31–33]. Meanwhile, feature maps of the same sizes
between the encoder and decoder are concatenated together to compensate for the loss of
information in the down-sampling steps. Even though the two generators in Diff-CoGAN
use different networks to achieve segmentation, their basic network structures both contain
encoder–decoder and concatenation between feature maps of the same sizes. Diff-CoGAN
strategizes by using different network designs for the two generators to extract different
features of the same data.

2.3. The Network Design of Diff-CoGAN

As stated earlier, the generators in Diff-CoGAN use different network designs with
different purposes. One generator is to build a new network, and the other is to leverage
the trained models by transfer learning.

2.3.1. The Network of Generator 1

The encoder–decoder network structure of Generator 1 is shown in Figure 3. In the
encoder, the input data are first convolved with a 1 × 1 filter, followed by four block
processing to extract feature maps of different sizes. Each block is a dense structure
in which high-level features can be generated by incorporating low-level features, thus
facilitating the identification of the target region [34]. In each block, all the outputs of
subsequent layers are concatenated in a feed-forward manner. Meanwhile, each convo-
lution layer (Conv) in the dense block is followed by a Batch Normalization layer (BN)
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and leaky rectified linear unit (Leaky-Relu). In the encoder, four dense blocks are used
to alleviate the vanishing gradient problem in the deep learning model by combining
high-level and low-level features. In each block, the feature maps are subjected to a series of
convolution + Batch Normalization + Leaky-Relu. Each feature map is concatenated with
the previous convolved maps, and a final convolution is performed to produce a convolved
output. The output of each block is further maxpooled to the next block and concatenated
to the decoder. In the decoder, three upsampling steps are performed to the feature maps,
and each upsampling is followed by one convolution. Concurrently, feature maps of the
same size between the encoder and decoder are concatenated before convolution processing
in the decoder part. Finally, three convolutions are used to gradually transit the channel of
feature maps to obtain the output.
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Figure 3. The network design of Generator 1 consists of an encoder and a decoder. The encoder
extracts features using 4 dense blocks of convolution, batch normalization, and Leaky-Relu. The
feature maps are then upsampled by the decoder to produce the output.

2.3.2. The Network of Generator 2

There are many mature models that have been trained for classification tasks using
the large-scale dataset from ImageNet, such as VGG [35], Resnet [36], and DenseNet [37].
Therefore, these trained models can be utilized to achieve segmentation tasks by transfer
learning. For medical image segmentation, the encoder can adopt some layers of the trained
models to extract features by transfer learning, and the decoder is designed to recover
the image information. Table 1 describes the segmentation performance of three trained
models by using the Hippocampus dataset under fully supervised learning. As can be seen,
the VGG16 model has the highest Dice value [38] with a minimum number of layers. Thus,
the VGG16 model was adopted as the basic network of Generator 2.
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Table 1. VGG16 shows better segmentation performance compared to ResNet50 and Dense121.

Learning Model Dice Value Number of Layers

VGG16 0.741 16
ResNet50 0.726 50
Dense121 0.690 121

The network design of Generator 2 is shown in Figure 4. The dashed box is the trained
model using VGG16 transfer learning. The output of VGG16 is upsampled to the decoder.
In the decoder, the four upsampling steps are performed to the feature maps, and each
upsampling is followed by one convolution. Concurrently, feature maps of the same size
between the encoder and decoder are concatenated before convolution processing in the
decoder. Finally, two convolutions are used to gradually transmit the channel of feature
maps to produce the output.
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of convolutions to produce the output.

2.3.3. The Network of the Discriminator

The discriminator network is shown in Figure 5. The input data are the segmented
region of interest (ROI) and its corresponding original image. In classic GAN, the ROI
for the discriminator is the predicted maps, while in Diff-CoGAN, the segmented ROI
sources are from the intersection of the predicted maps generated by the two generators
and the ground truth annotated by experts. The intersection part indicates that both
generators agree the region is to be from a part of a target region, which means the in-
tersection part has a high confidence of being the ROI. At the same time, the boundary
errors of the predicted maps are reduced by using the intersection part in the training
process. Further discussion is detailed in Section 3.4. The segmented ROI and the original
image are subjected to 1 × 1 convolution and 3 × 3 convolution, respectively, to acquire
the feature maps. Then, the feature maps are multiplied to fuse the information of the
segmented ROI and the original images. The multiplied output is further applied with
(Convolution + Batchnormalization + LeakyRelu) operation four times. Next, 3 × 3 con-
volution and 1 × 1 convolution are used to gradually reduce the channels of the feature
map. Finally, Flatten and Dense steps are carried out to get the evaluation score. The
evaluation score ranges from 0 to 1. The input data of the discriminator from the ground
truth are represented with 1, while 0 represents the input data of the discriminator from
the predicted map. If the evaluation score is closer to 1, this means the input data are closer
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to the ground truth. In contrast, the input data closely resemble the predicted map if the
evaluation score is nearer to 0.
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2.4. Training Strategy of Diff-CoGAN Framework

In this section, the training strategy of Diff-CoGAN is described in detail, consisting
of loss functions and training settings. The aim of the strategy is to guide the proposed
Diff-CoGAN framework to optimize its parameters to achieve the best segmentation task.

2.4.1. Loss Functions

Loss functions provide direction for the model’s optimization. To describe the loss
functions, all the used symbols are first enlisted below:

X1
L= labeled data used by Generator 1

X1
U = unlabeled data used by Generator 1

X2
L = labeled data used by Generator 2

X2
U = unlabeled data used by Generator 2

Y1
L = ground truth of the labeled data used by Generator 1

Y1L= predicted map for the labeled data generated by Generator 1
Y1U = predicted map for the unlabeled data generated by Generator 1
Y2

L = ground truth of the labeled data used by Generator 2
Y2L = predicted map for the labeled data generated by Generator 2
Y2U = predicted map for the unlabeled data generated by Generator 2

In Diff-CoGAN, the first step is to initialize Generator 1 and Generator 2. This step
is implemented under fully supervised learning using the labeled data only. The loss
functions for Generator 1 initialization are defined as follows:

loss1 = lossbce1 (1)

lossbce1 = −Y1· log
(

Y1
)
−

(
1−Y1

)
· log

(
1−Y1

)
(2)

Similarly, the loss functions for Generator 2 initialization are defined as follows:

loss2 = lossbce2 (3)

lossbce2 = −Y2· log
(

Y2
)
−

(
1−Y2

)
· log

(
1−Y2

)
(4)

where bce means a binary cross-entropy function.
When the generators’ initializations are finished, the discriminator is combined with

the generators to construct Diff-CoGAN. The second step is to train Diff-CoGAN using
semi-supervised learning. In this step, the loss functions are defined as written below.
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For the optimization of the generators, there are 3 losses: segmentation loss, similarity
loss, and adversarial loss. Segmentation loss works with the labeled data only. Similarity
loss and adversarial loss work with the labeled data and the unlabeled data.

LossG = lossseg + αlosssimi + βlossadv (5)

lossseg = lossseg1 + lossseg2 (6)

lossseg1 = lossdice1 + lossbce1 (7)

lossdice1 = 1− Dice
(

Y1, Y1
)
= 1− 2

∣∣∣Y1 ∩Y1
∣∣∣

|Y1|+
∣∣∣Y1

∣∣∣ (8)

lossseg2 = lossdice2 + lossbce2 (9)

lossdice2 = 1− Dice
(

Y2, Y2
)
= 1− 2

∣∣∣Y2 ∩Y2
∣∣∣

|Y2|+
∣∣∣Y2

∣∣∣ (10)

losssimi = lossdice12L + lossdice12U (11)

lossdice12L = 1− Dice
(

Y1L, Y2 L

)
(12)

lossdice12U = 1− Dice
(

Y1U , Y2 U

)
(13)

lossadv = lossbce

(
D
(

X1
L, YinL

)
, 1
)
+ lossbce

(
D
(

X1
U , YinU

)
, 1
)

(14)

YinL = Y1L ∩Y2L, YinU = Y1U ∩Y2U (15)

It should be noted that Y2L needs to be rotated 180◦ again (i.e., matrix transposition)
when calculating the loss value in functions (10)–(14). Segmentation loss lossseg is used to
measure how close the predicted maps generated by the two generators are to the ground
truth using fully supervised learning.

Similarity loss, losssimi, is used to describe the similarity of the predicted maps from
two generators for one data set. According to the loss function definition, two generators
can provide mutual segmentation information to each other. Then, the performance of the
generators can be improved by mutual guidance between them.

Adversarial loss, lossadv, is used to measure the similarity of the predicted maps from
the labeled data or unlabeled data to the ground truth. For a generator, it aims to generate
a predicted map with high similarity to make the discriminator think that the predicted
map is the ground truth. In Diff-CoGAN, when calculating the adversarial loss, the input
of the discriminator is the intersection region from the predicted maps generated by the
two generators.

Meanwhile, α is the weight of losssimi and β is the weight of lossadv, and both are set to
0.02 according to the experimental training process in this paper. This is to ensure stable
training and better segmentation performance of Diff-CoGAN under different data training
settings. For the discriminator’s optimization, the loss is the evaluation loss. This loss
function is defined as follows:

losseva = lossbce

(
D
(

X1
L, Y1

L

)
, 1
)
+ lossbce

(
D
(

X1
L, YinL

)
, 0
)
+ lossbce

(
D
(

X1
U , YinU

)
, 0
)

(16)

The discriminator should distinguish segmented ROI resources and gives an evaluation
score to the input data. For the labeled data, the segmented ROI can be the predicted
map from the generators or the ground truth from experts’ annotation. For the unlabeled
data, the segmented ROI is only from the predicted map. The input data of the discrim-
inator from the ground truth are represented with 1, while 0 represents the input data
of the discriminator from the predicted map. It should be noted that the predicted map
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involved in the calculation is the intersection region of the predicted maps generated by
the two generators.

2.4.2. Training Settings

In this paper, three experiments were conducted: image segmentation based on Diff-
CoGAN, segmentation based on the classic GAN, and segmentation based on co-training [7].
There were two steps for segmentation based on Diff-CoGAN:

(1) The first step was to initialize Generator 1 and Generator 2 using the labeled data only.
In this step, the optimizer was stochastic gradient descent (SGD), the epoch was set to
50, and batch_size was set to 8. The training aim was to minimize the loss functions,
loss1 and loss2.

(2) In the second step, Diff-CoGAN adopted a semi-supervised learning strategy. In the
training process, the optimizer for the generators was SGD, and the learning rate was
set to 0.01. For the discriminator, the optimizer was Root Mean Squared Propagation
(RMSprop), and the learning rate was set to 0.001. The batch_size of the labeled data
was set to 8, and the batch_size of the unlabeled data was set to 16. The epoch was set
to 100. In the optimization process, the discriminator was trained to minimize losseva,
and the generators were trained to minimize LossG. For the generators’ training,
the labeled and unlabeled data were firstly used to minimize losssimi and lossadv,
and lossseg was optimized using the labeled data only. In the training process, the
generators were trained ten times and the discriminator was trained once.

There were two steps for segmentation using the classic GAN:

(1) The first step was to initialize Generator 1 and Generator 2 using the labeled data only.
This step adopted the initialized generators in Diff-CoGAN.

(2) The second step was to train GAN under semi-supervised learning. There were
two generators to realize medical image segmentation in Diff-CoGAN. However,
segmentation based on GAN was separated into two experiments: Semi-GAN (G1)
which adopted the segmentation approach from [34] and Semi-GAN (G2) from [39].
Semi-GAN (G1) consisted of Generator 1 and the discriminator, and Semi-GAN (G2)
consisted of Generator 2 and the discriminator. The optimizer of the generator was
SGD, and the learning rate was set to 0.01. The optimizer of the discriminator was
RMSprop, and the learning rate was set to 0.001. The batch_size of the labeled data
was set to 8, and the batch_size of the unlabeled data was set to 16. The epoch was set
to 100.

There were two steps for segmentation using co-training:

(1) The first step was to initialize Generator 1 and Generator 2 using the labeled data only.
This step adopted the initialized generators in Diff-CoGAN.

(2) In the second step, the unlabeled data and labeled data were used to train the model
together inspired by the work by [7]. In the training process, the optimizer for the
generators was SGD, and the learning rate was set to 0.01. The batch_size of the
labeled data was set to 8, and the batch_size of the unlabeled data was set to 16. The
epoch was set to 100. For these three experiments, the Dropout layer and the Batch
normalization layer were imported into the model’s structure to prevent overfitting.

3. Experiments and Analysis

In this section, the implementation of all experiments is described in detail. Firstly,
the datasets and data preprocessing are introduced, then the experimental setup and the
design details of the comparative experiments are introduced. Finally, the experimental
results are analyzed.

3.1. Dataset

In this paper, the data used were the Hippocampus and Spleen images in the Medical
Segmentation Decathlon (MSD) dataset. The Hippocampus dataset from the Vanderbilt
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University Medical Centre contains three-dimensional (3D) MRI volumes with the corre-
sponding ground truths. The ROI in this paper was the anterior hippocampus. The data
source of Spleen was from the Memorial Sloan Kettering Cancer Center. The Spleen dataset
contains 61 three-dimensional volumes showing images of CT modality with corresponding
ground truths. The ROI of the Spleen dataset was the whole spleen.

Figures 6 and 7 show one Hippocampus data sample and one Spleen data sample,
respectively, using a 3D slicer software in three directions: axial, sagittal, and coronal.
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The 3D MRI volumes and ground truth need to be converted to 2D images because the
proposed Diff-CoGAN is a 2D network. The Hippocampus MRI dataset with MRI modality
has three directions: axial, sagittal, and coronal. In each direction, the MRI data contain
several 2D slices. In this paper, the axial slices were extracted to be used as the 2D images.
For the Hippocampus dataset, each data sample has 29~40 slices in the axial direction.
During extraction, the slices without a specified ROI were discarded because these slices
cannot provide the information of the ROI that we needed. Since the middle slices contain
the ROI that we needed, the middle axial slices were used in our experiments. Then, all
the 2D slices were separated into the training and testing datasets. The training dataset
contained 3000 slices with 2D ground truth, and the testing dataset contains 699 slices with
2D ground truth. The next step was to resize and normalize the gray values to be between
0 and 1. (0,1). The size of the original images of 35 × 51 was resized to 64 × 64.

After the 3D to 2D data conversion of the Spleen dataset, a total of 1051 2D axial slices
with ground truth were gathered. Since the original slices have a large foreground range
which may deteriorate the segmentation process, the original slices were cropped. Given
that the Spleen was in the upper left part of the axial slice image, the aim of cropping
was to acquire the upper left ROI of the original slices. Then, the cropped slices were
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resized to 128 × 128, and the gray value were normalized to be between 0 and 1. The
processed Spleen dataset was further divided into 900 training and 151 testing datasets.
After data preprocessing, the training datasets of both Hippocampus and Spleen were
further shuffled. Then, the training datasets were separated into the labeled and unlabeled
datasets to prepare for semi-supervised learning. The first 100 axial slices were selected as
the labeled dataset, while the rest of the axial slices were specified as the unlabeled dataset.
Table 2 shows the details of the training dataset settings for the different experiments.

Table 2. The training dataset settings. The labeled slices in both Dataset 1 and Dataset 2 were set to
100 slices in all experiments. Meanwhile, the unlabeled slices were varied to investigate how this
affected the segmentation performance.

Experiments Dataset 1 Training Dataset Setting
(Labeled Slices/Unlabeled Slices) Dataset 2 Training Dataset Setting

(Labeled Slices/Unlabeled Slices)

Semi-supervised learning
using co-training

Hippocampus

100/100
100/1000
100/2000
100/2900

Spleen
100/100
100/400
100/800

Semi-supervised learning
using GAN (semi-GAN)

Semi-supervised learning
using Diff-CoGAN

The labeled data in the training dataset were fixed to 100, while the unlabeled data
were increased at varying scales. As recommended by [34], the use of different numbers of
unlabeled data was to obtain further insights on the tendency of segmentation performance
of the Diff-CoGAN, co-training, and semi-GAN models. There were four training dataset
settings for Hippocampus segmentation, and three training dataset settings for Spleen
segmentation. Each experiment of Hippocampus segmentation used 100 fixed labeled
data points but with different scales of the unlabeled data, including 100, 1000, 2000, and
2900. Meanwhile, the experiments for Spleen segmentation used 100 fixed labeled data
points but with different scales of the unlabeled data, including 100, 400, and 800, during
training process.

3.2. Experimental Setup

The proposed Diff-CoGAN framework was implemented on Keras deep learning
API, and all the experiments were conducted on the Kaggle platform. Since the Diff-
CoGAN framework has two generators, the segmentation results of co-training, GAN, and
Diff-CoGAN were compared according to the generators. Therefore, the segmentation
results from Generator 1 in each experiment were compared and named as co-training
(G1), semi-GAN (G1), and Diff-CoGAN (G1). Similarly, the segmentation results from
Generator 2 in each experiment were compared and named as co-training (G2), semi-GAN
(G2), and Diff-CoGAN (G2). As shown in Table 2, there are four training dataset settings
for the Hippocampus segmentation task and three training dataset settings for the Spleen
segmentation task. The experimental details were set as described in Section 2.3.2.

3.3. Performance Evaluation

In this paper, there were four evaluation metrics used: Dice, Intersection of Union
(IoU), Hausdorff distance (HD), and average symmetric surface distance (ASD).

Dice: The Dice coefficient is used to evaluate the similarity between two samples. In
medical image segmentation, the similarity or overlap between a predicted result and the
ground truth can be calculated by the Dice function. The closer the value of Dice to one,
the better the segmentation performance, and vice versa. Given two datasets A and B, the
Dice index between them is defined as follows [38]:

Dice(A, B) = 2
A ∩ B
|A|+ |B| (17)
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IoU: IoU is similar to Dice. The range of IoU is from zero to one. An IoU value of one
represents completely overlapping samples, and zero represents no overlap. Given two
datasets A and B, the IoU between them is defined as follows [38]:

IoU =
|A ∩ B|
|A ∪ B| (18)

Hausdorff distance: It describes the similarity between two sets of points, that is, the
distance between the boundaries of the ground truth and a predicted result. It is sensitive
to the segmentation of the boundary. Hausdorff distance is defined as follows [38]:

H = max
(

max
i∈pr

(
min
j∈gt

(d(i, j))
)

, max
j∈gt

(
min
i∈pr

(d(i, j))
) )

(19)

where i and j are the points belonging to different sets. Additionally, d represents the
distance between i and j.

ASD: ASD describes the similarity between two sets of points. It is similar to Hausdorff
distance, but ASD is the average distance between two sets of points [40]:

ASD =
1

|S(A)|+ |S(B)|

(
∑a∈S(A)

min
b∈S(B)

‖a− b‖+ ∑b∈S(B) min
a∈S(A)

‖a− b‖
)

(20)

where S(A) and S(B) represent the points of boundary for set A and set B, and a and b are
the points belonging to S(A) and S(B).

3.4. Results

The results are presented in two subsections, one for each type of dataset, that is, the
Hippocampus dataset and the Spleen dataset.

3.4.1. Medical Image Segmentation Using Hippocampus Dataset

All the experimental results using Dice, IoU, HD, and ASD are presented in Tables 3–7.
In co-training, classic GAN, and Diff-CoGAN, the first step was to initialize Generator
1 and Generator 2 using the labeled data only. Table 3 presents the Dice, IoU, HD, and
ASD values for the Hippocampus dataset when using 100 fixed labeled data points to train
Generator 1 and Generator 2, respectively. The experiment of Generator 1 initialization was
named seg1only, and the experiment of Generator 2 initialization was named seg2only.

Table 3. The Dice, IoU, HD, and ASD values show that Generator 2 performs better than Generator 1.
The experiment was conducted using only 100 labeled data points of the Hippocampus dataset.

Initialization Dice IoU HD ASD

seg1only 0.460
(0.045)

0.072
(0.003)

28.209
(111.717)

10.639
(21.102)

seg2only 0.731
(0.018)

0.285
(0.016)

10.079
(21.403)

3.459
(1.715)

From Table 3, both Dice and IoU values of seg1only are lower than seg2only, indicating
that Generator 2 has better segmentation accuracy. Furthermore, the HD value and ASD
value of seg1only are higher than seg2only, also showing that Generator 2 reduces the
boundary error during segmentation better than Generator 1. According to the network
design of Generator 1 and Generator 2, the difference is the encoder structure in which
Generator 1 adopts DenseNet without pre-training, while Generator 2 adopts trained
VGG16 with transfer learning. Generator 2 has a simpler structure but achieves better
performance partly due to the transfer learning strategies.
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Table 4. The Dice and IoU values of co-training, semi-GAN, and Diff-CoGAN using the Hippocampus
dataset. Unlike semi-GAN, co-training and Diff-CoGAN show an improvement in segmentation as
more unlabeled data are added to the training.

Data
Setting

Dice IOU

Co-Training Semi-GAN Diff-CoGAN Co-Training Semi-GAN Diff-CoGAN
G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

100/100 0.774
(0.015)

0.785
(0.017)

0.774
(0.015)

0.783
(0.018)

0.780
(0.014)

0.805
(0.012)

0.543
(0.021)

0.551
(0.022)

0.543
(0.022)

0.547
(0.023)

0.545
(0.021)

0.578
(0.019)

100/1000 0.793
(0.014)

0.796
(0.019)

0.783
(0.015)

0.802
(0.012)

0.797
(0.013)

0.808
(0.011)

0.576
(0.020)

0.582
(0.024)

0.534
(0.022)

0.581
(0.019)

0.586
(0.019)

0.589
(0.018)

100/2000 0.801
(0.01)

0.811
(0.011)

0.686
(0.028)

0.802
(0.013)

0.804
(0.012)

0.812
(0.011)

0.593
(0.018)

0.600
(0.017)

0.424
(0.027)

0.581
(0.019)

0.593
(0.018)

0.601
(0.017)

100/2900 0.804
(0.011)

0.814
(0.011)

0.790
(0.014)

0.806
(0.011)

0.805
(0.012)

0.814
(0.011)

0.595
(0.018)

0.606
(0.017)

0.576
(0.020)

0.590
(0.018)

0.597
(0.018)

0.605
(0.017)

Table 5. The HD and ASD values using the Hippocampus dataset show that Diff-CoGAN performs
better than co-training and semi-GAN when processing boundaries during segmentation.

Data
Setting

HD ASD

Co-Training Semi-GAN Diff-CoGAN Co-Training Semi-GAN Diff-CoGAN
G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

100/100 8.276
(12.405)

7.384
(8.190)

7.921
(9.190)

7.265
(8.200)

8.081
(14.777)

7.264
(7.756)

3.148
(1.425)

2.724
(1.154)

3.087
(1.269)

2.606
(1.081)

3.037
(1.628)

2.624
(0.906)

00/1000 6.813
(9.286)

6.550
(7.673)

7.316
(13.288)

6.807
(7.847)

6.537
(7.426)

6.533
(6.917)

2.596
(1.626)

2.468
(1.398)

2.473
(1.490)

2.571
(1.017)

2.420
(1.076)

2.458
(1.032)

100/2000 6.117
(8.939)

5.990
(7.354)

8.852
(20.004)

7.034
(8.010)

5.966
(7.420)

5.963
(7.182)

2.054
(0.626)

2.050
(0.837)

2.902
(1.936)

2.728
(1.122)

2.044
(0.549)

2.043
(0.885)

100/2900 5.902
(7.203)

5.777
(6.683)

6.163
(8.888)

6.038
(7.518)

5.832
(6.506)

5.765
(6.656)

1.952
(0.815)

1.866
(0.340)

2.110
(1.002)

2.030
(0.841)

1.917
(0.506)

1.863
(0.420)

Table 6. The HD and ASD values of Diff-CoGAN with and without intersection prior to the input of
the discriminator. Using the Hippocampus dataset, the intersection operation shows that it is able to
reduce the boundary errors in segmentation. Diff-CoGAN with intersection consistently shows lower
values of ASD and HD compared to Diff-CoGAN without intersection.

Data
Setting

HD ASD

Diff-CoGAN
(without) Diff-CoGAN (with) Diff-CoGAN (without) Diff-CoGAN (with)

G1 G2 G1 G2 G1 G2 G1 G2

100/100 8.433
(12.695)

7.306
(8.646)

8.081
(14.777)

7.264
(7.756)

3.300
(1.583)

2.660
(1.136)

3.037
(1.628)

2.624
(0.906)

100/1000 7.251
(8.028)

7.108
(6.887)

6.537
(7.426)

6.533
(6.917)

2.894
(1.255)

2.849
(0.962)

2.420
(1.076)

2.458
(1.032)

100/2000 6.678
(10.805)

6.261
(6.084)

5.966
(7.420)

5.963
(7.182)

2.233
(0.845)

2.282
(0.533)

2.044
(0.549)

2.043
(0.885)

100/2200 8.256
(15.609)

5.932
(6.790)

6.045
(8.258)

5.880
(6.366)

2.420
(1.184)

2.009
(0.485)

2.031
(0.554)

1.967
(0.413)

100/2400 5.928
(7.087)

5.851
(6.326)

5.905
(6.381)

5.851
(6.993)

1.970
(0.646)

1.945
(0.423)

1.979
(0.492)

1.929
(0.471)

100/2900 5.833
(6.151)

5.795
(6.918)

5.832
(6.506)

5.765
(6.656)

1.942
(0.435)

1.877
(0.511)

1.917
(0.506)

1.863
(0.420)
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Table 7. The metric values for the Spleen dataset using only 100 labeled data points for training. The
use of VGG16 in Generator 2 (seg2only) shows that it performs better than Generator 1 (seg1only) with
a higher segmentation accuracy and is able to reduce the boundary error during segmentation.

Initialization Dice IoU HD ASD

seg1only 0.161
(0.041)

0.019
(0.001)

83.886
(136.112)

40.423
(68.744)

seg2only 0.886
(0.007)

0.410
(0.018)

28.307
(188.846)

7.665
(10.764)

In Tables 4 and 5, the results of co-training, semi-GAN, and Diff-CoGAN are presented.
For a clearer comparison and analysis, G1 presents the results generated by Generator 1, and
G2 presents the results generated by Generator 2 in each experiment. Co-training achieved
segmentation using mutual segmentation information between the two generators. Semi-
GAN achieved segmentation by using adversarial training in classic GAN. Diff-CoGAN
achieved segmentation by using mutual information guidance and adversarial training
between the generators and discriminator.

For Hippocampus segmentation, Table 4 shows the Dice values and IoU values using
four data settings, and the value shown in parenthesis are the distribution variations of the
Dice values and IoU values. The highest Dice values are all produced using data setting
100/2900 for co-training (G1 with 0.804 and G2 with 0.814), Semi-GAN (G1 with 0.790
and G2 with 0.806), and Diff-CoGAN (G1 with 0.805 and G2 with 0.814). It means the
unlabeled data can improve the segmentation performance in semi-supervised learning.
When compared at the data setting level, Diff-CoGAN (G1) improved the Dice value by
0.6%, 0.4%, 0.3%, and 0.1% compared to co-training (G1) for the data settings 100/100,
100/1000, 100/2000, and 100/2900, respectively. At the same time, Diff-CoGAN (G1)
improved the Dice value by 0.6%, 1.4%, 11.8%, and 1.5% compared to semi-GAN (G1)
for the data settings 100/100, 100/1000, 100/2000, and 100/2900, respectively. Similarly,
Diff-CoGAN (G2) improved the Dice value by 2%, 1.2%, 0.1%, and 0% compared to co-
training (G2) for the data settings 100/100, 100/1000, 100/2000, and 100/2900, respectively.
Additionally, Diff-CoGAN (G2) improved the Dice value by 2.2%, 0.6%, 10%, and 0.8%
compared to Semi-GAN (G2) for the data settings 100/100, 100/1000, 100/2000, and
100/2900, respectively. By comparing Diff-CoGAN with semi-GAN, it shows that Diff-
CoGAN could improve the segmentation performance by adopting mutual guidance
and adversarial training. By comparing Diff-CoGAN with co-training, it shows that the
adversarial training of Diff-CoGAN could improve segmentation performance significantly
when using less unlabeled data.

It is also worth noting that the Dice values of Diff-CoGAN and co-training improved as
more unlabeled data was added to the training dataset. However, for semi-GAN (G1), the
Dice value dropped to the lowest value of 0.686 at the data setting 100/2000, while the Dice
value of semi-GAN (G2) was retained at 0.802 at the data settings 100/1000 and 100/2000.
The co-training and Diff-CoGAN frameworks showed a more stable performance, and
more unlabeled data also helped increase their image segmentation.

Table 4 shows that the highest IoU values are all produced using the data setting
100/2900 for co-training (G1 with 0.595 and G2 with 0.606), semi-GAN (G1 with 0.576 and
G2 with 0.590), and Diff-CoGAN (G1 with 0.597 and G2 with 0.605). When compared at
the data setting level, Diff-CoGAN (G1) improved the IoU values by 0.2%, 1%, 0%, and
0.2% compared to co-training (G1) for the data settings 100/100, 100/1000, 100/2000, and
100/2900, respectively. Diff-CoGAN (G1) improved the IoU values by 0.2%, 5.2%, 16.9%,
and 2.1% compared to semi-GAN1 for the data settings 100/100, 100/1000, 100/2000, and
100/2900, respectively. Similarly, Diff-CoGAN (G2) improved the IoU value by 2.7%, 0.7%,
0.1%, and −0.1% compared to co-training (G2) for the data settings 100/100, 100/1000,
100/2000, and 100/2900, respectively. Additionally, Diff-CoGAN (G2) improved the IoU
value by 3.1%, 0.8%, 2%, and 1.5% compared to semi-GAN (G2) for the data settings
100/100, 100/1000, 100/2000, and 100/2900, respectively. The IoU values have the same
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regularity as the Dice values. The IoU values also showed that segmentation performed by
Diff-CoGAN was improved consistently as more unlabeled data were added. On the other
hand, the values of IoU of semi-GAN reduced or remained the same when more unlabeled
data were added. For example, the IoU value of semi-GAN (G1) reduced to 0.424 and the
value of semi-GAN (G2) was retained at 0.581 at the data setting 100/2000. Additionally,
Diff-CoGAN performed better when less unlabeled data were added to the training process
compared to co-training.

Besides, the Dice value for seg1only is 0.460 in Table 3, which is lower than the Dice
values of G1 for all data settings in the different experiments in Table 4. The Dice value for
seg2only is 0.731 in Table 3, which is lower than the Dice values of G2 for all data settings in
the different experiments in Table 4. Similarly, the IoU value for seg1only is 0.072 in Table 3,
which is lower than the IoU values of G1 for all data settings in Table 4. The IoU value for
seg2only is 0.285 in Table 3, which is lower than the IoU values of G2 for all data settings
in Table 4. These results indicate that the mutual segmentation information between
the generators in the co-training experiment can improve the segmentation performance
compared to seg1only or seg2only. Similarly, the added discriminator in semi-GAN can
improve the segmentation performance, which also means adversarial training between
the generator and the discriminator can play a part in the model training process compared
to seg1only or seg2only.

Table 5 displays the HD and ASD metrics’ evaluation for the four data settings for
segmentation using the Hippocampus dataset. The values shown in parenthesis are the
distribution variations of the HD and ASD values. The best HD values were produced for
the data setting 100/2900 in which Diff-CoGAN (G1) achieved 5.832, a reduction of 7%
compared to co-training (G1) and 33.1% compared to semi-GAN (G1), and Diff-CoGAN
(G2) achieved 5.765, a reduction of 1.2% compared to co-training (G2) and 27.3% compared
to semi-GAN (G2). Unlike the semi-GAN models, the values of HD for co-training and
Diff-CoGAN continuously reduced as more unlabeled data were added. Furthermore,
the variation in Diff-CoGAN scored the lowest value compared to co-training and semi-
GAN, which means that the HD values’ distribution in Diff-CoGAN (G1) has a lower
degree of dispersion (6.506) than co-training (G1) (7.203) and semi-GAN (G1) (8.888).
Diff-CoGAN (G2) also has fewer dispersion (6.656) than co-training (G2) (6.683) and semi-
GAN (G2) (7.518). According to the table, Diff-CoGAN has stable performance as shown
in its HD values, indicating that the proposed Diff-CoGAN has better effectiveness in
boundary processing.

The segmentation performance of the proposed Diff-CoGAN is also supported by
the ASD values presented in Table 5. The regularities of the ASD values’ distribution are
similar to the HD values. The best ASD values were generated in the data setting 100/2900
in which Diff-CoGAN (G1) achieved 1.917, a reduction of 3.5% compared to co-training
(G1) and 19.3% compared to semi-GAN (G1). Additionally, Diff-CoGAN (G2) achieved
an ASD value of 1.863, which is 16.7% smaller compared to semi-GAN (G2) and 0.3%
smaller compared to co-training (G2). Thus, the results consistently show that Diff-CoGAN
performs better than co-training and classical GAN.

The HD values for seg1only and seg2only are 28.209 and 10.079, respectively, in Table 3.
Both are higher compared to the HD values for co-training, semi-GAN, and Diff-CoGAN
in Table 5 for all data settings. Similarly, the ASD values for seg1only and seg2only are
10.639 and 3.459, respectively, in Table 3, which are higher than the ASD values of the
different experiments for all data settings in Table 5. These results indicate that the mutual
segmentation guidance between the generators (co-training) and added discriminator
(semi-GAN) could reduce the boundary error in segmentation.

In Diff-CoGAN, the input for the discriminator was the segmented ROI, which was
obtained from the intersection of the predicted maps generated by the two generators
and the ground truth annotated by experts. The purpose of intersection was to reduce
the boundary errors for the predicted maps in the training process. Table 6 shows the
results of Diff-CoGAN with and without intersection in the training process, namely
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Diff-CoGAN(with) and Diff-CoGAN(without). In Table 6, the HD values are lower for
G1(with) than G1(without) in the data settings from 100/100 to 100/2200. It means that the
intersection operation could reduce the boundary errors in segmentation. Similarly, the
HD values for G2(with) are also lower than G2(without) in the data settings from 100/100
to 100/2200. The ASD values have the same distribution as the HD values. However,
when using the data settings 100/2400 and 100/2900, the HD and ASD values of Diff-
CoGAN(with) are very close to Diff-CoGAN(without). Thus, the effect of intersection is
obvious when using unlabeled data less than 2200. Table 6 shows the effect of intersection,
which can improve the segmentation performance.

3.4.2. Medical Image Segmentation Using Spleen Dataset

For the Spleen segmentation, Table 7 shows the Dice, IoU, HD, and ASD values for
seg1only and seg2only as the base comparison to illustrate the effects of unlabeled data,
interaction effect between generators, and adversarial training in the model training process.
The initialization results presented in Table 7 support the findings of Table 3. When using
the Spleen dataset, Generator 2 (seg2only) shows a higher accuracy at segmentation with
higher values of the Dice and IoU metrics compared to Generator 1 (seg1only). The distance
metrics of HD and ASD for Generator 2 (seg2only) are also lower than Generator 1 (seg1only),
signifying that the use of VGG16 in Generator 2 is better at reducing the boundary error
during segmentation. This is partly because VGG16 was already trained with the large
dataset ImageNet, and the trained VGG16 has a higher feature extraction capacity that can
be used and fine-tuned with transfer learning for medical image segmentation.

Table 8 shows the Dice and IoU values using three data settings, and the values
shown in parenthesis are the variations in the Dice and IoU distributions. Overall, the
Dice values improved slightly as the unlabeled data increased. The highest Dice values
were all produced using the data setting 100/900 for co-training (G1) (0.933), co-training
(G2) (0.947), semi-GAN (G1) (0.899), semi-GAN (G2) (0.947), Diff-CoGAN (G1) (0.914),
and Diff-CoGAN (G2) (0.948). When compared at the data setting level, Diff-CoGAN (G1)
improved the Dice value by 2.6%, 1.0%, and −0.3% compared to co-training (G1) for the
data settings 100/100, 100/400, and 100/900, respectively. At the same time, Diff-CoGAN
(G1) improved the Dice value by 0.7%, 1.8%, and 3.1% compared to semi-GAN (G1) for
the data settings 100/100, 100/400, and 100/900, respectively. These results mean that
Diff-CoGAN achieves slightly better segmentation performance by using mutual guidance
and adversarial training when using less unlabeled data.

Table 8. The Dice and IoU values for the Spleen dataset. As more unlabeled data are added, the IoU
values for all three models increase. Diff-CoGAN outperforms both co-training and semi-GAN due
to the mutual guidance between the generators and the adversarial training of the two generators
and the discriminator.

Data
Setting

Dice IoU

Co-Training Semi-GAN Diff-CoGAN Co-Training Semi-GAN Diff-CoGAN
G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

100/100 0.874
(0.019)

0.943
(0.002)

0.893
(0.010)

0.944
(0.002)

0.900
(0.014)

0.944
(0.002)

0.714
(0.029)

0.812
(0.008)

0.731
(0.021)

0.813
(0.008)

0.747
(0.023)

0.815
(0.007)

100/400 0.904
(0.010)

0.945
(0.002)

0.896
(0.011)

0.947
(0.002)

0.914
(0.010)

0.946
(0.002)

0.760
(0.016)

0.820
(0.006)

0.744
(0.020)

0.822
(0.007)

0.771
(0.017)

0.828
(0.006)

100/900 0.933
(0.003)

0.947
(0.002)

0.899
(0.013)

0.947
(0.002)

0.930
(0.003)

0.948
(0.002)

0.792
(0.013)

0.829
(0.006)

0.757
(0.020)

0.828
(0.006)

0.800
(0.016)

0.832
(0.005)

The IoU values in Table 8 are also improved as more unlabeled data were added. The
highest values were all produced using the data setting 100/900 for co-training (G1) (0.792),
co-training (G2) (0.829), semi-GAN (G1) (0.757), semi-GAN (G2) (0.828), Diff-CoGAN
(G1) (0.800), and Diff-CoGAN (G2) (0.832). When compared at the data setting level, Diff-
CoGAN (G1) improved the IoU value by 1.6%, 2.7%, and 4.3% compared to semi-GAN
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(G1) for the data settings 100/100, 100/400, and 100/900, respectively. Diff-CoGAN (G1)
improved the IoU value by 3.3%, 1.1%, and 0.8% compared to co-training (G1) for the
data settings 100/100, 100/400, and 100/900, respectively. At the same time, Diff-CoGAN
(G2) also improved the IoU value to some extent compared to co-training (G2) and semi-
GAN (G2). By analyzing the results of Dice and IoU, Diff-CoGAN was shown to perform
better than co-training, which means the adversarial training between the generators and
discriminator could improve the segmentation performance. Furthermore, Diff-CoGAN
could improve performance by adopting mutual guidance when compared to semi-GAN.

The Dice value Is 0.161 for seg1only in Table 7, which is lower than the Dice values of
G1 for all data settings in Table 8. The Dice value for seg2only is 0.886 in Table 7, which is
lower than the Dice values of G2 for all data settings in Table 8. Similarly, the IoU value for
seg1only is 0.019 in Table 7, which is lower than the IoU values of G1 for all data settings in
Table 8. The IoU value for seg2only is 0.410 in Table 7, which is lower than the IoU values of
G2 for all data settings in Table 8. These comparisons show that the mutual segmentation
information of the generators and the adversarial training between the generators and the
discriminator are active in the training.

Table 9 shows the HD and ASD values using three data settings, and the values shown
in parenthesis are the variations in the HD and ASD values’ distribution. As the number of
unlabeled data increases, the HD values decrease. The lowest HD values were produced in
the data setting 100/900 in which Diff-CoGAN (G1) scored 7.253, showing a reduction of
7.898 when compared to semi-GAN (G1) at 15.151 and a reduction of 0.091 when compared
to co-training (G1) at 7.344. Meanwhile, Diff-CoGAN (G2) achieved 6.369, which was lower
by 3.206 when compared to semi-GAN (G2) at 9.575 and lower by 1.001 when compared to
co-training (G2). The results indicate that Diff-CoGAN produces more accurate boundary
segmentation compared to semi-GAN and co-training.

Table 9. The HD and ASD values for Spleen. The lowest HD value achieved by Diff-CoGAN shows
that it produces more accurate boundary segmentation compared to semi-GAN and co-training.

Data
Setting

HD ASD

Co-Training Semi-GAN Diff-CoGAN Co-Training Semi-GAN Diff-CoGAN
G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

100/
100

21.244
(221.23)

15.078
(127.9)

18.502
(185.37)

14.080
(111.72)

17.587
(155.476)

13.351
(94.51)

6.226
(21.12)

3.851
(5.170)

5.605
(17.15)

3.602
(3.919)

5.079
(15.048)

3.400
(2.285)

100/
400

12.336
(140.521)

9.053
(31.39)

15.661
(154.10)

12.187
(64.307)

12.099
(152.556)

8.740
(31.70)

3.633
(10.94)

2.866
(1.554)

4.551
(9.385)

3.660
(3.401)

3.570
(11.839)

2.729
(1.189)

100/
900

7.344
(86.641)

7.370
(76.36)

15.151
(268.41)

9.575
(102.35)

7.253
(58.916)

6.369
(32.36)

2.300
(6.600)

2.043
(3.590)

3.040
(9.370)

2.485
(5.063)

2.307
(3.177)

1.849
(0.630)

The HD values are 83.886 and 28.307 for seg1only and seg2only, respectively, as seen
in Table 7. These values are highest when compared to the corresponding metrics for
all experiments in Table 9. This result indicates that the mutual guidance between the
generators and the adversarial training between the generator and the discriminator have
an effect on reducing boundary errors.

It can also be seen from Table 9 that the best ASD values are generated in the data
setting 100/900. Diff-CoGAN (G1) achieved 2.307, a reduction of 73.3% when compared to
semi-GAN (G1), and Diff-CoGAN (G2) achieved 1.849, a reduction of 63.6% when compared
to semi-GAN (G2) and 19.4% when compared to co-training (G2). Again, Diff-CoGAN
shows a better performance at segmenting the ROI boundary compared to semi-GAN
and co-training.

Table 10 shows the results of Diff-CoGAN with and without intersection in the training
process. In Table 10, the HD values are lower for Co-GAN1(with) than Co-GAN1(without)
in each data setting, except the data setting 100/100. It means the intersection operation
could reduce the boundary error in segmentation when unlabeled data are increased.
Similarly, the HD values for Co-GAN2(with) are also lower than Co-GAN2(without) in
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all data settings. In Table 10, the ASD values for Co-GAN1(with) are lower than Co-
GAN1(without) in all data settings. The same is true for Co-GAN2. Table 10 further
demonstrates that the intersection operation can improve the segmentation performance.

Table 10. The HD and ASD of Diff-CoGAN with and without intersection for the Spleen dataset.
Similar to the experimental results of the Hippocampus dataset, the HD and ASD values demonstrate
that the intersection operation reduces the boundary error and improves segmentation.

Data
Setting

HD ASD

Diff-CoGAN (without) Diff-CoGAN (with) Diff-CoGAN (without) Diff-CoGAN (with)
G1 G2 G1 G2 G1 G2 G1 G2

100–100 15.065
(94.445)

16.065
(127.375)

17.587
(155.476)

13.351
(94.517)

5.185
(13.472)

4.035
(5.021)

5.079
(15.048)

3.400
(2.285)

100–400 16.238
(218.456)

9.224
(21.845)

12.099
(152.556)

8.740
(31.700)

4.408
(17.928)

2.963
(1.128)

3.570
(11.839)

2.729
(1.189)

100–900 11.667
(180.558)

7.839
(91.117)

7.253
(58.916)

6.369
(32.365)

2.697
(6.920)

2.162
(5.497)

2.307
(3.177)

1.849
(0.630)

Examples of the segmentation results using 100 labeled data points and 2900 unlabeled
data points from the Hippocampus dataset are shown in Figure 8. The semi-supervised
models and their corresponding Dice values are presented in each segmentation result. The
segmented regions (in white) overlap the ground truth (in gray). The figure shows that the
results of Diff-CoGAN are closer to the ground truth compared to semi-GAN.
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Figure 8. Examples of the segmentation results for the Hippocampus dataset. The white regions are
the segmented results, and the gray portions are the ground truth.

4. Discussion

The results demonstrated that our proposed semi-supervised learning framework,
Diff-CoGAN, can leverage unlabeled data to achieve better segmentation accuracy than
recent semi-supervised GAN [34], modified GAN [39] and semi-supervised co-training [7].
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As more unlabeled data were added to the training, the Dice and IoU values of Diff-CoGAN
steadily increased, indicating better accuracy, and the ASD and HD values decreased, sig-
nifying less boundary errors. The experimental evidence is shown in Tables 4 and 5 for
the Hippocampus dataset. Meanwhile, Tables 8 and 9 showcase the evidence for the
Spleen dataset. The adversarial training between the generators and the discriminator
was shown to improve segmentation accuracy, as can be seen from Table 4, when Diff-
CoGAN was compared with semi-supervised co-training. We further conducted paired
t-tests on the four metrics (see Table 11) to determine whether the difference between
the semi-supervised models is statistically significant. Based on Table 11, Diff-CoGAN
achieves higher segmentation accuracy with statistically significant difference (p < 0.05)
when compared to co-training, except for the data setting 100–2900, while the IoU values
show that Diff-CoGAN has better performance with statistical difference (p < 0.05) when
compared to co-training for all data settings. The adversarial training between the gen-
erators and the discriminator in Diff-CoGAN is able to generate predicted maps that are
closer to the ground truth compared to semi-supervised co-training. When the results
of Diff-CoGAN were compared to semi-GAN, the two generators used in Diff-CoGAN
improved the segmentation accuracy (see Table 4) and reduced the boundary segmentation
errors (see Table 5). The paired t-test (p < 0.05) for all four metrics also confirmed that
Diff-CoGAN achieved higher segmentation accuracy and improved boundary segmenta-
tion with significant difference, particularly when the unlabeled data were increased. This
suggests that the strategy of mutual guidance between the two generators can effectively
provide segmentation information from the unlabeled data to generate predicted maps
that are closer to the ground truth. Additionally, the two generators are optimized under
one discriminator’ guidance during the training, which further facilitates the generation of
better predicted maps.

Table 11. Paired t-test between Diff-CoGAN, co-training, and semi-GAN using the Hippocampus
dataset. In general, the p-values for the four metrics are less than 0.5; thus, we can accept the
alternative hypothesis that there are statistically significant differences.

Data Setting

Dice IoU HD ASD

Co-Training SemiGAN Co-Training SemiGAN Co-Training SemiGAN Co-Training SemiGAN

G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

100–100 <0.05 <0.01 <0.05 <0.01 >0.05 <0.01 >0.05 <0.01 >0.05 >0.05 >0.05 >0.05 <0.05 <0.05 >0.05 >0.05
100–1000 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.05 <0.01 <0.01 <0.01 >0.05 >0.05 <0.01
100–2000 <0.05 <0.05 <0.01 <0.01 >0.05 <0.01 >0.05 <0.01 <0.05 >0.05 <0.01 <0.01 >0.05 >0.05 <0.01 <0.01
100–2900 >0.05 >0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.05 >0.05 <0.01 <0.01 >0.05 >0.05 <0.01 <0.01

For the segmentation of the Spleen dataset, the Dice and IoU values (See Table 8)
were close between Diff-CoGAN and the other semi-supervised models. A paired t-test
was also conducted, and the results are presented in Table 12. In terms of segmentation
accuracy, Diff-CoGAN showed better performance compared to co-training using Generator
2 (p < 0.05 for t-test). However, there were no significant differences when Diff-CoGAN was
compared to co-training using Generator 2 and semi-GAN models. Table 8 demonstrates
that Diff-CoGAN manages to reduce the boundary segmentation errors as more unlabeled
data are added. This finding is also supported by the paired t-test (p < 0.05), as shown by
the HD and ASD metrics in Table 12.
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Table 12. Paired t-test between Diff-CoGAN, co-training, and semi-GAN using the Spleen dataset.

Data Setting

Dice IoU HD ASD

Co-Training SemiGAN Co-Training SemiGAN Co-Training SemiGAN Co-Training SemiGAN

G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

100–100 <0.01 >0.05 >0.05 >0.05 <0.01 >0.05 <0.05 >0.05 <0.05 <0.05 >0.05 >0.05 <0.01 >0.05 <0.05 >0.05
100–400 <0.05 >0.05 <0.01 >0.05 <0.01 <0.01 <0.01 <0.01 >0.05 <0.05 <0.01 <0.01 <0.05 <0.05 <0.01 <0.01
100–900 <0.05 >0.05 >0.05 <0.05 <0.01 >0.05 >0.05 <0.05 <0.05 <0.05 <0.01 <0.01 >0.05 <0.01 <0.01 <0.05

The intersection of the predicted maps produced by the generators in our proposed
Diff-CoGAN further improves the accuracy of segmented boundaries (See Tables 6 and 10).
Table 13 shows the paired t-test for Diff-CoGAN with and without intersection operation
for both Hippocampus and Spleen datasets. The values (p < 0.05) for both Hippocampus
and Spleen datasets show that there is a significant difference for all four metrics. While
the difference is more significant when less than 2000 unlabeled data points were used for
the Hippocampus dataset, the Spleen dataset shows more significant difference as more
unlabeled data were used in the training. This is because the intersection of the predicted
maps has high confidence for the target region, thereby avoiding segmentation errors
during the iterative training process.

Table 13. Paired t-test between Diff-CoGAN with intersection and Diff-CoGAN without intersection
operation. The t-test was performed on both Hippocampus and Spleen datasets.

Data Setting

Diff-CoGAN (without) Using
Hippocampus Dataset

Data Setting

Diff-CoGAN (without) Using
Spleen Dataset

HD ASD HD ASD

G1 G2 G1 G2 G1 G2 G1 G2

100–100 <0.05 >0.05 <0.05 >0.05 100–100 <0.05 <0.01 >0.05 <0.01
100–1000 <0.05 <0.05 <0.05 <0.05 100–400 <0.05 >0.05 <0.05 <0.01
100–2000 <0.05 <0.05 <0.05 <0.05 100–900 <0.05 <0.05 <0.05 <0.05
100–2900 <0.01 >0.05 <0.01 >0.05

The extensive experiments demonstrated that the Diff-CoGAN framework can pro-
duce promising predicted maps. The results using two different datasets indicate the
effectiveness and robustness of Diff-CoGAN. Although there are important discoveries
revealed by these experiments, there are also limitations. Firstly, the Dice and IoU values
were very close when more unlabeled data participated in the training of different models.
At the same time, the HD and ASD values of Diff-CoGAN decreased steadily. This suggests
that Diff-CoGAN can maintain segmentation accuracy and reduce boundary errors. Further
study needs to be conducted to improve the significance difference in the Dice and IoU
values between different models. Secondly, the networks of generators adopt different
strategies, which are transfer learning [39] and Densenet [34]. The results of the model with
transfer learning always performed better than those with Densnet (Refer Tables 3–10). This
means transfer learning can more effectively extract information from the features maps
due to the prior knowledge. While the two generators are both expected to be effective on
labeled data and unlabeled data, finding a suitable network still needs to be investigated.
Finally, Diff-CoGAN limits the image views to two views in this work. Future work should
consider additional views and more generators to improve segmentation.

Overall, our results show that the adversarial training, the mutual information guid-
ance of the two generators, and the intersection of the two predicted maps with high
confidence region in the proposed Diff-CoGAN can effectively improve the segmentation
accuracy for medical images. In the future, we will continue to focus on overcoming the
limitations of the Diff-CoGAN framework.
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5. Conclusions

Accurate segmentation of target areas from medical images is significant for clinical
diagnostic procedures and quantitative analysis. Usually, automated segmentation of med-
ical images depends on labeled data, which needs experts to provide detailed annotation.
Large-scale unlabeled data contain a lot of information about target regions and deserve to
be exploited in an automated segmentation system, especially when labeled data are scarce.
In this paper, we propose a learning-based model using semi-supervised learning to extract
information from unlabeled data to improve the accuracy of medical image segmentation.

Due to the complexity of medical images and imperfect dataset, it is a challenging
task to improve target region segmentation accuracy with a small, labeled dataset and a
relatively large-scale unlabeled dataset. In this paper, a semi-supervised learning method
based on Diff-CoGAN was proposed to achieve medical image segmentation. The strategy
of co-training and adversarial training of GAN were adopted to construct a collaborative
segmentation framework named Diff-CoGAN. When Diff-CoGAN was compared to semi-
GAN and co-training using the Hippocampus and Spleen datasets, the Dice and IoU values
showed that Diff-CoGAN achieved the highest accuracy. Meanwhile, the HD and ASD
metrics also proved that Diff-CoGAN produced better boundary segmentation. These
results signified that the use of two generators and one discriminator in Diff-CoGAN
was consistently effective in performing medical image segmentation. The segmentation
performance of semi-GAN, which consists of one discriminator and one generator, and co-
training, which comprises two generators, were inconsistent and no definitive conclusion
could be drawn. Diff-CoGAN achieves higher segmentation accuracy through adversarial
training because the discriminator can guide the two generators to generate more accurate
predicted maps, and the mutual information guidance of the two generators can also
promote the improvement of segmentation performance.

Our proposed Diff-CoGAN also introduces the intersection of two predicted maps,
with the high-confidence region produced by the outputs of the two generators as the
input to the discriminator. As shown earlier, the intersection operation managed to reduce
the boundary error in segmentation, particularly when unlabeled data were increased.
In addition, the generators in Diff-CoGAN adopted different deep learning networks
in the encoder to increase the diversity of extracted features, consequently providing
complementary information for the same data. Generator 1 used DenseNet and Generator
2 utilized VGG16 as their respective encoder.

Diff-CoGAN limits the image views to two views in this work. Future work should
consider additional views to improve segmentation. The same Diff-CoGAN framework
should also be further experimented on 3D medical images to investigate its robustness.
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