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Abstract: Due to the rapid growth of knowledge graphs (KG) as representational learning methods
in recent years, question-answering approaches have received increasing attention from academia
and industry. Question-answering systems use knowledge graphs to organize, navigate, search
and connect knowledge entities. Managing such systems requires a thorough understanding of the
underlying graph-oriented structures and, at the same time, an appropriate query language, such
as SPARQL, to access relevant data. Natural language interfaces are needed to enable non-technical
users to query ever more complex data. The paper proposes a question-answering approach to
support end users in querying graph-oriented knowledge bases. The system pipeline is composed of
two main modules: one is dedicated to translating a natural language query submitted by the user
into a triple of the form <subject, predicate, object>, while the second module implements knowledge
graph embedding (KGE) models, exploiting the previous module triple and retrieving the answer
to the question. Our framework delivers a fast OpenIE-based knowledge extraction system and a
graph-based answer prediction model for question-answering tasks. The system was designed by
leveraging existing tools to accomplish a simple prototype for fast experimentation, especially across
different knowledge domains, with the added benefit of reducing development time and costs. The
experimental results confirm the effectiveness of the proposed system, which provides promising
performance, as assessed at the module level. In particular, in some cases, the system outperforms
the literature. Finally, a use case example shows the KG generated by user questions in a graphical
interface provided by an ad-hoc designed web application.

Keywords: question answering; knowledge graph; knowledge graph embeddings; knowledge base

1. Introduction

Over the past ten years, knowledge graphs (KG) have received a lot of interest, since
they effectively organize and represent knowledge, allowing it to be used in many applica-
tions. Knowledge graph models have been widely used to arrange and describe data in
various sectors [1], including medicine [2], health care [3], biology [4], and finance [5]. They
are playing an increasingly critical role in many applications [1], such as drug discovery [2],
user recommendation [6], dialog systems [7], and question answering [8,9].

Actual knowledge graphs usually include millions or billions of facts. Because of their
vast volume and sophisticated data structures, non-technical users need help accessing
the considerable and essential knowledge inside them. Question-answering systems gain
attention from the scientific community [8]; they aim to automatically translate natural
language inquiries from end users into structured queries, such as SPARQL, and return
entities and predicates from the KG as replies. Knowledge graph-based question answering
(KGQA) allows for overcoming the gap [9].

A question-answering (QA) system typically consists of a natural language question
(the input), a knowledge base, the engine (agent), and an answer (the output). A knowledge

Information 2023, 14, 186. https://doi.org/10.3390/info14030186 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14030186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-8982-1678
https://orcid.org/0000-0002-7127-4290
https://doi.org/10.3390/info14030186
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14030186?type=check_update&version=1


Information 2023, 14, 186 2 of 19

base is typically structured as a knowledge graph [10], which offers a consistent way to
express heterogeneous entities and concepts in the form of triples (head entity, relation,
tail entity) (denoted as (h, r, t)). An increasing amount of attention is being directed to
QA systems with the widespread of KGs in academia and industry. The introduction of
large-scale open-domain KGs, such as Freebase [11], Wikidata [12], and DBpedia [13]; it
can be said that KGs are the source that QA system mines to get answers.

The open information extraction (OpenIE) paradigm systems built by exploiting the
OpenIE paradigm are noteworthy [14]; this paradigm allows for the extraction of open
relations and arguments (in the form: subject; relation; object) from sentences, with no domain
restriction and without requiring any previous training data. This technique enables a
semantic representation via straightforward predictive statements [15] that is useful for
extracting the relations from simple statements, such as questions (e.g., who directed the
Star Wars movie?); so, they can be collected for a wide variety of downstream tasks, such
as precise question answering. Thanks to the OpenIE paradigm, automatic annotation
replaces the time-consuming and error-prone need for manual annotation [8]; the domain-
independent design is possible with the rich representation of knowledge, a scalable
solution for extracting facts and relationships from unstructured text, and represents a
powerful tool for automated knowledge management and retrieval.

The paper introduces a KG-based QA system to allow users to formulate simple natu-
ral language questions. The system design comprises two modules: the first is REBEL [16],
a seq2seq model built on BART [17] that performs end-to-end relation extraction for several
relation types. Then, the second module represents a knowledge graph embedding model
for fact prediction. The whole system accomplishes fast prototyping based on OpenIE
principles: it leverages a transformer model, REBEL, which translates natural language
sentences into triples to feed the second knowledge graph embedding module aimed at
evaluating triples. A front-end web application allows users to interact with the system,
returning answers in textual and graph-based representation when questions are submitted.
The experimental results confirm the satisfactory overall performance of the framework, ex-
pressed in terms of F1-score, precision, recall, accuracy, MRR, and Hits@N on the MovieQA
dataset (aka Wikimovies) [18]. Moreover, in some cases, the performance of the knowledge
graph embedding model, TransE, exceeds the state of the art.

Although the system is based on the existing modules, it represents a fast prototype
that allows for assessing the quality of answers, especially in the case of specific knowledge
domains. Additionally, it helps hasten the creation of graph-based question-answering
systems, which can be particularly helpful in fields such as healthcare or finance, where
prompt and effective responses are required.

The remainder of this work is structured as follows: Section 2 provides an overview of
knowledge graph-based approaches and related query-answering systems. Section 3 briefly
introduces the preliminary concepts of KGs; then, Section 4 presents the proposed method-
ological approach motivating them from a traditional viewpoint. Then, Section 5 describes
the implementation details and the proposed method’s evaluation. Section 6 shows a use
case of the proposed question-answering system through the primary interactions. Finally,
the conclusions and the future work are highlighted in Section 7.

2. Related Work

Knowledge graphs harvest, organize, and efficiently manage knowledge from massive
amounts of data, in order to increase the quality of information services and provide
smarter services to consumers. All of these aspects rely on knowledge reasoning over
KGs, making it one of the most important technological aspects [19]. Finding errors and
drawing new conclusions from existing data are the objectives of knowledge reasoning
over knowledge graphs. Through knowledge reasoning, new relationships between entities
may be derived, which can subsequently be used to enhance knowledge graphs and enable
sophisticated applications.
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Especially, knowledge graph embedding (KGE) techniques have recently attracted a lot of
interest, since they can learn the representations (i.e., embeddings) of entities and relations
in low-dimensional vector spaces [1], and these embeddings may be utilized as features to
enable link prediction, entity categorization, and question answering. In particular, research
on the question-answering domain, finds large-scale knowledge graphs, a powerful tool for
building robust and efficient question-answering systems, especially in the field of natural
language processing. This way, to answer questions by traversing entities and relations in
a knowledge graph, needs to convert the natural language to a logical query.

2.1. Knowledge Graph Construction

Natural language processing (NLP) tasks play an important role in KG construction.
Recent research finds relations from sentences by exploiting a graph neural network for
sentence representations and aligning them to the KG [20]. Tasks such as named entity
recognition (NER) [21] and relation extraction (RE) [16,22] aims at extracting structural in-
formation at the sentence, bag, and document levels [23], also exploiting a description-based
representation of entities [24], as well as ontologies [25] starting from unstructured texts.
Identifying and extracting accurate and comprehensive information from unstructured
data could be a challenging task for knowledge construction. The OpenIE paradigm allows
for the automated extraction of structured knowledge, without the need for pre-defined
schemas, ontologies, and evolving knowledge bases or manual annotation [8].

Additionally, prompt tuning for few-shot classification tasks has gained some attention
in enhancing knowledge extraction [26]. However, most of the recent literature on KGs
focuses on particular facets of KGs, consisting of their construction [27] and embedding [28].

Despite the fact that KGs contain a significant number of entities and relations, link
prediction is a critical issue for knowledge graphs because they are typically incomplete.
Indeed, large-scale KGs, such as NELL [29], Freebase [11], WordNet [30], and YAGO [31],
have emerged as important sources of auxiliary information for many AI-related tasks,
such as question answering, report extraction, and recommendation systems [8,28].

The learning of low-dimensional representations of entities and relations for missing
link prediction has recently been the subject of extensive research on topics such as com-
pleteness, partiality, and newly-added information [32]. At the same time, since generated
knowledge graphs can contain millions of entities and relationships, embedding them
all in a low-dimensional space might be computationally demanding, making scalability
difficult [33].

In terms of completeness, some academic trends have centered on link prediction,
which seeks to detect missing facts in KGs.

Knowledge graphs can be sparse, and many entity pairs lack any known relationships.
Due to this sparsity, it may be challenging for embedding models to properly represent
and then predict the relationships between entities [34].

Existing approaches for link prediction are known as knowledge graph embedding
models (KGE) [24,35]. To retain the basic structure of the KGs, KGE models learn the
embedded representation of both the relations and the entities, preserving the inherent
structure of the KGs. Predicting missing links with knowledge graph embedding (KGE)
methods has been extensively investigated in recent years. The general methodology is
to define a score function for the triple [36–38]. Geometric properties are used in several
KG embedding techniques. Some improvements have been gained by utilizing either more
complicated spaces (e.g., moving from Euclidean to complex or hyperbolic space) [36] or
more advanced procedures (e.g., from translations to isometries or to learning graph neural
networks) [38]. Other alternative strategies have progressed in both directions [39].

Nevertheless, knowledge graph embedding models are typically trained on a specific
knowledge domain [1,2], and may not generalize well to other knowledge graphs or new
entities and relationships that are not present in the training data [1]. Moreover, KGE
models are not able to handle complex queries with multiple entities and relations. In [40],
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the method called LEGO creates a latent execution-guided reasoning framework that infers
a question’s latent structure and reasons in the latent space for multi-hop logical inference.

2.2. Knowledge Graph-Based Question Answering

Knowledge graph-based question answering (KGQA) allows for answering questions
by exploring facts in a knowledge graph.

Traditional QA methods [41] parse the question and synthesize the query using hand-
engineered templates. However, these approaches require extensive domain expertise in
order to manually create the set of rules and characteristics that will limit the search area.

Some end-to-end question-answering (E2EQA) models overcome this annotation
bottleneck since they exploit question-answer pairs that only need weak supervision. They
learn to predict paths in a knowledge network using only the answer for the training.
In [42], indeed, differentiable knowledge graphs are used as a technique to describe KGs as
tensors and queries as differentiable mathematical operations, in order to train the model in
a completely differentiable manner. In addition to the E2EQA models based on single-entity
questions, a E2EQA system based on multiple-entity questions and intersection learning in
a dynamic multi-hop environment is proposed in [43]. Intersection models learn to follow
relationships and intersect the generated sets of entities to arrive at the right answer.

Recent KGQA approaches [44,45] use deep networks to accomplish neural semantic
parsing, in order to avoid the rule requirement. These methods, however, require ground
truth queries for supervision, which suggests some human work.

KGQA provides a method for artificial intelligence systems to leverage knowledge
graphs as a key component to respond to human questions, with applications ranging from
search engine design to conversational agent construction. Indeed, a research trend on
KGQA retrieves information from the KG using RL agents [46] or graph nets [47]; these
approaches rely even more on text corpora to improve their performances [48].

Anyway, QA systems based on knowledge graphs inherited KG-based issues, such
as poor accuracy due to the incompleteness of the knowledge graph or limited coverage
of knowledge domain, and finally, ambiguity in question understanding, which requires
accurate NLP tasks to contextualize the domain where the question is placed properly. [49].
Improvements in the performance of QA systems may depend on the structured represen-
tation of natural language sentences. For instance, in [50], in the training supervision, the
ground truth was extracted from the given tabular databases, whereas in other approaches,
such as [51], which used unstructured text understanding, a reading comprehension and
sequence-to-sequence translation [52] was achieved.

In KBQA systems with embedding techniques, noteworthy is EmQL [53], a query em-
bedding approach that employs set operators, although these operators must be taught for
each KB. TransferNet [54] is a model that trains KGQA in a differentiable manner; however,
because facts are stored as a N × N matrix, where N represents the number of entities, its
scalability concerns bigger knowledge graphs. The effectiveness of knowledge graph em-
bedding models [36–38] in different real-world applications [55] prompted an investigation
into its possible usage in resolving the KGQA issues. In the recent literature, there are many
KGQA systems that achieve a state-of-the-art with enhanced KGE models [40,44], but the
incompleteness in answering and domain coverage push researchers to continue to develop
new methods to address these challenges and improve the performance of knowledge
graph-based question-answering systems.

Evaluating knowledge-based query-answering systems [56] is an active area of re-
search. Our approach seeks to intercept this line of research by proposing a fast prototype
to accelerate the development of graph-based question-answering systems, which can be
particularly useful in domains where there is a need for fast and efficient answers, such
as health care or finance. Reusing existing tools to avoid reinventing the wheel, as the
literature provides good open-source tools, allows for focusing solely on the actual goal
of evaluating the performance using specific KGE models or in a specific domain. Our



Information 2023, 14, 186 5 of 19

approach represents a simple attempt to build a fast prototype of a KGQA system aimed at
testing its effectiveness in a specific domain.

3. Preliminaries on Knowledge Graphs

Knowledge graphs (KGs) are typically structured knowledge bases, used to represent
the objective world’s concepts, entities, and relationships. KGs organize, handle, and
comprehend enormous amounts of data in a manner similar to human cognitive reasoning.
A KG is used in a variety of downstream applications, including semantic search, intelligent
recommendation, and question-answering systems, because of its rich semantic content
and clear logical structure [10].

A knowledge graph (KG) is a directed heterogeneous multigraph composed of nodes
and edges, where a node represents an entity or an abstract concept, while an edge is an
attribute of an entity or a link between two entities. The information may be encoded
using KGs in a way that is both understandable by humans and adaptable to machine
analysis and inference. KGs represent many kinds of information as entities connected
by relations. More formally, given a set of entities E and a set of relations L, a knowledge
graph G consists of a set of triples K such that K ⊆ E× L× E. A triple is represented as (h,
l, t), with h, t ∈ E denoting the subject and object entities, respectively, and l ∈ L being the
relation between them.

The triples combine to create a directed graph, where the nodes represent entities and
the edges represent predicates. In a knowledge graph, each triple denotes a single fact or
piece of information. In a graph triple node-edge-node, there are two main edge roles: one
as a property associated with an entity: “Blade Runner, release_year, 1982, and another as a
connection between two entities: “Blade Runner, directed_by Ridley Scott” (Figure 1).

Figure 1. A triple example with a property edge “release_year” and a relation edge, “direct_by”.

A knowledge graph is a large-scale semantic network. According to the kinds of
knowledge contained, the knowledge graph may be characterized as a domain knowledge
graph or an open knowledge graph. Domain knowledge focuses on information on a
certain topic and usually comprises more professional and precise knowledge in a narrow
interpretation. Open knowledge graphs are made available online so that the general public
can access their information, and they have also been published within specific domains.
Examples of open KGs are DBpedia [13], Freebase [11], WordNet [30], and YAGO [31].

4. The Approach

The proposed framework aims to assist the users in getting an answer to the question
submitted in natural language. To achieve this, the question will be processed to extract the
sentence’s main components into triples (h, r, t): (1) a question marker, which could be one
of the 5W (i.e., who, what, where, which, and when), (2) an action, and (3) an entity, which can
be the subject or the object performing the described action.

The system design consists of two main modules: the NLP module, which performs
the triple extraction, and the KGE module, which executes the triple evaluation. These
modules are arranged sequentially (Figure 2). The NLP module uses a transformer model,
called REBEL [16], to translate natural language sentences into triples, with an end-to-end
approach that takes unstructured textual input and generates structured output that is
compliant with a given vocabulary. REBEL is a BART-based transformer, fine-tuned on
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common-sense relation extraction datasets, such as the news-based: NYT-Multi [57] and
CONLL04 [58], document level: DocRED [59], and pharmaceutical ADE [60]. The KGE
module, instead, queries a pre-trained knowledge base, using knowledge graph embed-
ding (KGE) models to compare the vector representations of the triples taken as input to
its internal representation. Additional details about the introduced modules are given
as follows.

Figure 2. Overview of the proposed system: The first module, REBEL, takes a natural language
question as input. The textual question is then processed by REBEL, which returns a <s,p,o> triple,
whose object (o) represents one of the five possible question types. The extracted triple is given as
input to the KGE module. The KGE model interprets relationships as translated operations on low-
dimensional embeddings. Once the translated space is obtained, the model compares the distances
between subject + predicate with object embedding features to verify if subject + relation = object. If
the distance is lower than a threshold, the fact is considered reliable and true, and the triple has
been completed successfully. The output given by TransE consists of the triple containing the
correct answer.

4.1. NLP Module

REBEL is a seq2seq model built on BART [17] that performs end-to-end relation
extraction for several relation types. The goal is to translate raw input sentences into a set of
triples. This model tackles relation extraction and classification as a generation task, similar
to a “translation”. It is based on the teacher forcing method widely used in RNN [61] for
translation tasks. It leverages text pairs in two languages by conditioning the decoded
text on the input. At training time, the encoder receives the text in one language, and the
decoder gets the text in the other language, outputting the prediction for the next token
at each position. A similar mechanism is used in REBEL: a raw input sentence containing
entities that are translated with implicit relations between them into a set of triplets that
explicitly refer to those relations. The triplets must, therefore, be expressed as a series of
tokens for the model to decode. The model uses a reversible linearization with special
tokens that enable the model to output the relations in the text in the form of triplets while
minimizing the number of tokens that need to be decoded.

In addition to REBEL, another framework, namely Seq2RDF [62], was considered.
An encoder–decoder framework translates natural language sentences X to an RDF triple Y,
whose entities and relationships comply with a certain KG vocabulary set. Moreover, it
treats triples within a KG as an independent graph language. Compared to Seq2RDF, REBEL
provides better performance, and combined with the KGE models, it reveals Seq2RDF’s
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weaknesses in capturing sentence context (further details are given in the experiments) that
REBEL can fix.

The module’s input is a natural language question, for instance, Q1 = Who directed
Blade Runner? Given the question Q1, the module translates it into a triple T1 = (h, r, t) by
leveraging the translation-oriented transformers to deliver end-to-end relation extraction
from the input text.

REBEL takes raw text as input and outputs linearized triples. If our input sentence is
Q1 to x and the result of linearization of the relations in Q1 is T1 to y, then REBEL’s task is
to autoregressively generate y given x, as shown in [16]:

pBART(y|x) =
len(y)

∏
i=1

pBART(yi|y < i, x) (1)

So, for example, given the question Who directed Blade Runner?, the module generates,
as output, the triple T1 = {BladeRunner, directed_by, Who}.

4.2. KGE Module

Knowledge graph embeddings (KGEs) are supervised learning models that learn
vector representations of labeled, directed multigraph nodes and edges. They learn low-
dimensional representations of entities and relations to predict missing facts. Roughly
speaking, given an incomplete knowledge base, one of the possible tasks is to predict
unknown links. KGE models achieve this through a scoring function φ that assigns a score
s = φ(h, r, t) ∈ R, which indicates whether a triple is true, with the goal of being able to
score all missing triples correctly. The score function φ(h, r, t) measures the salience of a
candidate triple (h, r, t). The goal of optimization is usually to assign a higher score to the
true triples (h, r, t) than to corrupted false triples (h’, r, t) or (h, r, t’). Let us remark that a
triple one between the head and the tail can be corrupted (denoted by superscript).

The KGE is commonly used for link prediction; the task focuses on the missing part of
a triple against a specific KB that was trained. In the low-dimensional embedding space,
these KGE models are denoted by various score functions [63] that quantify the distance
between two entities through the relation type, as shown in Figure 3. The KGE models are
trained using these score functions, so those entities connected by relations are close to one
another, and entities without connections are far away.

Figure 3. Embedding space representation of a single triple (h, r, t).

To exploit individual features of the KB and predict the answer from the triple gener-
ated by the OpenIE approach, these KGE models were taken into account:

• TransE [36]: It is an energy-based model for learning low-dimensional features of
entities. It models relationships by interpreting them as translations acting those
low-dimensional embeddings of the entities. The key feature of this model is how
well it can automatically add new facts to multi-relational data without the need for
additional knowledge.

• DistMult [37]: It forces all the embeddings into diagonal matrices, reducing the
dimensional space and transforming the relation into a symmetric one. This makes
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it unsuitable for general knowledge graphs, since it only uses a diagonal matrix to
represent the relationships.

• ComplEx [38]: It handles symmetric and antisymmetric relations, using complex
embeddings (real and imaginary parts) involving the conjugate-transpose of one of
the two vectors. ComplEx embedding facilitates joint learning of subject and object
entities, while preserving the asymmetry of the relation. It uses the Hermitian dot
product of embedding subject and object entities. Complex vectors can successfully
encapsulate antisymmetric connections, while retaining the efficiency benefits of the
dot product, namely linearity in both space and time complexity.

These knowledge graph embeddings are some of the most popular models for various
tasks, such as link prediction, entity classification, and relation extraction; these three
models are chosen for performance comparison at the link prediction level, even though
they are simple and effective and widely-used as baselines in comparative studies with
newer models [63]. These embeddings use the same dimensional space to represent entities
and relations and are basically translation models, since they represent the relationship
between two entities as a translation vector in the embedding space. Moreover, all the
models use a scoring function to assess the plausibility of a triple. Finally, they minimize
an objective function that evaluates the discrepancy between the predicted triples and the
actual triples in the knowledge base. These models are relatively simple compared to the
newer models based on complex architectures, involving multiple layers of neural networks
and advanced techniques, such as attention mechanisms, graph convolutional networks,
and tensor factorization [63]. Finally, they provide a clear interpretation of the learned
embeddings, compared with the newer ones that are harder to interpret, even though their
prediction performance is more accurate [64]. Moreover, these models, namely TransE,
DistMult, and ComplEx, still seem to be effective in our prototyping-oriented scenario.

Table 1 gives a synthetic view of the KGE main features, their respective scoring
functions, and additional non-functional model properties.

Table 1. Selected models breakdown by type for the question-answering evaluation. h, l, t represent
the head, relation, and tail of the triple, respectively, while the W means the parameter matrix and K
the rank of the matrix.

Property TransE DistMult ComplEx

Scoring Function −‖el + rh − et‖n {rl , eh, et} Re(∑K
k=1 Wl , eh, et)

Type Translational Bilinear Negative Log
Family Geometric Matrix Factorization Matrix Factorization

Interpretability High Medium Low
Performance Low Medium High
Complexity Low Medium High

In particular, the table introduces some features that are taken into account based
on empirical evidence. The interpretability of the three models is different: while TransE
is more intuitive with respect to DistMult, which is based on matrix factorization while
ComplEx relies on complex numbers over high-dimensional spaces. They can extract more
complex relations (symmetric and complex ones), with consequently better performance just
as is the case of ComplEx. Finally, at the complexity level, the TransE model is quite simple,
involving a small number of parameters, so this makes it computationally efficient and
easy to train; contrarily, ComplEx and DistMult are more complex models that involve a
larger number of parameters and can be computationally expensive to train.

The modeling method generally consists of identifying local or global connectivity
patterns between entities and then predicting the observed relationships between a specific
entity and all others using these patterns. The notion of locality for a single relationship
may be purely structural, but it may also depend on the entities (e.g., those who liked Star
Wars IV also liked Star Wars V, but may or may not like Titanic).
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The difficulty with relational data is that the locality may involve relationships and
entities of different types simultaneously, so modeling multi-relational data requires more
general approaches that can choose appropriate models by considering all heterogeneous
relationships simultaneously. For example, in TransE, relationships are represented as
translations in the embedding space. Suppose (h, r, t) holds. In that case, the embedding of
the tail entity t should be close to the embedding of the head entity h, plus some vector that
depends on the relationship l, as shown in Figure 3.

In more formal terms, the model learns vector embeddings of the entities and relation-
ships for each training set S of triples (h, r, t) composed of two entities h, tinE (the set of
entities) and a relationship rinL. The embeddings take values in RN , where N is the space
dimensionality. TransE considers the translation of the vector representations, i.e., the head
entity embedding should be close to the tail entity embedding, plus relation embedding,
when the head entity is similar to the tail entity (when (h, r, t) holds). Otherwise, the head
entity should be far away from the tail entity. According to the energy-based framework
proposed in [65], the energy of a triple is equal to d(h + l, t) for some dissimilarity measure
d, which can be either the L1 or the L2-norm.

To learn such embeddings, the model minimizes a margin-based ranking criterion
over the training set described in the following equation:

∑
(h,r,t)∈S

∑
(h′ ,r,t′)∈S′h,r,t

[γ + d(h + r, t)− d(h′ + r, t′)]+ (2)

where:

• [x]+: denotes the positive part of x;
• γ > 0: is a margin hyper-parameter;
• S′h,r,t = {(h

′, r, t′) | h′ ∈ E}⋃{(h, r, t′) | t′ ∈ E}
The set of corrupted triplets S′h,r,t is composed of training triplets with either the head

or tail replaced by a random entity (but not both simultaneously). The loss function (2)
favors lower energy values for training triples than for corrupted triples and is, thus, a
natural implementation of the intended criterion.

To summarize, once triplets such as T1 = (Blade Runner, directed_by, who) are gen-
erated by the NLP module, the idea is to leverage the information in an existing KB by
using suitable models that will allow for representing the triple in an embedding space.
The module’s implementation and experimentation are described in Section 5, and the
models described in Table 1 have been tested and queried.

5. Experimentation

To validate the proposed approach, a dataset for question answering was chosen
and processed to perform a link prediction task. Initial testing was performed on REBEL,
the pre-trained BART-based transformer that was employed to convert the question from
natural language into a triple using the OpenIE paradigm. After that, the KGE models
are trained on the chosen KB, in order to compare, query, and compute the experiment
scoring results.

The metrics used for performance evaluation of the whole framework are recall,
precision, F1-score, MRR, and hits@N (with N ∈ { 1, 3, 10 }).

5.1. Dataset

The MovieQA (WikiMovies) dataset [18] is a question-answering pair dataset built
by Wikipedia that includes the raw source text and the corresponding KB framed in the
movies domain. The dataset comprises three forms of knowledge representation: (i) raw
Wikipedia documents describing movies; (ii) a classical graph-based KB consisting of entities
and relations created from the Open Movie Database (OMDB) and MovieLens (disclosed
in separate files); and (iii) information extracted (IE) by processing the Wikipedia pages to
build a KB. The dataset matches the query with the three knowledge types mentioned.
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The experiments were conducted on a dataset with a graph-based KB representation.
This dataset is made up of T =< h, r, t > triples that correspond to the structure (film,
relation, object). The KB dataset holds information on 18 thousand movies using OMDb
and MovieLens metadata, with entries for each movie and nine different relation types:
director, writer, actor, release year, language, genre, tags, IMDb rating, and IMDb votes,
with 10k related actors, 6k directors, and 43k entities in total, in which 75k+ are distinct
entities, on ten structured relations, reaching over 186 thousand triples.

Only the triples where the entities also appear in the Wikipedia articles are kept to
ensure that all QA pairs have an equal chance of receiving an answer from either the KB
or Wikipedia document sources. However, the original triple KB has been modified to
ensure proper processing by our framework, extracting the individual <subject, predicate,
object>; as shown in Figure 4, each original triple is split into as many triples as there
are tail entities. The triples reached over 376 thousand statements; the final dataset was
published in GitHub [66].

Figure 4. Example of a triple from the original MovieQA dataset with the modified new single triples.

As stated, REBEL allows for transforming a natural speech question into a triple
(< h, r, t >). More specifically, REBEL is a transformer based on BART that performs
end-to-end relation extraction for more than 200 different relation types. It uses the OpenIE
paradigm to translate a raw input phrase containing entities with implicitly stated relations
and produces explicit triples expressing the relationships between the entities.

5.2. Question Triple Translation with REBEL

REBEL was trained to predict up to 220 different relationship types. For this par-
ticular dataset, and given the nature of the relations, a post-triple-generation normal-
ization task was taken into account. So, for instance, by considering the natural ques-
tion “Who directed American Gigolo?”, according to the 5W question markers, the sen-
tence is translated into a triple by substituting the object (head) or the subject (tail)
with the question mark. In this case, the final triple generated by the REBEL decoder
is <AmericanGigolo, directed_by, Who>. REBEL was prompt-tuned, even though the input
component has been revised to enable the processing of our dataset (placeholders defined in
the returned text have been removed to guarantee the proper translation of input questions).
REBEL was tested on 20% of the Wikimovies dataset (≈27.600 questions), downloaded
directly from the public repository. Figure 5 shows the performance of REBEL, expressed
in terms of recall, precision, and F1-score, for each component and the overall triples.
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Figure 5. REBEL model validation score using 20% in the WikiMovies dataset, the scores show
evaluation on each triple component: <subj, pred, obj> and an overall metric, in terms of Recall,
Precision, F1-score.

As previously introduced, REBEL was selected after some experiments were carried
out on Seq2RDF [62], an encoder-decoder framework (see Section 4). It consists of an
encoder taking in a natural language sentence, a sequence input, and a decoder generating
the target RDF triple. Encoders and decoders are designed as recurrent neural networks
with long short-term memory (LSTM) cells. The attention mechanism is applied to force
the model to learn to focus on specific parts of the input sequence when decoding, instead
of relying only on the last hidden state of the encoder. Although Seq2RDF is structured and
trained to extract URI related to entities of a text, in this approach, it was used to extract just
the triplets concerning the <subject, predicate, object> of a given text or question. For this
reason, the Seq2RDF architecture has been modified to predict just the subject, predicate,
and object from a text and not search for the corresponding URIs.

Seq2RDF has been trained on 90% of the dataset and tested on 10% of it (≈10.380 ques-
tions). The experiments highlighted a clear issue with Seq2RDF: it was not effective enough
to capture the whole context of the sentence. Indeed, the F1-score was 0.98 on predicates,
0,15 on subjects, and 0,08 on objects, only on the training set. The scores on the test set were
still 0,97 on predicates, 0,11 on subjects, and 0,06 on objects. The network was unable to
learn, not only to generalize. This is because the dataset’s sentences almost always have
their subjects and objects inverted, which makes it difficult for the network to correctly
identify the subject and object.

For this reason, REBEL was chosen for sentence translation in the prototype, based on
which the transformer was able to better generalize and correctly classify the subjects and
objects in sentences and questions, even if these are interchangeable.

5.3. KGE Evaluation

The training on the selected dataset was performed on the three KGE models intro-
duced in Section 4, namely TransE, DistMult, ComplEx; the metrics considered were the
mean reciprocal rank (MRR) and HITS@N.

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

∈ [0, 1] (3)

Precisely, MRR, defined in Equation (3), is a statistical measure for evaluating any
process that produces a list of possible responses to a sample of queries (in this case, triples),
ordered by the probability of correctness. More formally, the mean reciprocal rank is the
average of the reciprocal ranks of results for a sample of triples Q; where rankqi refers to
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the rank position of the first relevant document for the ith query q. It represents the ability
of the model to produce a correct answer.

HITS@N =
1
|Q|

|Q|

∑
i=1
|qi ∈ Q : ranki < N| ∈ [0, 1] (4)

More formally, the Hits@N is defined in Equation (4) and represents the percentage
rate of the original triples ranked at the top N in the prediction. A HITS@N with N = 1
is the conventional accuracy; the model prediction (the one with the highest probability)
must be exactly the expected answer. It captures the fraction of triples that appear in the
first N triples of the sorted rank list, or in other words, it calculates the percentage of
examples for which the predicted label matches the specific target label. Different values
of hits have been calculated, in particular: HITS@1, HITS@3, HITS@10. This measure
represents the ability of the model to produce a correct answer in the top 1, 3, or 10 answers
produced, respectively.

After performing a fine-tuning process on these models, the final result emphasized
the fact that TransE overcomes the other two models; the performance of the training
process is reported in Figure 6, the validation process is reported in Figure 7, and in Table 2,
the best hyperparameter setting is given. Let us notice that careful fine-tuning of the
hyper-parameters was accomplished, resulting in a Hits@1 of 85.7%, far higher than the
one presented in [67], which obtains 25% on the same WikiMovie-300K dataset.

Figure 6. KGE Training Performance-Comparison between TransE, DistMult, and CompEx models
on the modified triples in the WikiMovies dataset, measured in terms of MRR and HITS@N.

Figure 7. KGE Validation Performance-Validation values a comparison among TransE, DistMult,
and CompEx models on the modified triples on the WikiMovies dataset, measured in terms of MRR
and HITS@N.
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Table 2. Hyper-parameter setting for TransE model.

Parameter Value

batches count 32
seed 0
epochs 200
k 100
eta 100
regularizer LP
optimizer adam
Regularizer p2
Regularizer lambda 1−5

Optimizer:lr 0.002
negative corruption entities batch
loss self adversarial
loss params: margin 10
loss params: alpha 0.001

Finally, the evaluation of the overall approach, composed of two modules, (1) the
REBEL module and (2) the KGE module, is given in Table 3. The results show the out-
performance of the TransE model over the DistMult and ComplEx models, despite the
effectiveness of these two over the TransE model. This is because the TransE model requires
less computation to extract from the KB better representative features. Furthermore, this
result is consistent with the nature of the KB structure, which is composed of one-to-many
and many-to-one relationships, rather than a highly connected graph for many-to-many.

Table 3. Results of the evaluation using REBEL combined with each embedding model.

Model MRR Hits@1 Hits@3 Hits@10

REBEL + TransE 88.2 85.7 96.3 98.4
REBEL + DistMult 41.7 40.6 47.4 41.7
REBEL + ComplEx 43.7 43.2 45.4 49.4

6. The System at Work: A Use Case

The question-answering system accomplished by the integration of the two used
modules TransE and REBEL, supports as a back-end for a simple web application, designed
to facilitate user interaction. Given the incompatibility of two used models, TransE and
REBEL, based on the libraries Tensorflow 1.x and Pythorch 2.x, respectively, results in the
need to use a container-based design to guarantee the communication between the modules.

The web application interface enables the formulation of a simple question in natural
language, and the return of an answer graphical representation as triple is located in the
knowledge graph. Moreover, additional code and data resources were published in a
GitHub repository (GitHub Repository| available online: https://github.com/d1egoprog/
FastKGQA (accessed on 23 February 2023)).

In Figure 8, the snapshots show the basic steps of the user interaction. In the first
step, the user web application interface shows a portion of the knowledge graph created
(Figure 8-Step 1) in modified triples by the dataset (as described in Section 5); these are
stored using NEO4J, an industry-level graph database management system.

https://github.com/d1egoprog/FastKGQA
https://github.com/d1egoprog/FastKGQA
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Figure 8. The system at work: initially, the user can submit a question (1) by clicking on Let’s start
with your question on the web application GUI; then, the question Who directed “American Gigolò”?
is submitted (2), and the corresponding graph is shown (along with the graph nodes colored) (3);
finally, the answer is returned in the interface, as shown in (4).

Initially, the Let’s start with your question button at the bottom of the interface allows the
user to submit a question (Figure 8-Step 1). The user, by clicking on that button, enables a
new interface where the question can be entered (Step 2). In the example shown in Figure 8,
the question submitted in natural language is “Who directed American Gigolo?”. Then,
the user can click the Generate Answer button to obtain the answer in a textbox provided in
triple format (Step 4). On a more technical level, the user click triggers the REBEL module,
which transforms the question into a triple that is input to the TransE module. TransE
predicts the final answer by placing the embedding associated with the triple generated by
REBEL in TransE’s vector space. While the system elaborates the right answer, by clicking
See your results inside the graph button, the triple generated by REBEL is also translated into
cypher language and submitted to Neo4J, which graphically visualizes the relative portion
of the graph containing the answer.

More specifically, the subgraph describing the nodes representing the question entities
and related entity-nodes is shown; in particular, the nodes involved in the answer are
colored in red (step 3): the node labeled “American Gigolo” is in the middle, surrounded
by linked nodes, and one of them, labeled “Paul Schrader”, is also colored and represents
the answer.

Let us remark that the database used for visualizing the graph was originally stored in
Neo4j. The dump of the database from Neo4j was embedded inside the Docker container,
making the system portable, as well.

7. Conclusions

The paper proposes a system for simple question answering, based on two existing
consolidated components: REBEL, a seq2seq model for transforming natural language
questions into triple-based questions, and a KGE model that takes, as input, the REBEL
generated triples, returns, and answers.

The system comprehensively provides good performance, particularly concerning
the KGE model TransE: the combination of REBEL and TransE outperforms the Hit@1
performance of the state-of-the-art, considering the parameter settings shown in Table 2.
The final use case shows the simplicity and effectiveness of the proposed system through
the main interactions with the basic system interface, which shows the answer as both a
triple and a (portion of) graph-based representation.
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The proposed system is an off-the-shelf approach for fast prototyping design, leverag-
ing OpenIE principles to build a pipeline composed of two KGQA-related modules from
the literature. The REBEL module is, indeed, based on the OpenIE paradigm. Moreover,
REBEL was prompt-tuned for the downstream task of triple extraction. It was tested on a
new dataset to verify its effectiveness in returning high-quality triples from domain-specific
questions. Additionally, the KGE-based module was trained and validated on TransE,
DistMult, and ComplEx on the re-adapted triples in the MovieQA (WikiMovies) dataset
(see Figure 4).

In a nutshell, the proposed system represents a fast prototype for:

• Simple question-answering that exploits existing tools from the literature.
• Leveraging on OpenIE principles to automatically extract structured information

from natural language text, guaranteeing scalability, unsupervised learning, flexibility,
accuracy, and integration with other natural language processing tools.

• Specializing the system to answer on a selected knowledge base, without retraining
the question-triple translator model: in our case, REBEL was tested on a portion of
Wikimovies without any pre-training.

• Assessing the quality of a fast composition design in question-answering effectiveness.
Our prototypical system shows that the designed pipeline can overcome the state-of-
the-art in some specific situations.

Question-answering systems may offer solid and accurate answers to various ques-
tions by combining the advantages of knowledge graphs with OpenIE, making them
valuable tools for numerous applications, such as search engines, chatbots, and personal
assistants. Achieving a fast prototyping of knowledge graph question-answering systems
can help developers create effective systems by experimenting with new features and
domains, thus enabling them to develop KGQA systems more quickly and at a lower cost,
in terms of time and resources expended.
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