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Abstract: The automatic recognition of CT (Computed Tomography) images of liver cancer is im-
portant for the diagnosis and treatment of early liver cancer. However, there are problems such as
single model structure and loss of pooling layer information when using a traditional convolutional
neural network to recognize CT images of liver cancer. Therefore, this paper proposes an efficient
method for liver CT image recognition based on the capsule network (CapsNet). Firstly, the liver
CT images are preprocessed, and in the process of image denoising, the traditional non-local mean
(NLM) denoising algorithm is optimized with a superpixel segmentation algorithm to better protect
the information of image edges. After that, CapsNet was used for image recognition for liver CT
images. The experimental results show that the average recognition rate of liver CT images reaches
92.9% when CapsNet is used, which is 5.3% higher than the traditional CNN model, indicating that
CapsNet has better recognition accuracy for liver CT images.
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1. Introduction

Liver cancer is currently the third leading cause of cancer death in men and the
seventh leading cause of cancer death in women worldwide. According to statistics from
related institutions, more than 700,000 people around the world die from liver cancer every
year [1]. Early detection and effective treatment of liver cancer are important ways to
increase the survival time of liver cancer patients. The CT examination has become one of
the main methods for liver cancer detection because of the minor damage that it causes
to the human body, its fast imaging, and its high accuracy. In the past, the processing of
CT images relied on experienced doctors to give their judgment. However, through this
method, the diagnosis will be affected by certain human uncertainties, which may cause
misdiagnosis and delay the optimal treatment time for the patient. With the development
of digital image processing technology [2,3] and pattern recognition technology [4] in recent
years, more researchers have begun to research the application of computer recognition
technology to CT images of liver cancer, achieving some results. Lee [5] used Gabor wavelet-
generated texture features and SVM to distinguish normal tissues, cysts, hemangiomas,
and carcinogenesis from CT images of liver cancer. Zhang [6] extracts the texture features
of liver images from three aspects: first-order statistical features; gray-scale co-occurrence
matrices; and gray-stroke matrices. Finally, the BP neural network designed by Zhang has a
recognition rate of 91.08% for primary liver cancer. Liu [7] designed two kinds of classifiers
for liver cancer identification through BP neural networks by extracting the texture and
shape features of CT images of liver cancer, achieving a final recognition rate of 85%. Li [8]
used the CNN model to identify liver tumors, ultimately also achieving relatively good
recognition results. Meanwhile, Krishan [9] proposed two improved algorithms to enhance
CT images before using SVM to classify liver CT images.

Based on the aforementioned references, past CT image recognition of liver cancer
generally required researchers to specially design classifiers, which was time-consuming
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and provided different recognition accuracy depending on the researchers . . . The emer-
gence of deep learning solves these aforementioned problems acceptably. Due to the
characteristics that it possesses, such as local connectivity, weight sharing, and pooling
operations, it allows for a significant reduction in the training network’s complexity and
training parameters when compared with traditional liver cancer CT image identification
methods [10,11]. However, the use of the CNN model to identify CT images of liver cancer
results in the partial loss of useful feature information when employing the maximum
pooling feature [12–14]. Furthermore, neurons are unable to characterize the spatial re-
lationship between features. Thus, when the liver image is recognized using the CNN
model, the overlapping of the images between the organs causes the deterioration of the
learning feature’s effect, thereby affecting recognition accuracy. As a new framework for
deep learning, CapsNet [15–22] encompasses many of the advantages of the CNN model.
As CapsNet converts the scalar output of neurons into a vector output, the spatial relation-
ship between liver tumor features can be well established by calculating the probability of
the length and direction of the output vector. Therefore, this paper proposes a CT image
recognition method based on the combination of an improved NLM and capsule networks.
Firstly, the acquired liver images were pretreated. During the process of denoising the
liver CT images, we improved strategic selection similar to the window of a traditional
non-local mean denoising algorithm by introducing superpixel segmentation to protect the
information on the edge of the image. Lastly, capsules were used to identify liver cancer in
the CT images. The experiment’s results illustrate the effectiveness of this method.

2. Image Preprocessing

In the preliminary stage of liver CT image shooting and transmission, noise from the
external environment will affect the image, so before recognition can be carried out on
the image, it must be denoised to enhance the effect of recognition [23]. There are many
traditional denoising methods, one of which is NLM. This is a denoising method based
on the concept of image self-similarity [24–36]. Its main principle is that any one pixel is
central to the whole of its similar neighborhood. The pixel value of the target in the image
can then be measured against the weighted average of all the other pixels. Setting p(i) and
q(i) as the target pixels before denoising and after denoising, respectively. With i as the
current center’s pixel index, the relationship of pixel points before and after denoising can
be expressed by Formula (1).

q(i) = ∑
j∈I

ω(i, j)p(i) (1)

where I is the collection of the central pixel point i. ω(i,j) is a weight function used to
measure the similarity between pixel points i and j. Its definition is shown in Formula (2).

ω(i, j) =
1

z(i)
e
‖N[p]i−N[p]j‖

2

h2 (2)

N[p]i represents the window with index i in a similar window. z(i) is the normal-
ized factor. Meanwhile, H is the attenuation function of the weight function, its value is
dependent on the noise intensity.

Since NLM can better preserve image details while denoising, we can use it to denoise
liver CT images. The choice of a similar window size in the traditional NLM algorithm will
affect the filtering effect. In the past, the choice of similar windows was often determined
by experience, but this approach has great uncertainty. If the size of similar windows is
too large, the denoising performance will be reduced and the computational complexity
will be increased. If a similar window is too small, the color and structural features of the
domain pixels are not well represented. To denoise the liver image effectively, we have
improved the selection strategy of the similar window of the traditional NLM denoising
method by introducing superpixel segmentation.
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3. NLM Liver CT Image Denoising Method Based on SLIC Algorithm

The SLIC segmentation algorithm was used to segment the liver CT image that con-
tained noise with superpixel segmentation and a few image blocks that contained internal
similarities from the original image was created, obtaining a textured outline of the image
containing noise. The central target pixel to be restored, p(i) is selected to judge whether the
center pixel point is located inside the superpixel segmentation block or on the outer line
of it according to the texture contour map. As shown in Figure 1, p1 and p2 represent the
central pixel points located at the edge of the superpixel and the inner pixel respectively.
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Figure 1. Central pixel located at the edge and inside of the superpixel.

Different similar window selection strategies and sizes are adopted according to the
structural characteristics of the central pixel’s position. Finally, the calculation formula
of Formula (3) is used to calculate the similarity between each similar window and the
central pixel block. Formula (2) calculates the weight of each similar block, and Formula (1)
averages the similar Windows to obtain the pixel value q(i) after denoising.

E‖p(i)− p(j)‖2
2,a = ‖p(i)− p(j)‖2

2,a + 2σ2 (3)

‖p(i)− p(j)‖2
2,a is the gaussian weighted Euclidean distance representing p(i) and

q(i). a is the standard deviation of the gaussian kernel, a > 0. The flow chart of the entire
algorithm is shown in Figure 2.

In the selection of the denoising parameters, we considered that a too large a window
will result in too long a running time, thus we decided to use a 13 × 13-pixel size in
consideration of time efficiency and set the smoothing parameter to 10. To more accurately
measure similarity, when the central pixel was within a flat area, we selected a similar
window of 7 × 7 and when the central pixel was on a contoured, outer line, we selected
a similar window of 5 × 5. Figure 3 shows some CT images of the liver before and after
denoising, respectively.
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By comparing the CT images before and after denoising, the information at the edges
of the images is well preserved compared with that before denoising, but the specific noise
reduction effect cannot be observed by the human eye because the image size is small
and the noise reduction effect exists at the pixel level. We verify the effectiveness of noise
reduction by image noise reduction index. In addition, since the obtained liver CT images
were of different sizes, they were all converted to 32 × 32 size after denoising for the
convenience of subsequent operations.

PSNR (Peak Signal-to-Noise Ratio), is used to measure the difference between two images.

PSNR = 10× lg(
MaxValue2

MSE
) (4)

where MSE is the mean square error of the two images; MaxValue is the maximum value
that can be obtained from the image pixels. And SSIM (Structural Similarity) assumes that
the human eye will extract structured information from images, which is more consistent
with human eye visual perception than the traditional approach.

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (5)

where l(x,y) denotes the luminance share, c(x,y) denotes the contrast share, and s(x,y)
denotes the structure share.

As can be seen from Table 1, the performance of this noise reduction algorithm is good,
thanks to the combination of a realistic noise model and a realistic image. The PSNR/SSIM
of this paper’s noise reduction algorithm is excellent for both PSNR and SSIM, and it
performs well in terms of maintaining and balancing noise.

Table 1. Effect of Denoise.

a b c d

PSNR 27.39 29.86 27.46 27.19
SSIM 93.70% 89.51% 94.46% 94.96%

4. Liver Cancer Image Recognition

After the pretreatment of the liver cancer image is completed, it needs to be classified
and identified. At present, existing image classification methods include recognition
methods based on support vector machines and convolutional neural networks. This paper
principally introduces the identification method based on capsule networks.

4.1. CapsNet

CapsNet [13] is a new deep-learning network framework proposed by Hinton. Similar
to the traditional CNN model, CapsNet also extracts local features of liver images through
convolutional layers. The difference is that CapsNet adds the Primary Caps layer after the
convolutional layer, in which each local feature is converted to a vector containing spatial
information and then imported into the next layer of capsules. Finally, the classification and
reconstruction of the liver cancer images were achieved by fully connecting three layers.
The entire identification process is shown in Figure 4.
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In the selection of the activation function, unlike the activation functions ReLU and
sigmoid in the convolutional neural network, the capsule network introduces a new non-
linear activation function squashing function to process the received vector to characterize
the probability that the current entity exists in the current input. It not only scales the total
input vector to a range of (0, 1), but also makes the direction of the input vector Sj and the
output vector Vj consistent. The formula is as follows:

Vj =
‖Sj‖2

1 + ‖Sj‖2 ·
Sj

‖Sj‖
(6)

Vj represents the total output vector of j capsules, and Sj represents the total input
vector of j capsules. The total output length of the squashing function represents the
probability that the capsule will detect the specified feature.

On a hierarchical structure, the CapsNet covers the detected area by creating a higher-
level capsule node. The active low-level capsule obtains the output vector by changing
the scalar weight, before multiplying the weight and then sending the product to the
high-level capsule; the high-level capsule then uses the received product as the input
vector. The propagation formula of low-level capsules and high-rise capsules is shown in
Equations (7) and (8).

Sj = ∑
i

Cij x̂i|j (7)

ûj|i = wijui (8)

Cij represents the weight between each lower layer capsule and its corresponding
higher layer capsule, as determined by dynamic routing iterative selection, this weight is a
non-negative scalar. For each lower layer capsule i, all weights Cij are determined by the
softmax function in the dynamic routing algorithm employed. Its formula is as follows:

Cij =
exp(bij)

∑k exp(bik)
(9)

bij is a given temporary variable.
In terms of propagation mode, the dynamic routing algorithm between capsules

adopts a forward propagation algorithm. The specific process is as follows:
Step 1: Determine the parameters of the algorithm ûij and iteration times, r. To avoid

excessive fitting in practical applications, an appropriate r value needs to be selected, the
number of iterations selected in this paper is 3.

Step 2: At the beginning of training, a temporary variable Cij is first defined and
initialized to 0. In the iterative process of the algorithm, bij will be updated continuously.
After iterative acceptance, the value of bij is saved to Cij to update the routing coefficient
between the lower capsule layer and the higher capsule layer.

Step 3: Iterate through the number of iterations of dynamic routing. In this process,
the temporary variable bij, is first put into the softmax function to calculate the initial value
of all low-level Cij capsules. Since bij is initialized to zero in the initialization process, all
routing coefficients of Cij are equal when the weight is updated for the first time. In this
process, all weights are guaranteed to be greater than or equal to 0, and the sum of all the
weights of Cij is 1. Next, the output vector of all lower-layer capsules is determined with
Sj. Next, the set output vector direction will remain unchanged, and the output vector’s
modulus is scaled to within 1 neighborhood, this scaling process is determined by nonlinear
function squashing. The resulting vector, Vj is the output of all high-level capsules. Finally,
the essence of the dynamic routing algorithm between capsules is used to update the
weights, primarily by obtaining the scalar product from the output, Vj of the high-level
capsule, and the input, ûij of the lower-layer capsule, before summing up the old weights
to obtain new weights, the process of weight adjustment is to repeat the iteration r times.
When the iteration is over, the low-level capsule determines its target high-level capsule
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and passes the output to the corresponding high-level capsule. By performing the above
algorithm to train the capsule network, the scalar product of the vector is continuously
used to update the routing coefficient, forward conduction can then be advanced to the
higher layer network.

Similarly, to the convolutional neural network, the capsule network also needs to
perform loss assessment to better improve the reconstruction speed and accuracy of the
liver image. The loss function in the capsule network is similar to that of the SVM. When
the input vector is classified and predicted using the length of the output vector in the
digital capsule, the effect of the classifier will be better concurrently with a smaller loss
value. Conversely, the classification effect is worse. The loss function used in the digital
capsule layer is shown in Formula (10):

Lc = Tcmax(0, m+ − ‖vc‖)
2
+ λ(1− Tc)max(0, ‖vc‖ −m−)2 (10)

Lc represents the loss value of a single capsule, and λ is generally 0.5. Where Tc = 1 if
a digit of class k is present 3 and m+ = 0.9 and m− = 0.1. The λ down-weighting of the loss
for absent digit classes stops the initial learning from shrinking the lengths of the activity
vectors of all the digit capsules. So, we set λ = 0.5. The total loss should be calculated by
adding up the loss values of all individual capsules.

4.2. Network Structure

The capsule network structure used in this paper is based on the original capsule
network proposed by Hinton, which can be divided into two parts: encoder and decoder.
The encoder is primarily composed of convolution layers, a main capsule layer, and a
digital capsule layer. The decoder consists of three fully connected layers. The structure is
shown in Figure 5.

Information 2023, 14, x FOR PEER REVIEW 7 of 11 
 

 

When the iteration is over, the low-level capsule determines its target high-level capsule 

and passes the output to the corresponding high-level capsule. By performing the above 

algorithm to train the capsule network, the scalar product of the vector is continuously 

used to update the routing coefficient, forward conduction can then be advanced to the 

higher layer network. 

Similarly, to the convolutional neural network, the capsule network also needs to 

perform loss assessment to better improve the reconstruction speed and accuracy of the 

liver image. The loss function in the capsule network is similar to that of the SVM. When 

the input vector is classified and predicted using the length of the output vector in the 

digital capsule, the effect of the classifier will be better concurrently with a smaller loss 

value. Conversely, the classification effect is worse. The loss function used in the digital 

capsule layer is shown in Formula (10): 

( , ) ( ) ( , )2 2

c c c c c
L T max 0 m v 1 T max 0 v m+ −= − + − − , (10) 

Lc represents the loss value of a single capsule, and λ is generally 0.5. Where Tc = 1 if 

a digit of class k is present 3 and m+ = 0.9 and m− = 0.1. The λ down-weighting of the loss 

for absent digit classes stops the initial learning from shrinking the lengths of the activity 

vectors of all the digit capsules. So, we set λ = 0.5. The total loss should be calculated by 

adding up the loss values of all individual capsules. 

4.2. Network Structure 

The capsule network structure used in this paper is based on the original capsule 

network proposed by Hinton, which can be divided into two parts: encoder and decoder. 

The encoder is primarily composed of convolution layers, a main capsule layer, and a 

digital capsule layer. The decoder consists of three fully connected layers. The structure is 

shown in Figure 5. 

 

Figure 5. The structure diagram of the capsule network. 

The first layer is the input layer, in which the CT image size of the liver is converted 

to 32 × 32 and binary data is input into the convolution layer. The second layer is the 

conventional convolution layer, this layer has 8 feature planes and 256 convolution veri-

fication images for feature extraction. The third layer is the main capsule layer, and the 

input of the main capsule layer is the convolution layer’s output after excitation function 

processing has been carried out. 32 capsules are used in this layer, each containing 8 par-

allel convolution units, sharing the weight, wij. The main capsule layer aggregates the fea-

tures of the convolutional layer and determines the relative positional relationship of the 

individual features. During the process of selecting a convolution kernel, what must be 

considered is that if the convolution kernel is too small then the noise and the features will 

be enhanced together, and if the convolution kernel is too large, the quantity requiring 

calculation will be too great. To obtain a better recognition effect, during the experiment, 

we set the convolution kernel size of the conventional convolution layer and the main 

capsule layer as 8 × 8, 9 × 9, and 10 × 10 respectively before conducting a comparative 

experiment to explore the influence of convolution kernel size on the effect of liver image 

Figure 5. The structure diagram of the capsule network.

The first layer is the input layer, in which the CT image size of the liver is converted to
32 × 32 and binary data is input into the convolution layer. The second layer is the conven-
tional convolution layer, this layer has 8 feature planes and 256 convolution verification
images for feature extraction. The third layer is the main capsule layer, and the input of the
main capsule layer is the convolution layer’s output after excitation function processing has
been carried out. 32 capsules are used in this layer, each containing 8 parallel convolution
units, sharing the weight, wij. The main capsule layer aggregates the features of the convo-
lutional layer and determines the relative positional relationship of the individual features.
During the process of selecting a convolution kernel, what must be considered is that if the
convolution kernel is too small then the noise and the features will be enhanced together,
and if the convolution kernel is too large, the quantity requiring calculation will be too great.
To obtain a better recognition effect, during the experiment, we set the convolution kernel
size of the conventional convolution layer and the main capsule layer as 8× 8, 9× 9, and 10
× 10 respectively before conducting a comparative experiment to explore the influence of
convolution kernel size on the effect of liver image recognition. The fourth layer is a digital
capsule layer. There are 2 capsules on this layer, each of which is a 16-dimensional vector.
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A dynamic routing algorithm is required between the primary capsule layer and the digital
capsule layer to obtain a relationship between all of the capsules in the primary capsule
layer and the capsules in the digital capsule layer that represent cancerous conditions in
the liver. Through this method, all local features can be made to aid in characterizing the
capsules in the digital capsule layer. In addition, for the output of the digital capsule layer,
a function of introducing the loss function of Equation (8) is required to perform a loss
assessment on the accuracy of the dynamic routing algorithm employed by the digital
capsule layer. When the loss value is too large, the weight and routing parameters need to
be adjusted, and then trained again to produce a better model.

5. Experiment
5.1. Experiment Preparation

The computer used in this article is a laptop with an Intel i5-CPU, 16GB of RAM,
and a gtx1060-gpu. The software used is the Windows operating system with TensorFlow
installed, which is used as a framework for deep learning. The data set used contained
1500 CT images of the liver pretreated by the improved algorithm above, with 750 images
containing liver cancer, and 705 images containing a healthy liver. These liver datasets were
collected from the Internet, most of them from LiTS—Liver Tumor Segmentation Challenge,
https://competitions.codalab.org/competitions/17094 (accessed on 4 August 2017), and
processed to obtain the final dataset for this paper.

5.2. Analysis of Experimental Results

The convolution kernel size is set to 8 × 8, 9 × 9, or 10 × 10, with the convolution step
set to 2. The model is then trained according to the network structure shown in Figure 6.
After 3 iterations of routing and 8000 epochs. As shown in Figure 6 the relationship between
the average recognition rate and the size of the convolution kernel was finally obtained.
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Figure 6. Average recognition rate under different convolution kernel sizes.

From Figure 6, we can see that the average recognition rate when the convolution
kernel size is 8 × 8 is lower than 9 × 9 and 10 × 10. However, the average recognition
accuracy at 9 × 9 and 10 × 10 is not much different. For the calculation efficiency, the
convolution kernel we finally chose was 9×9.

https://competitions.codalab.org/competitions/17094
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To compare CapsNet with the traditional CNN model, we used the traditional CNN
model to train CT images of the liver 8000 epochs., where the CNN model selects a densely
linked five-layer convolution as the control group for CapsNet.

Compared to CapsNet, the traditional CNN model’s training is relatively stable. After
the number of iterations reached 2000, it basically stabilized and the training accuracy
improved relatively slowly. By the end, the training accuracy had reached 87.6%. The
relationship between the training accuracy of CapsNet and the number of iterations is not
quite the same as that of the traditional CNN model. When CapsNet reaches 2000 iterations,
the training accuracy starts to reach 90% and the loss value becomes as low as 0.2. As the
number of iterations increases, the degree of oscillation gradually decreases and stabilizes.
Finally, it converges to 92.9%, and the loss value eventually converges with it. Therefore,
from the analysis of the variation of training accuracy in relation to the number of iterations,
the use of CapsNet produced better recognition results for liver CT images.

To test and train the effect of the model on this basis, the experiment verified the
accuracy of liver cancer recognition on 300 test sets and obtained two classification result
tables, as shown in Tables 2 and 3, respectively.

Table 2. CapsNet test results.

Class Samples Identify Precision Recall

Normal 164 149 90.8% 95.3%
Cancer 136 125 91.9% 96.7%

Table 3. Traditional CNN model test results.

Class Samples Identify Precision Recall

Normal 164 122 74.3% 84.7%
Cancer 136 102 75.0% 85.9%

As can be seen from Tables 2 and 3, CapsNet achieved an average recognition rate
of 91.4% for the test set of liver CT images, which is close to the training accuracy, and
improved the recall rate to around 96%. However, the traditional CNN model consisting
of a densely linked five-layer convolution has an average recognition rate of only 74.6%,
which differs significantly from the training results and has a recall rate of only 85%. This
suggests that CapsNet has a better generalization capability than the traditional CNN
model and is thus able to better recognize liver CT images.

6. Conclusions

Some characteristic information is neglected in the process of maximum pooling when
using a convolutional neural network to recognize CT images. However, the capsule net-
work’s spatial characteristics can better retain the feature information. Therefore, this paper
proposes a capsule network-based method for liver cancer identification. Concurrently, we
introduced a superpixel segmentation algorithm to improve the traditional NLM algorithm.
To protect the information on the edge of the image better in the process of denoising the
original image. Finally, the CT images of the liver were identified by a capsule network
and the results were compared with a convolutional neural network. Ultimately, the CT
images of the liver were identified by the capsule network and the results were compared
with the convolutional neural network. In the end, the training accuracy of CT images of
the liver by the capsule network and traditional CNN model reached 92.6% and 87.6%,
respectively. Afterward, 300 images were randomly tested in our test set. In the end, the
average recognition rates of the CapsNet and traditional CNN models were 91.4% and
74.6%, respectively, and the CapsNet improved the model recall to 95% compared to the
recall rate of the traditional CNN model, which was a significant improvement. So, by
comparing the test accuracy with the training accuracy, we found that CapsNet has better
recognition results in the task of identifying CT images of liver cancer.
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