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Abstract: Aspect-based sentiment analysis is a fine-grained sentiment analysis that focuses on the
sentiment polarity of different aspects of text, and most current research methods use a combination of
dependent syntactic analysis and graphical neural networks. In this paper, a graph attention network
aspect-based sentiment analysis model based on the weighting of dependencies (WGAT) is designed
to address the problem in that traditional models do not sufficiently analyse the types of syntactic
dependencies; in the proposed model, graph attention networks can be weighted and averaged
according to the importance of different nodes when aggregating information. The model first
transforms the input text into a low-dimensional word vector through pretraining, while generating
a dependency syntax graph by analysing the dependency syntax of the input text and constructing
a dependency weighted adjacency matrix according to the importance of different dependencies
in the graph. The word vector and the dependency weighted adjacency matrix are then fed into
a graph attention network for feature extraction, and sentiment polarity is predicted through the
classification layer. The model can focus on syntactic dependencies that are more important for
sentiment classification during training, and the results of the comparison experiments on the
Semeval-2014 laptop and restaurant datasets and the ACL-14 Twitter social comment dataset show
that the WGAT model has significantly improved accuracy and F1 values compared to other baseline
models, validating its effectiveness in aspect-level sentiment analysis tasks.

Keywords: aspect-based sentiment analysis; dependent syntactic analysis; dependency weighting;
graph attention network; pretrained model

1. Introduction

Sentiment analysis is one of the current research hotspots in natural language pro-
cessing [1]. With the development of information technology, increasingly more text with
emotional tendencies is appearing on the internet [2], and the analysis of this informa-
tion to understand people’s views is crucial for solving practical problems, as well as for
informative decision making.

The main types of text sentiment analysis are chapter-level sentiment analysis, sentence-
level sentiment analysis, and aspect-level sentiment analysis [3]. Both chapter-level and
sentence-level sentiment analyses are coarse-grained sentiment analyses that analyse an
entire document or an entire sentence as a basic unit, respectively, and can only analyse
a single sentiment of the text, not multiple aspects. Aspect-level sentiment analysis is a
more fine-grained sentiment analysis that addresses specific aspects of a sentence [3]. For
example, the emotional polarity of “The food at this restaurant is good, but the service is
terrible” is positive and negative. In this case, it is not possible to accurately analyse the
sentiment of the whole sentence, and specific aspects need to be analysed. With increas-
ingly complex semantic environments and increased analysis requirements, coarse-grained
sentiment analysis techniques can no longer meet today’s needs, and more fine-grained
sentiment analysis has become a key research problem in natural language processing [4].
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Early approaches for aspect-based sentiment analysis used machine learning to man-
ually engineer features, such as building sentiment dictionaries and then classifying sen-
timents through machine learning classifiers such as decision trees and support vector
machines [5]. Particularly complex feature engineering is often needed, which is costly and
poorly generalised.

With the development of neural network technology, deep learning methods have
become the main approach for current aspect-based sentiment analysis research [6]. Deep
learning overcomes the traditional machine learning problem of relying on manual ex-
traction of text features, and it is able to automatically learn the emotional information
embedded in text through neural networks and map words in text to low-latitude word
embedding vectors. Some researchers further combined attentional mechanisms with
deep learning [7–9], obtaining desirable results. To be specific, the attention mechanism
enables the model to concentrate more on words with high similarity during sentiment
classification by calculating the semantic similarity of the aspect word embedding vector
to other word embedding vectors in the text. However, merely taking into account se-
mantic similarity without considering the syntactic structure between words may cause
the model to focus excessively on sentiment words that are not syntactically correlated
with aspectual words and, thus, make incorrect judgments [10,11]. Nonetheless, traditional
neural networks can only process data in Euclidean space and cannot make effective use of
syntactic information.

To cope well with these problems, some researchers have conducted systematic and
comprehensive dependency syntactic analysis on texts, generated dependency syntactic
graphs to express the syntactic dependencies between words, and extracted the syntactic
information from them through graph neural networks, which has materialised a con-
siderably noticeable improvement in the model effect [11]. Nevertheless, the majority of
current studies simply take into consideration the syntactic dependencies between words,
ignoring the important feature of the type of dependency. Aside from that, in the process
of classifying aspectual words for sentiment, the model needs to fix attention on the de-
pendencies that are more important for the sentiment judgement of aspectual words. As a
consequence, we incorporated dependency types into the graph neural network. Under
such circumstances, the model can focus more on the dependencies that are important for
sentiment classification. To achieve this, we set the weights of the dependencies in accor-
dance with their importance and weight them as trainable parameters in the graph neural
network for feature extraction, so that the model can fix its attention on the important
dependencies. In the word embedding layer, we also use a sentiment pretraining model for
word embedding. This enables the word embedding weights to be better adapted to the
sentiment analysis task.

This paper presents the following main work:

1. We use a BERT-pretrained sentiment corpus for word embedding of input text. In such
case, BERT can better capture the sentiment information in the text during pretraining,
and demonstrate the superiority of the sentiment pretraining model compared to the
normal pretraining model in sentiment analysis tasks through experimental results.

2. We probe deep into the text for dependency syntax, set initial weights for dissimilar
dependencies in line with their relative importance for sentiment classification, and
further optimise them through model training.

3. We come up with a relation-weighted graph attention network model (WGAT). This
model ameliorates the existing attention mechanism and weights the attention score.
In this way, the model can assign weights according to the importance of different
types of dependencies, so as to concentrate more on important dependencies and
heighten classification accuracy.

4. Experiments on different datasets prove the effectiveness of our proposed method,
whereby the effect of our model is better than other baseline models.
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2. Related Work

The main aim of aspect-based sentiment analysis is to examine the sentiment categories
of the different aspects of a sentence. One of the main approaches used for aspect-based
sentiment analysis based on machine learning involves using supervised classification
algorithms such as plain Bayes algorithm [12] and support vector machines [13]. Although
such an approach has achieved good performance, it relies heavily on manual feature
engineering, which is costly. The performance of the model is also directly affected by how
well the features are manually extracted; the manually extracted features are only valid in
the corresponding domain and have poor generalisation capabilities.

In recent years, the rise of neural networks has led to the widespread use of deep
learning methods in natural language processing tasks. Compared to traditional machine
learning methods, deep learning can automatically extract text features without the need
for particularly complex feature engineering and has greater expressive power. How-
ever, the large number of parameters used in various neural network models and the
often small corpus for downstream tasks in natural language processing (sentiment anal-
ysis, machine translation, etc.) prevent the neural network parameters from being better
trained. For this reason, pretraining on a large-scale corpus and then applying the resulting
word embeddings to downstream natural language processing tasks is currently a proven
approach [14].

Early word embedding techniques represented each word as a vector, where words
that were closer in semantics were represented as vectors that were also closer in space.
The word2vec model proposed by Mikolov et al. [15] uses a CBOW (predicting central
words with surrounding words) and skip-gram (predicting surrounding words with central
words). The Glove model proposed by Pennington et al. [16] constructs a co-occurrence
matrix of words based on the corpus and then vectorises the word list on the basis of the
co-occurrence matrix and the Glove model. The above two are static word vectors, which
have been widely used in sentiment analysis tasks.

Recurrent neural networks (RNNs), with their temporal nature, exhibit great advan-
tages in natural language processing tasks, but RNNs experience gradient disappearance
for longer text. The long short-term memory (LSTM) network can solve this problem;
hence, various aspect-based sentiment analysis models based on LSTM networks have
been proposed. Tang et al. [7] proposed a target-dependent LSTM (TD-LSTM) model
to address the inadequate attention given to target words in LSTM networks by using
two LSTM networks, modelled separately on the left and right of the target words. They
further proposed a target-connected LSTM (TC-LSTM) model, which further strengthens
the relationship between target words and context by splicing target word vectors with
contextual word vectors in the input part of the LSTM model based on TD-LSTM. The
attention mechanism can focus on important parts of the text and has been successfully
applied to a variety of natural language processing tasks. Wang et al. [8] proposed an
attention-based LSTM (ATAE-LSTM) model using target embeddings, where the context
and aspectual word splicing is fed into the LSTM for encoding, and the encoded vector
is spliced with the aspectual word vector to obtain the sentiment category by computing
through the attention mechanism. Tang et al. [17] applied the idea of memory networks to
the aspect-based sentiment analysis task by storing the contextual information of a given
aspect into a memory network and capturing the degree of aspect word–context association
through an attention mechanism, which has a higher computational speed than LSTM.
However, all these models use static word vectors and cannot dynamically adjust the
meaning of words according to the context during model training to address the multiple
meanings of words.

BERT is pretrained by working on a large corpus and fine-tuned in downstream tasks.
It has better word embedding representation and stronger feature extraction than traditional
word vectors. Song et al. [18] proposed the BERT_AEN model to address the excessive
training data required for LSTM by using a multiheaded attentional encoder network
for modelling between contextual words and aspect words and learning the interaction
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information between them. Zeng et al. [19] suggested that the sentiment polarity of
aspectual words is related to nearby contextual words, and that distant words can interfere
with words that may interfere with the final classification; hence, they proposed an aspect-
based sentiment classification mechanism that focuses on local context. However, the
emotional polarity of aspectual words is not always related to words that are close’ for
example, in the sentence “So delicious were the noodles but terrible were the vegetables”,
the aspectual word “noodles” is closer to “terrible”, but its affective polarity is negative.
In addition, calculating weights between words through a self-attentive mechanism fails
to consider syntactic knowledge and may assign greater weights to words unrelated to
aspectual word sentiment classification, leading to misclassification [10,11].

In recent years, some scholars have applied knowledge of dependent syntactic analysis
to aspect-based sentiment analysis. Dependent syntactic analysis focuses on analysing the
dependencies between words in a sentence [20], explaining the dependencies between word
nodes through a kind of graph structure. For example, in the above example, the adjective
“delicious” directly modifies the aspectual word “noodles” through a dependency relation,
and they are at a distance of 1 in the syntactic map, while the aspectual word “noodles”
has no path to reach the adjective “terrible”. Syntactic distance is, therefore, preferable
over spatial distance. Graph convolutional networks (GCNs) [21] can better handle graph
structured data by aggregating and messaging neighbouring nodes. Because traditional
neural networks cannot address the syntactic constraints and long-term dependencies of
text, Zhang et al. [11] built graph convolutional networks in syntactic dependency trees
to facilitate the use of syntactic information and dependencies of text. Huang et al. [22]
proposed a graph attention network based on target dependency [23], which represents
sentences as dependency graphs and directly connects aspect words to related words to
extract information through graph attention networks. Wang [24] et al. proposed the
relational graph attention (R-GAT) network model to reconstruct syntactic graphs using
dependencies with aspectual words as root nodes and to encode dependencies for feature
extraction through relational graph attention networks. Current research has enabled
models to learn rich syntactic knowledge by combining syntactic graphs with graph neural
networks, but less consideration has been given to the types of dependencies. Although
R-GAT encodes dependencies, it does not consider that different types of dependencies
have different importance and may assign larger weights to unimportant nodes when
calculating the attention weights of two nodes.

3. Methodology
3.1. Task Definition

The data for an aspect-based sentiment analysis task can usually be defined as
a binary group (W, A) consisting of a sentence and the aspect words therein, where
W = {w1, w2, . . . wn} is an emotionally charged sentence consisting of m words and
A = {wi, wi+1, . . . wi+n−1} represents the n aspect words in the sentence. Its affective
polarity includes positive, negative, and neutral. For example the text “The staff should
be more friendly.”, W is a sequence of words within the text, i.e., W = {“the”, “staff”,
“should”, “be “, “more”, “friendly”, “.”}, and A is the sequence of aspectual words in it,
i.e., A = {“staff”}. The goal of the task is to input W and A into Model M to predict the
sentiment polarity of aspectual word A, as shown in Equation (1). y_pred is the model
prediction result.

y_pred = M(W, A). (1)

This paper proposes a graph attention network aspect-based sentiment analysis
(WGAT) model based on sentiment pretraining and the weighting of dependencies. The
model mainly consists of a word embedding layer, a dependency syntactic analysis layer, a
graph attention network layer, and a classification layer. The original text is encoded at the
word embedding layer as an input feature to the graph attention network. Dependency
syntax analysis is performed on the text at the syntactic analysis layer to generate a de-
pendency syntax graph and construct a dependency-weighted adjacency matrix based on
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the dependency relationships between nodes. Lastly, the weighted adjacency matrix and
input features are fed into the graph attention network for feature extraction and sentiment
prediction through the classification layer. The specific model structure is shown in Figure 1.
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3.2. Word Embedding Layer

The BERT model uses a bidirectional transformer [25] encoder structure, which, at
its core, uses a self-attentive mechanism to encode text. The self-attention mechanism
allows the model to focus on the important parts of the text during training by calculating
the attention weight of each word in the text in relation to all other words. Although the
pretrained model has performed well in a variety of NLP tasks, it is pretrained on a generic
corpus based on its inability to better capture sentiment relations in text [26], limiting
its performance in sentiment analysis tasks. This paper, therefore, uses a BERT model
pretrained on a large-scale sentiment corpus for word embedding, making its pretrained
weights better suited for sentiment analysis.

In this paper, the input text sequence is W = {w1, w2, . . . wm}, which is mapped into
a low-dimensional semantic vector Hm×bert_dim by the BERT model, where m is the input
text length and bert_dim is the BERT word embedding dimension. The features that are
graph nodes are then fed into the graph neural network for training. This is shown in
Equation (2).

H = {h1, h2, . . . hm} = BERT(W). (2)

3.3. Syntactic Analysis Layer

Dependency syntactic analysis focuses on the dependency relationships between
words in a sentence [24]. Although the attention mechanism can focus on important parts
of text, it cannot adequately capture the syntactic dependencies in sentences [21], which
affects the classification effect. This paper, therefore, requires syntactic analysis of the input
text. The StanfordNLP syntactic parser was used to convert the sentences into a syntactic
dependency graph. Taking “Great food but the service was dreadful!” as an example, the
syntactic dependency graph is shown in Figure 2.
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Figure 2. Dependency syntax example 1.

In Figure 2, the results of the syntactic analysis of dependencies include both the
syntactic dependencies that exist between words and the types of dependencies. Differ-
ent dependencies contribute differently to the affective classification of aspectual words,
e.g., the aspectual word ‘food’ is related to the words “great”, “dreadful”, and “,” in a
modifying way. Different dependencies contribute differently to the affective classification
of aspectual words; for example, the aspectual word “food” has a modifying relationship
with the words “great”, “dreadful”, and “,”, whose dependencies are “amod”, “conj”, and
“punct”, respectively. “Great” is an emotion word for the aspect word “food”, indicating
that its emotional overtone is positive and that it plays a positive role in the classification of
emotions. “Punct” is usually connected with punctuation and can potentially interfere with
the final classification. “Food” is linked to the word “dreadful” via “conj” with negative
emotional overtones, which can lead to misclassification. For the aspectual word “service”,
the dependency “nsubj” can be directly connected to its affective word “dreadful”, but
“det” has no effect on affective classification. Different types of dependencies have different
effects on the affective prediction of aspectual words. Therefore, this paper sets different
weights for different types of dependencies, with larger weights used for dependencies that
have an affective effect on aspectual words and smaller weights for the rest of the depen-
dencies so that the model can focus on the important parts in the process of extracting the
syntactic dependency graph. In addition to aspectual words, adverbial relations modifying
adjectives or verbs play a crucial role in classification, as shown in Figure 3.

Information 2023, 14, x FOR PEER REVIEW 6 of 15 
 

 

Great  food  but  the  service  was  dreadful  .

amod

punct

conj nsubj

cop

cc

 

Figure 2. Dependency syntax example 1. 

In Figure 2, the results of the syntactic analysis of dependencies include both the syn-

tactic dependencies that exist between words and the types of dependencies. Different 

dependencies contribute differently to the affective classification of aspectual words, e.g., 

the aspectual word ‘food’ is related to the words “great”, “dreadful”, and “,” in a modi-

fying way. Different dependencies contribute differently to the affective classification of 

aspectual words; for example, the aspectual word “food” has a modifying relationship 

with the words “great”, “dreadful”, and “,”, whose dependencies are “amod”, “conj”, and 

“punct”, respectively. “Great” is an emotion word for the aspect word “food”, indicating 

that its emotional overtone is positive and that it plays a positive role in the classification 

of emotions. “Punct” is usually connected with punctuation and can potentially interfere 

with the final classification. “Food” is linked to the word “dreadful” via “conj” with neg-

ative emotional overtones, which can lead to misclassification. For the aspectual word 

“service”, the dependency “nsubj” can be directly connected to its affective word “dread-

ful”, but “det” has no effect on affective classification. Different types of dependencies 

have different effects on the affective prediction of aspectual words. Therefore, this paper 

sets different weights for different types of dependencies, with larger weights used for 

dependencies that have an affective effect on aspectual words and smaller weights for the 

rest of the dependencies so that the model can focus on the important parts in the process 

of extracting the syntactic dependency graph. In addition to aspectual words, adverbial 

relations modifying adjectives or verbs play a crucial role in classification, as shown in 

Figure 3. 

The  food  was  not  fresh  .

det punct

nsubj

cop

advmod

 

Figure 3. Dependency syntax example 2. 

In Figure 3, the aspectual word “food” is modified by the emotion word “fresh”. The 

emotion polarity could be positive; however, since “fresh” is not modified by the adverb 

“not”, the emotion polarity of food should be negative. 

The StanfordNLP syntactic parser used in this paper has more than 50 dependencies 

[27]. On the basis of a priori knowledge, we set larger weights for dependencies that are 

more important for aspectual word sentiment classification, such as amod, nsubj, and 

advmod, and smaller weights for other dependencies, such as det, punct, and cop. Here, 

the initialisation weight of important dependencies is set to 3, the weight of other depend-

encies is set to 0.5, and they are stored in the dependency dictionary wei. 

Figure 3. Dependency syntax example 2.

In Figure 3, the aspectual word “food” is modified by the emotion word “fresh”. The
emotion polarity could be positive; however, since “fresh” is not modified by the adverb
“not”, the emotion polarity of food should be negative.

The StanfordNLP syntactic parser used in this paper has more than 50 dependen-
cies [27]. On the basis of a priori knowledge, we set larger weights for dependencies
that are more important for aspectual word sentiment classification, such as amod, nsubj,
and advmod, and smaller weights for other dependencies, such as det, punct, and cop.
Here, the initialisation weight of important dependencies is set to 3, the weight of other
dependencies is set to 0.5, and they are stored in the dependency dictionary wei.



Information 2023, 14, 185 7 of 15

After setting the dependency weights, we construct the dependency weighted adja-
cency matrix on the basis of the dependency weights. The construction method is shown in
Equation (3).

Aweight
ij =


wei(r(i, j)) i 6= j and j ∈ N(i)

1 i = j
0 other

, (3)

where r(i, j) denotes the type of dependency relationship corresponding to node i and
node j. The wei(r(i, j)) function denotes the weight of the relationship between node i and
node j, and N(i) denotes all the neighbouring nodes of node i. If node j is a neighbour
node of node i (i.e., node i and node j are at a distance of 1), then the value of Aweight

ij is

the weight of the relationship between node i and node j; otherwise, the value of Aweight
ij is

0. In addition to preserving the information of the node itself, we also add self-connected
edges for the node, i.e., the value of node i with respect to itself is 1.

3.4. Graph Attention Network Layer

Ordinary GCNs are aggregated by averaging the characteristics of each of the node’s
neighbours. However, neighbouring nodes with different dependencies are of different
importance to the aspect word nodes, and some may even lead to incorrect classification
results. Therefore, this paper uses the GAT model for feature extraction of syntactic graphs.

The GAT network is essentially a variant of the upper GCN, where the attention
weights of the current node and each neighbouring node are calculated according to the
different importance of the neighbouring information and the weighted average when
aggregating the neighbouring information. However, the use of the attention mechanism
alone to calculate the neighbour node weights may cause the aspect nodes to focus too
much on error messages. In this paper, we propose a graph attention network based
on dependency weighting based on the GAT model. By adding dependency weights to
the calculation of attention weights between neighbouring nodes, the model is trained to
focus more on the important parts of the sentence by giving greater weights to important
dependencies, as shown in Equation (4).

∂ = Wr Aweight + b. (4)

Equation (4) shows the dependency weight matrix, where Wr and b are the weight
and bias, respectively. The dependency weight matrix is set as a trainable parameter by
setting the weights and biases, and the model dynamically adjusts the relationship weights
during training according to the initial values we set.

The attention weights of different nodes are then calculated by weighting the depen-
dencies, as shown in Figure 4. The calculation is shown in Equations (5) and (6).

eij = ∂ij
[
Whi

∣∣∣∣Whj
]
. (5)

aij =
exp
(

LeakyRelu
(
∂ij
[
Whi

∣∣∣∣Whj
]))

∑
u∈N(i)

exp(LeakyRelu(∂iu[Whi||Whu]))
. (6)
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Equation (5) calculates the attention weights of two nodes. The two nodes are stitched
together by a linear transformation and multiplied by the corresponding relationship
weights of the two nodes. ∂ is the weight of trainable dependencies in Equation (4), and
|| is the splicing operation. Equation (6) performs a softmax operation on the computed
attention mechanism so that it maps to a probability between 0 and 1, where N(i) denotes
the neighbouring nodes of node i, and LeakyRelu() is the activation function.

Lastly, all neighbouring nodes of node i are multiplied by their corresponding attention
weights for weighted summation, and the final attention characteristics of node i are
obtained through the nonlinear layer, as shown in Equation (7).

h′ i = σ

 ∑
j∈N(i)

aijWhj

. (7)

To improve the model fitting ability, this paper adopts a multiheaded attention mecha-
nism for information extraction. The calculation method is shown in Equation (8).

h′ i =
K
||

k=1
σ

 1
K

K

∑
k=1

∑
j∈N(i)

ak
ijW

khj

. (8)

In Equation (8), σ is the activation function, where K denotes the number of attention
heads. We obtain the feature h′ i of node i after aggregating information about its neighbours
by multiplying the weights calculated from the K attention heads by the weighted average
of the corresponding nodes. Lastly, we obtain the output vector H′ = {h′1, h′2, . . . h′m} of
the dependency weighted graph attention network.

3.5. Emotional Classification Layer

As this paper implements a multiclassification task, a softmax function is used for the
final sentiment classification. In this paper, the features extracted from the graph attention
network layer are passed through a fully connected layer and a softmax layer to obtain the
probability values of various sentiments of the corresponding aspect words. The feature
with the highest probability is the final prediction result, as in Equation (9), where W and b
are the weight and bias, respectively.

y_pred = so f tmax
(
WH′ + b

)
. (9)
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The loss function of the model uses a cross-entropy loss function, as shown in
Equation (10), where y is the true label. To prevent overfitting of the model, L2 regu-
larisation is used in this paper to train parameters and weights, and λ is the regularisa-
tion parameter.

L(θ) = −∑ ylog(y_pred) + λ
∣∣∣∣θ∣∣∣∣2. (10)

4. Experiment
4.1. Dataset

This paper conducts experiments on publicly available aspect-based sentiment analysis
datasets, namely, the Semeval2014 Task4 dataset [28] and the ACL-14 [29] dataset. Among
them, Semeval2014 includes two review datasets, laptop and restaurant, and ACL-14 is a
Twitter social review dataset. Each dataset is divided into a training set and a test set and
has three types of labels: positive, negative, and neutral. The specific information of the
three datasets is shown in Table 1.

Table 1. Experimental data statistics.

Dataset
Positive Negative Neutral

Train Test Train Test Train Test

Laptop 994 341 870 128 464 169
Restaurant 2164 728 807 196 637 196

Twitter 1561 173 1560 173 3127 346

4.2. Hyperparameter Setting

In this paper, experiments are conducted on 12 models for each of the three datasets.
Seven of the models are based on the Glove word vector, and five are based on the BERT
pretrained model. The word embedding dimension is 300 for Glove and 768 for the BERT-
pretrained model. As the BERT-pretrained model requires a relatively low learning rate
while fine-tuning the shared layer [10], the learning rate is set to 2 × 10−5 for the BERT-
based model and 1 × 10−3 for the Glove-based model. The BERT model used above is
bert-base-uncased, and the sentiment pretrained model used in this paper is bert-base-
uncased-emotion. Other hyperparameters are shown in Table 2.

Table 2. Training parameters.

Parameter Value

Batch size 16
Dropout rate 0.1

Epoch 6
L2 regularisation coefficient 0.000001

Optimiser Adam
Maximum sentence length 80

4.3. Evaluation Metrics

The main model evaluation metrics commonly used for sentiment analysis are ac-
curacy, precision, recall, and F1 value. Accuracy indicates the proportion of correctly
predicted samples with respect to all samples, as shown in Equation (11). Precision is the
proportion of positive predictions in the sample that are actually positive, as shown in
Equation (12). Recall is the proportion of positive cases in the original sample that are
correctly predicted, as shown in Equation (13). The F1 value combines precision and recall
and is the summed average of the two, as shown in Equation (14). Some of the datasets
in this experiment have a large difference in the numbers of categories, while macro-F1
(macro-F1) can consider the number of each category and is more suitable for unevenly
distributed samples, as shown in Equation (15). To evaluate the model results, accuracy
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and macro-F1 are used as evaluation metrics, and the model is tested five times on each of
the three datasets. The best result is taken as the final result.

Accuracy =
TP + TN

TP + TN + FP + FN
, (11)

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
, (13)

F1 =
2× TP

N + TP× TN
, (14)

Macro− F1 =
1
n

n

∑
i=1

F1i, (15)

where N is the total number of samples, TP is the number of samples with positive labels
predicted by the model to be positive, TN is the number of samples with negative labels
predicted to be negative, FP is the number of samples with negative labels predicted to be
positive, and FN is the number of samples with positive labels predicted to be negative.

4.4. Comparison Models

To verify the validity and reasonableness of the model proposed in this paper, 11 base-
line models used in aspect-based sentiment analysis were selected for comparative analysis.

TD-LSTM [7]: LSTM is extended by using two LSTM networks to model a left con-
text with a target and a right context with a target. The left and right target-dependent
representations are connected and used to predict the affective polarity of the target.

ATAE-LSTM [8]: ATAE-LSTM is an improved AE-LSTM model. The aspect word
vector is spliced with the context vector in the input part of the model and fed into the
LSTM network, enabling the context hidden states to carry information from the aspects.

MEMNET [17]: MEMNET stores the context of a particular aspectual word into a
memory network and captures the importance of the aspectual word in relation to the
contextual word through an attention mechanism.

IAN [9]: This model proposes an interactive attention network that extracts contextual
and aspectual features through two LSTM models and interactively learns the representa-
tion of context and aspectual words through an attention mechanism.

Bi-GCN [30]: Bi-GCN uses global lexical graphs to encode word co-occurrence in-
formation and designs interactive graph convolutional networks to learn syntactic and
lexical graphs.

ASGCN [11]: A multilayer GCN is constructed to extract syntactic information based
on the ability of LSTM to capture word order information, and a masking mechanism is
used to remove non-aspect word information and retain only aspectual high-level features.

TD-GAT [22]: Syntactic graphs using aspectual targets directly linked to related targets
are applied to GAT networks instead of word sequences, and node features are updated
by LSTM.

BERT-SPC [18]: This model uses a pretrained BERT classification model to generate
word vectors and extracts the vectors corresponding to the sign bit [CLS] for final classifica-
tion based on each vector output from the BERT model containing full text information.

AEN-BERT [18]: This model uses BERT for pretraining to generate context and target
word vectors and an attention encoder to model the context and target.

LCF-BERT [19]: This model uses a local context-focusing mechanism that uses a dy-
namic masking layer for contextual features and a dynamic weighting layer for contextual
features to focus on local contextual words.

Mem + BERT [31]: The syntactic structure information is extracted using GCN, and the
attention mechanism is used to fuse syntactic structure information, semantic information,
lexical information, location information, and aspects.
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SEDC-GCN [32]: A two-channel graph convolutional network model based on GCN
structural enhancement is proposed.

R-GAT-BERT [24]: R-GAT-BERT involves the pruning of dependent syntactic graphs,
reconstruction of syntactic graphs with aspectual words as root nodes, and feature extrac-
tion via relational graph attention networks.

SenticGCN [33]: This model incorporates affective common-sense knowledge into
graph networks to facilitate model extraction of affective dependencies between contextual
words and specific aspects.

4.5. Experiment Results

Table 3 shows the results of the different models on the three datasets, where data
marked with “*” refer to the model results in the published paper, while “-” refers to the
results not given in the original paper, and the bolded parts are the models in this paper.
The model results show that, among the word vector-based models, the ATAE_LSTM,
IAN, and AOA models based on the attention mechanism have better results than the
TD_LSTM model based on LSTM alone on both the notebook and the restaurant datasets
due to the inclusion of the attention mechanism. However, the static word vector limits
the performance of the model, with accuracy rates on the Twitter, restaurant, and laptop
datasets topping out at approximately 70%, 77%, and 72%, respectively. Moreover, as the
attention mechanism cannot use the syntactic information of the text, it is possible to assign
larger attention weights to irrelevant or even wrong word nodes, leading to classification
errors and limiting the performance of the model. ASGCN and Bi-GCN use GCNs for
text syntactic feature extraction and show a large improvement over the attention-based
mechanism model on all three datasets. The GAT model improves the effect of the TD-GAT
model compared to the above two GCN models due to the consideration of the different
importance between different nodes. The BERT_SPC model combines aspect words with
context as input only by constructing auxiliary sentence pairs, and then uses the first output
vector of BERT for classification. The model is relatively simple but also achieves better
results, with accuracy improvements of 1.77%, 1.91%, and 2.6% compared to the best static
word vector-based model. The R-GAT model discards all dependencies between non-aspect
words by pruning the dependency tree, which reduces redundant information but may also
ignore information that is important for sentiment classification. The model in this paper
sets the corresponding weights for the dependencies of different importance and optimises
them through model training. The best results are improved by 1.39%, 0.89%, and 1.36%
compared to those of the best model above, proving the effectiveness of the model.

Table 3. Experimental results contrasting.

Dataset
Twitter Restaurant Laptop

Acc F1 Acc F1 Acc F1

TD-LSTM - - 75.63 * - 68.13 * -
ATAE-LSTM - - 77.20 * - 68.70 * -

MEMNET 68.50 67.48 77.36 67.36 71.56 65.34
IAN 67.92 65.61 76.47 67.49 71.88 66.16

ASGCN 70.95 69.46 77.92 69.98 73.41 69.05
Bi-GCN 70.12 68.94 78.25 70.21 74.15 69.12
TD-GAT 71.35 69.17 79.11 71.64 75.21 72.09

BERT-SPC 73.12 71.32 81.02 72.81 77.81 73.41
BERT-AEN 73.70 72.10 81.69 73.64 77.19 72.57
BERT-LCF 73.84 72.87 82.13 74.52 78.12 73.43
Mem-BERT 73.13 71.94 84.76 78.46 78.70 74.06
SEDC-GCN 73.56 71.34 84.33 79.12 77.74 74.68

R-GAT-BERT 74.86 72.52 84.55 78.34 78.73 75.12
SenticGCN 74.69 72.28 84.82 79.37 79.13 76.06

WGAT-SBERT 76.25 74.56 85.71 80.23 80.49 77.21
* in the table refers to the model results in the published paper.
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4.6. Ablation Studies

To further verify the effect of the different modules of the model on the final experi-
mental results, several sets of ablation experiments were performed on the three datasets
above, as described below.

GAT-Glove: GAT-Glove performs word embedding using the Glove word vector and
LSTM for feature extraction, trained by a general graph attention network.

WGAT-Glove: WGAT-Glove performs word embeddings using Glove word vectors and
LSTM for feature extraction, trained with a relational weighted graph attention network.

GAT-SBERT: To verify the effect of dependency weighting on the experimental ef-
fect, the dependency weights are removed, and only the weights between two nodes are
calculated by the attention mechanism.

WGAT-BERT: To verify the effect of sentiment pretrained models on experimental
effects, word embeddings are performed on text using a pretrained model on a large-scale
general corpus.

As shown in Table 4, changing either part of the model resulted in a lower final
classification. First, the use of different word embedding methods had a large impact on the
model effects. Both Glove word embedding-based models showed a significant decrease in
effectiveness compared to the BERT word embedding-based models, demonstrating the
powerful feature extraction capability of the BERT model. The BERT model pretrained on
the sentiment corpus was better than the BERT model pretrained on the general corpus,
which shows the positive effect of domain data on model training. The dependency weights
also had a greater impact on the models for the same word embedding cases. The accuracy
of the models increased by 2.13%, 3.2%, and 3.6% with the addition of dependency weights
in the Glove word embedding case and 2.27%, 2.12%, and 2.37% with the addition of
dependency weights in the SBERT word embedding case. This is because graph attention
networks may assign larger attention weights to unimportant nodes in the process of
calculating the importance between two nodes. With the addition of dependency weights,
the model can assign greater attention weights to nodes that have a strong influence
on the classification, reducing the interference of non-disjoint points, with a significant
improvement in accuracy.

Table 4. Ablation experiment.

Dataset
Twitter Restaurant Laptop

Acc F1 Acc F1 Acc F1

GAT-Glove 69.92 67.68 76.64 67.91 72.35 67.37
WGAT-Glove 72.05 69.23 79.84 70.11 75.95 72.24
GAT-SBERT 73.12 71.39 83.16 76.69 77.12 73.50
WGAT-BERT 75.13 72.76 84.75 78.53 79.32 76.03

WGAT-SBERT 76.25 74.56 85.71 80.23 80.49 77.21

4.7. Effect of Initial Values of Weights

To study the effect of the initialisation weights of the dependencies on the effectiveness
of the model, we set different initialisation weights for the dependencies and conducted
comparative experiments to observe the results and explore the best initialisation weights.
Here, we denote the important dependency weights mentioned in Section 3.2 (a) and denote
the other dependency weights (b). The range of a values is [1,5], and the range of b values
is [0.1, 1]. The control variable method was used to find the optimal solution, and the
experimental results are shown in Figure 5.



Information 2023, 14, 185 13 of 15

Information 2023, 14, x FOR PEER REVIEW 13 of 15 
 

 

of the model gradually increases and reaches an optimum performance at b = 3. Figure 
5a,b show that setting larger a values and smaller b values allows the model to assign 
greater weight to important dependencies when calculating attention scores, which helps 
to improve classification accuracy. However, too large a values or too small b values may 
also lead to a degradation in model performance. This is due to the model focusing too 
much on important dependencies, which may lead to classification errors in some specific 
sentence types. For example, in the sentence “The staff should be more friendly.”, the ad-
jective “friendly” modifies the aspect word “staff” through the dependency nsubj, and the 
adverb “more” modifies the emotive word “friendly” through the dependency advmod. 
When a < 0.5 and b > 3, the aspectual word “staff” is predicted to be positive. However, 
since this sentence is a dummy, the aspectual word is negative. 

   
(a) Important dependency weights a (b) Other dependency weights b 

Figure 5. Performance of WGAT model on each dataset under different a and b. 

4.8. Visualisation of Attention Mechanisms 
WGAT makes the model focus more on the words that contribute more to the aspect 

words in the calculation of attention through dependencies. Here, we visualise the atten-
tion weights for the sentence “Great food but the service is dreadful!”. The attention 
weights for this sentence are shown in Figure 6. 

  
(a) Unweighted attention weight matrix (b) Weighted attention weight matrix 

Figure 6. Attention visualisation. 

As shown in the figure, it is possible for GAT to assign larger weights to unimportant 
words when calculating the attention of two nodes. For example, the attention weights 
calculated without relational weights in Figure 6a, where the aspect word “food” is 

Figure 5. Performance of WGAT model on each dataset under different a and b.

In Figure 5a, b = 3, and different values of a are set. The accuracy of the model increases
as the value of a decreases, and the model performance is optimal when a = 0.5, after which
the model performance stabilises and decreases as the value of a decreases. In Figure 5b,
a = 0.5, and different values of b are set. As the value of b increases, the accuracy of the
model gradually increases and reaches an optimum performance at b = 3. Figure 5a,b show
that setting larger a values and smaller b values allows the model to assign greater weight
to important dependencies when calculating attention scores, which helps to improve
classification accuracy. However, too large a values or too small b values may also lead
to a degradation in model performance. This is due to the model focusing too much on
important dependencies, which may lead to classification errors in some specific sentence
types. For example, in the sentence “The staff should be more friendly.”, the adjective
“friendly” modifies the aspect word “staff” through the dependency nsubj, and the adverb
“more” modifies the emotive word “friendly” through the dependency advmod. When
a < 0.5 and b > 3, the aspectual word “staff” is predicted to be positive. However, since this
sentence is a dummy, the aspectual word is negative.

4.8. Visualisation of Attention Mechanisms

WGAT makes the model focus more on the words that contribute more to the aspect
words in the calculation of attention through dependencies. Here, we visualise the attention
weights for the sentence “Great food but the service is dreadful!”. The attention weights
for this sentence are shown in Figure 6.
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As shown in the figure, it is possible for GAT to assign larger weights to unimportant
words when calculating the attention of two nodes. For example, the attention weights
calculated without relational weights in Figure 6a, where the aspect word “food” is assigned
a larger weight for “dreadful”, may cause the model to predict “food” as being negative,
affecting model accuracy. The addition of dependency weights in Figure 6b allows the
aspectual word “food” to focus more on “great” and the aspectual word “service” to
focus more on “dreadful”, reducing the interference of irrelevant words in the sentiment
classification of aspectual words. The example in the figure above shows that the weights
we set are better able to help the model find sentiment words corresponding to aspect
words during the training process.

5. Conclusions

In this paper, we proposed a graph attention network aspect-level sentiment analysis
model (WGAT) based on the weighting of dependencies. On the one hand, the influence of
different dependencies on sentiment classification is analysed, corresponding weights are
set for them, and the optimal weights are found through experiments. On the other hand,
the incorporation of relational weights into the graph attention network allows the model
to pay more attention to words that are more important to the aspectual sentiment and
to ignore words that have a negative impact on the outcome during the training process.
In addition, this paper achieved better results by using a BERT model pretrained on a
sentiment corpus for word embedding of text. According to comparative experiments on
three datasets, the WGAT model achieved the best results in terms of accuracy and F1
values compared to other baseline models, demonstrating the effectiveness of our approach.
We also analysed specific cases of this to show more visually how relational weighting
contributes to our task.

Although our model achieves better results, it is significantly less accurate than the
normal text when faced with abnormal text (e.g., Twitter dataset). In addition, the model
sometimes fails to correctly identify the sentiment in complex sentences such as virtual
speech, leading to errors in judgment. In the future, more in-depth syntactic analysis will
be conducted on more complex sentences to improve the prediction accuracy.
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23. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
24. Wang, K.; Shen, W.; Yang, Y.; Quan, X.; Wang, R. Relational Graph Attention Network for Aspect-based Sentiment Analysis. In

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 6–8 July 2020; pp. 3229–3238.
25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017; p. 30.

26. Zhang, D.; Huang, L.; Zhang, R.; Xue, H.; Lin, J.; Yao, L. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training
Model. J. Compt. Res. Dev. 2021, 58, 1385–1394.

27. de Marneffe, M.C.; Manning, C.D. Stanford Typed Dependencies Manual; Technical report; Stanford University: Stanford, CA,
USA, 2008.

28. Pontiki, M.; Galanis, D.; Pavlopoulos, J.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S. SemEval-2014 task 4: Aspect
based sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 23–24
August 2014; 24 August 2014; pp. 27–35.

29. Dong, L.; Wei, F.; Tan, C.; Tang, D.; Zhou, M.; Xu, K. Adaptive recursive neural network for target-dependent twitter sentiment
classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Maryland,
22–27 June 2014; Volume 2, pp. 49–54, Short papers.

30. Zhang, M.; Qian, T. Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis. In Empirical
Methods in Natural Language Processing; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 3540–3549.

31. Wang, G.; Li, H.; Qiu, Y.; Yu, B.; Liu, T. Aspect-based Sentiment Classification via Memory Graph Convolutional Network. J. Chin.
Inf. Process. 2021, 35, 98–106.

32. Zhu, L.; Zhu, X.; Guo, J.; Dietze, S. Exploring rich structure information for aspect-based sentiment classification. J. Intell. Inf. Syst.
2022, 60, 97–117. [CrossRef]

33. Liang, B.; Su, H.; Gui, L.; Cambria, E.; Xu, R. Aspect-based sentiment analysis via affective knowledge enhanced graph
convolutional networks. Knowl.-Based Syst. 2022, 235, 107643. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/app9163389
http://doi.org/10.1007/s10844-022-00729-1
http://doi.org/10.1016/j.knosys.2021.107643

	Introduction 
	Related Work 
	Methodology 
	Task Definition 
	Word Embedding Layer 
	Syntactic Analysis Layer 
	Graph Attention Network Layer 
	Emotional Classification Layer 

	Experiment 
	Dataset 
	Hyperparameter Setting 
	Evaluation Metrics 
	Comparison Models 
	Experiment Results 
	Ablation Studies 
	Effect of Initial Values of Weights 
	Visualisation of Attention Mechanisms 

	Conclusions 
	References

