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Abstract: In recent years, smart grids have integrated information and communication technologies
into power networks, which brings new network security issues. Among the existing cyberattacks,
the false data injection attack (FDIA) compromises state estimation in smart grids by injecting false
data into the meter measurements, which adversely affects the smart grids. Current studies on FDIAs
mainly focus on the detection of its existence, but there are few studies on its localization. Most attack
localization methods have difficulty locating the specific bus or line that is under attack quickly and
accurately, have high computational complexity and are difficult to apply to large power networks.
Therefore, this paper proposes a localization method for FDIAs that is based on a convolutional
neural network and optimized with a sparrow search algorithm (SSA–CNN). Based on the physical
meaning of measurement vectors, the proposed method can precisely locate a specific bus or line
with relatively low computational complexity. To address the difficulty of selecting hyperparameters
in the CNN, which leads to the degradation of localization accuracy, a SSA is used to optimize
the hyperparameters of the CNN so that the hyperparameters are optimal when using the model
for localization. Finally, simulation experiments are conducted on IEEE14-bus and IEEE118-bus
test systems, and the simulation results show that the method proposed in this paper has a high
localization accuracy and can largely reduce the false-alarm rate.

Keywords: false data injection attack (FDIA); localization; sparrow search algorithm; convolutional
neural network

1. Introduction

In recent years, the rapid development of computer, communication and automatic
control technologies has led to the gradual integration of information technology and
physical systems, resulting in the emergence of cyber–physical systems (CPSs). As one of
the typical CPSs, smart grids are more intelligent and efficient than the traditional power
systems. The distributed interconnection of the power system equipment is realized with
the help of an information system, and a new energy architecture is built [1]. However,
with the continuous integration of physical systems and information technology, smart
grids are subjected to an increasing number of network attacks that not only damage the
information system itself but may also affect the operation of the physical systems.

The false data injection attack was first proposed in 2009; it is a data integrity network
attack, and its main purpose is to compromise the integrity and consistency of data [2,3]. In
power systems, attackers add attack vectors to the measurement data through certain paths,
and the carefully designed attack vectors are able to evade the bad data detection (BDD)
algorithms in the energy management system (EMS). Since the state estimation module
of the smart grid is in the supervisory control and data acquisition (SCADA) system, the
attack vectors influence the state estimation by utilizing the tampered measurement data to
undermine the security and stability of the power systems for illegal profit.

The impact of FDIAs on smart grids mainly lies in economy and stability. Through
a well-designed FDIA, attackers can seriously affect the normal operation of the power
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market, especially the marginal price of position (LMP). Attackers manipulate the LMP on
a large scale by tampering with real-time measurements [4,5]. Attackers manipulate the
data in the power grids or its own electricity meters with the FDIA, thereby reducing the
electricity cost, obtaining profits in a disguised way and destroying the normal operation of
the power market [6]. Through a FDIA, attackers can disrupt the stable operation of a smart
grid, causing great losses to the country and people. In 2015, the SCADA system in Ukraine
experienced a cyberattack, and the hackers caused widespread and prolonged power
outages throughout Ukraine by malicious attacks, affecting the normal life of millions of
people, which was the first case of a large-scale power outage caused by the failure of the
physical grid due to a cyberattack [7].

A FDIA has the characteristics of good concealment, high flexibility, wide attack
range and strong destructive power, so many researchers have conducted research on
FDIAs; however, most of the research has only focused on the detection of FDIAs, ignoring
the problem of localization for FDIAs [8–13]. In order to reduce the impact of a FDIA
on a smart grid and prevent an invisible FDIA that is lurking in a power system from
causing secondary damage to the system or power equipment, it becomes an urgent
need to accurately locate the attacked sensor bus or line after detecting a FDIA. In [14],
the minimum variance untraced Kalman filter (MVUKF) and the deviation of WLS were
used for the detection of a FDIA. The power system was divided into several subsystems,
and the hypothesis test was applied to each subsystem for the localization of the FDIA.
The subsystems with the FDIA were further divided into smaller subsystems, and the
localization was implemented using the same method. This method has two shortcomings:
first, the subsystem division and the threshold setting are difficult, and the steps are
complicated, which make it difficult to apply to large systems; and second, the localization
of a FDIA using this method is only able to locate the subsystem, not the specific buses
or lines being attacked. Interval observers were designed in [15,16] for state estimation
of the power system to achieve global detection and used a logical localization matrix for
the localization and isolation of the FDIA. However, the simulation only compared the
proposed interval observer with the ordinary Kalman filter, which cannot illustrate the
advantages of the designed observer. The logical localization matrix in the paper was based
on the idea of partitioning for localization, and the simulation was based on a five-bus
subsystem, which required four steps to locate the specific buses or lines being attacked;
moreover, the calculation was complicated and not applicable to large power systems. An
adaptive hierarchical network attack detection and localization framework was proposed
in [17] for distributed active power distribution systems. The author used an improved
grid-partitioning method based on spectral clustering to divide a large power network into
several sub-regions and then used a method based on signal anomaly strength to detect
the localization of network attacks. A specific score was evaluated for all possible attacked
localizations within the sub-regions, and the region with the highest score was identified as
being attacked; however, sometimes this method only determined the range rather than
the specific buss or lines.

In practice, complex power systems are the majority, so the observer-based localization
methods for FDIAs have the problems of difficult threshold setting and high computational
complexity. The data-driven approaches do not have those problems because they do not
require a system model and have very excellent performance for the detection and localiza-
tion of FDIAs based on data sets [18]. Interaction variables and LSTM were used in [19]
for the detection and localization of FDIAs. However, the paper used a five-bus system
simulation, which limited the application of this method to large-scale power systems,
and the LSTM model was built for each quantity measurement in the paper, which would
greatly increase the complexity. A fault and attack localization and classification system
was proposed in [20] to classify and locate cyberattacks on devices and communication
networks. A multi-label classifier based on DNN was used to identify true data and false
data. Multiple types of faults and network attacks were classified, and it was able to identify
10 faults and eight attacks and locate them accurately. However, in the simulation, there
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were only 209 data points for each attack type. Compared to detecting FDIAs, identifying
attacked areas has been less studied. Ref. [21] proposed a graph neural network (GNN)
model based on an autoregressive moving average type graph filter. The authors treated
the localization of the FDIA as a multi-label classification task and realized the classification
using the proposed model. In [22], autoencoders were used to detect large-scale FDIAs. The
authors generated normal volume measurement vectors based on generative adversarial
networks and then compared the difference between the attacked vectors and normal
vectors with an algorithm to achieve localization. The method proposed in the article had a
high detection rate, but the localization accuracy was low and prone to false localization.
Hoffding adaptive trees were used in [23] to classify contingencies, such as equipment
failures and network attacks, in power systems with high classification accuracy.

Most of the above methods have high complexity and have performance that is limited
by the size of the test systems; in addition, the selection of hyperparameters in the deep
learning-based localization methods is difficult, and improper selection would lead to the
degradation of localization accuracy. In this paper, the localization problem of FDIAs in
smart grids is considered as a multi-label classification problem, and we use a convolutional
neural network (CNN) as a multi-label classifier to distinguish the attacked measurements
from normal measurements. At the same time, considering the problem of poor results
obtained by manually selecting neural network hyperparameters, this paper proposes
a method that uses a convolutional neural network optimized with a sparrow search
algorithm (SSA–CNN) for localization of FDIAs in smart grids. The structure of this paper
is organized as follows. First, the models of power systems and FDIAs are analyzed.
Second, the sparrow search algorithm and convolutional neural network are introduced,
and the research of the localization of FDIAs in smart grids is conducted. Finally, simulation
experiments are conducted in IEEE14-bus and IEEE118-bus test systems to demonstrate
the effectiveness and accuracy of the proposed method.

The contributions of this paper are outlined as follows:

1. A data-driven localization method for FDIAs in smart grids is proposed, which uses a
CNN classifier to locate FDIAs and the attacked buses and lines.

2. A novel CNN structure with measurement vectors as input and classification vectors
as output is designed. A SSA is used to optimize multiple parameters to obtain the
CNN model with optimal localization effect. At the same time, the CNN model
will change according to the different optimization results and thus improve the
localization accuracy.

3. To the best of our knowledge, this article is the first to develop the SSA–CNN to
locate FDIAs in smart grids. The proposed method is verified on the measurement
data set containing invisible FDIAs and compared with other advanced localization
methods for FDIAs. The results show that the proposed method has the highest
localization accuracy.

2. Models
2.1. Power System Model

When the network topology and various parameters of the power system are certain,
the measurement equation based on AC nonlinearity can be written as

z = h(x) + v (1)

where z and x denote the measurement vector and state vector of the power system,
respectively, v denotes the measurement noise, and h(x) denotes the measurement function.

The measurement vector z is obtained from the sensor as shown in the equation

z = (Pi, Qi, Pij, Qij)
T (2)

where Pi and Qi denote the active power and reactive power at bus i, respectively, and Pij
and Qij denote the active current and reactive current of branch ij, respectively.
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The state vector x represents the real-time state of the power system and consists of the
voltage magnitude of each bus and voltage phase angle of each bus excluding the balance
bus as shown in the equation

x = (vi, θi)
T (3)

where vi denotes the voltage magnitude at bus i, and θ denotes the voltage phase angle at
the bus i (the balanced bus voltage phase angle is 0).

The measurement function h(x) represents the nonlinear relationship between x and
z, whose exact form is determined with the grid structure and linear parameters and is
calculated from the active/reactive power, active/reactive currents and voltage in the
electrical line topology [24], which is as follows

h(x) =


Pi(vi, vj, θi, θj)
Qi(vi, vj, θi, θj)
Pij(vi, vj, θi, θj)
Qij(vi, vj, θi, θj)

vi

 (4)

The specific expressions of the items in h(x) are shown as

Pi(vi, vj, θi, θj) = ∑ vivj(Gij cos θij + Bij sin θij) (5)

Qi(vi, vj, θi, θj) = ∑ vivj(Gij sin θij − Bij cos θij) (6)

Pij(vi, vj, θi, θj) = v2
i gij − vivj(gij cos θij + bij sin θij) (7)

Qij(vi, vj, θi, θj) = −v2
i (bij + yc)− vivj(gij sin θij − bij cos θij) (8)

where θij = θi − θj denotes the phase angle difference between bus i and bus j; Gij denotes
the real part of the element in row i, column j of the conductance matrix; Bij denotes the
imaginary part of the element in row i, column j of the conductance matrix; gij denotes the
conductance of the branch ij; bij denotes the conductance of the branch ij; and yc denotes
the line to ground conductance.

2.2. False Data Injection Attack Model

In real power grids, bad data detection (BDD) algorithms are used to detect sampling
errors on the measurement instruments. The traditional BDD algorithms use the largest
normalized residual (LNR) test hypothesis to detect bad data by computing the 2-parametric
number of measurement error quantities. When the state vectors are independent of each
other, the measurement vectors conform to a normal distribution, and the residuals obey
the chi-square distribution, then the BDD algorithms can be formulated as

‖r‖ = ‖z− h(x)‖ < ε (9)

where ε is the detection threshold of the BDD algorithm.
Since the premise of a false data injection attack on the power system is that the

attacker knows the topology and relevant data of the network, the attacker modifies the
measurement data of the important buses to cause the state estimation results to deviate
from the true value. Therefore, it is assumed that the attacker’s modified measurement
vector is za, which satisfies the equation

za = z + a (10)

where a denotes the attack vector carefully designed by the attacker with the same di-
mensionality as the measurement vector, which contains non-zero elements, indicating
erroneous data that can tamper with the state volume using the state estimation process.
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Since the state vector after the state estimation can be tampered with using false data,
let the state vector after the false data attack be x∗, which satisfies the equation

x∗ = x + c (11)

where c denotes the difference between the original state vector and the tampered state vector.
The conventional bad data detection algorithms can detect the bad data in the volume

measurement, and the bad data are the deviations from the normal data that are not
generated by human factors but by the noise generated by the sensor acquisition, data
transmission and other processes. When the attacked measurement vector is detected with
the BDD algorithms, we can obtain

‖ra‖ = ‖za − h(x)‖ = ‖z + a− h(x∗)‖ = ‖z + a− h(x + c)‖ (12)

The common FDIA cannot evade the BDD algorithms of smart grids, and this kind of
FDIA is called a “random FDIA”. With the development of technology, there is a new kind
of FDIA whose attack vector is specially constructed to evade the residual test of the BDD
algorithms; this kind of FDIA is called an “invisible FDIA”. When the attacker constructs the
attack vector as a = h(x + c)− h(x), the residual detection expression can be obtained as

‖ra‖ = ‖za − h(x)‖ = ‖z + a− h(x + c)‖ = ‖z− h(x)‖ = ‖r‖ (13)

In this case, the residual test results before and after the attack are the same, and the
constructed attack vector is able to evade the BDD algorithms [25].

3. Localization of a False Data Injection Attack Based on SSA–CNN

A CNN is usually used to classify images, and its ability to better preserve the semantic
structure of images renders the classification results more accurate [26]. The volume measure-
ment data of power systems are one-dimensional, time-series data, and using CNN classifiers
can identify the differences between the attacked measurements and normal measurements,
which allows accurate localization. The accuracy of localization using a CNN is closely
related to the hyperparameter values of the CNN, which are usually selected manually, but
this cannot guarantee the accuracy of the localization results. A SSA has great advantages
over other optimization algorithms in terms of convergence, merit-seeking ability and sta-
bility [27]; therefore, in this paper, a SSA is used to optimize the CNN to obtain the optimal
hyperparameters and thus improve the accuracy of the localization method.

3.1. The CNN Model

A typical CNN model consists of an input layer, several convolutional layers, several
pooling layers, a flatten layer, a fully connected layer and an output layer. The filter of the
convolutional layer performs feature extraction with sliding steps and outputs high-level
features to the fully connected layer after processing by the pooling and flattening layers to
achieve regression prediction or classification.

Since the power system volume measurements are time-series data, this paper uses a
one-dimensional convolutional layer. Figure 1 shows the CNN structure used in this paper,
which is divided into six parts as follows:

(1) Input layer
The input data consists of the power system measurement vector z, which is a one-

dimensional column vector.
(2) Convolutional layer
The feature extraction of input measurement is performed by the convolutional layer,

and the process can be expressed as

xj
k = f (

N

∑
i=1

(xj−1
i,k ∗W j

i,k) + bj
k) (14)
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where xj
k denotes the output of the convolutional layer j, N denotes the number of vectors

of the current convolutional layer, xj−1
i,k denotes the input of the current convolutional layer,

W j
i,k denotes the weight of each input, and bj

k denotes the bias.
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The activation function of the convolutional layer is the rectified linear unit (ReLU).
The reasons are as follows:

(1) Using a function, such as sigmoid, is computationally intensive, while using ReLU
saves a significant amount of computational effort.

(2) For deep networks, when the sigmoid function is backpropagated, the gradient will
easily disappear, resulting in training failure of the deep network.

(3) ReLU causes the output of some neurons to be 0. This reduces the interdependence of
the parameters, which alleviates the overfitting problem.

The expression of the ReLU activation function is shown as

f (x) = max(0, x) (15)

(3) Pooling layer
In this paper, the maximum pooling layer can be used to extract the high-level features

of the sequence and reduce the computational effort; the maximum value used is the output

x̂j
k = max(xj

k, . . . , xj
k+r−1) (16)

where x̂j
k denotes the maximum value in vector xj

k to xj
k+r−1, and r denotes the step size of

the pooling layer.
(4) Flatten layer
The flatten layer integrates the feature vectors processed by the convolutional layer

and the maximum pooling layer and transports them to the fully connected layer, which
acts as a takeover.

(5) Fully connected layer
The fully connected layer uses the sigmoid function with the equation

f (x) =
1

1 + exp(−x)
(17)

The sigmoid function maps the output to the interval between (0, 1), enabling the
output to be used for a binary classification task with smooth, easy-to-derive characteristics.

(6) Output layer
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The measurement vector z passes through the whole convolutional neural network,
turning into the output classification vector yk. Since the sigmoid function is used in the
fully connected layer, the elements in the classification vector yk are mapped to the interval
(0, 1). At this point, each element in yk is classified as 0 or 1 with the logical judgment
formula as

yi
k =

{
0 yi

k ≤ ε

1 yi
k > ε

(18)

where yi
k denotes the first element of the classification vector yk, and ε denotes the prede-

fined threshold value.

3.2. Sparrow Search Algorithm

A sparrow search algorithm is proposed based on the foraging behavior of sparrows,
which can be divided into two categories of individual sparrows: explorers and followers.
According to [28], there are six rules of a SSA.

(1) In the whole population, explorers are energy-rich and are responsible for search-
ing areas with sufficient food and providing foraging areas and directions for fol-
lowers. The high-energy reserve in the algorithm is related to the fitness value of
individual sparrows.

(2) The individual sparrows will send an alert signal when they find natural enemies
(predators) and, when the alert value is greater than the safe value, the explorers and
the followers will enter the safe area to forage.

(3) The identities of the explorers and followers can be interchanged, but the propor-
tion of individual sparrows in the whole population will not change between the
two identities.

(4) Sparrows with higher energy reserves will act as explorers. In order to obtain more
energy, the lower energy followers may fly to other places to forage for food.

(5) During foraging, the followers will always be able to follow the explorers with higher
energy reserves to forage. In order to improve their predation rate, they will spy on
the explorers and thus compete for more resources.

(6) When there is a threat, the sparrows at the edge of the group will move to the safe
area, while the sparrows in the middle of the group will move randomly.

In the simulation experiments, virtual sparrows are needed for the food search, and
the population of sparrows can be represented as

X =


x1

1 x2
1 · · · xd

1
x1

2 x2
2 · · · xd

2
· · · · · · · · · · · ·
x1

n x2
n · · · xd

n

 (19)

where X denotes the sparrow population; x denotes the individual sparrow; d denotes the
dimension of the population, numerically the same as the CNN parameters to be optimized;
and n denotes the number of sparrows.

The fitness value is shown as

FX =


f ([ x1

1 x2
1 · · · xd

1 ])
f ([ x1

2 x2
2 · · · xd

2 ])
· · ·

f ([ x1
n x2

n · · · xd
n ])

 (20)

where FX denotes the fitness matrix; and f denotes the fitness value, which is obtained by
calculating the root mean squared error (RMSE) of the predicted and state values.

In the sparrow search algorithm, individuals with higher fitness values will have
priority in obtaining food and, from rule 1, it is known that explorers will obtain a larger
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foraging search range than followers. From rule 2, the position update of the explorer
during each iteration is described as

Xt+1
i,j =

{
Xt

i,j · exp( −i
α·itermax

) R2 < ST
Xt

i,j + Q · L R2 ≥ ST
(21)

where Xt+1
i,j denotes the position information of the i sparrow in the j dimension under t + 1

iteration; itermax denotes the maximum number of iterations, which is a constant; R2 and
ST denote the warning value and the safety value, respectively; α ∈ (0, 1]; Q denotes the
random number obeying the normal distribution; and L denotes the matrix of dimension
1× d, each element of which is 1.

When R2 < ST, there is no danger in the foraging area and the explorers can forage in
a large area; when R2 ≥ ST, there is danger and an alarm is issued, and then all sparrows
move to the safe area to forage.

By rule 3 and rule 4, when the followers perceive that the explorers have acquired
better food, they will leave their existing position to compete and, if the followers win,
they will immediately get the physical object; otherwise, they will update their position
according to Equation (22)

Xt+1
i,j =

 Q · exp(
Xt

worst−Xt
i,j

i2 ) i > n
2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ · A+ · L others
(22)

where Xt
worst denotes the global worst position at t iteration; Xt+1

p denotes the optimal

position occupied by the discoverer at t + 1 iteration; and A+ = AT(AAT)
−1, A denotes a

matrix of dimension 1× d, whose elements are 1 and −1. When i > n/2, the first joiner
with low fitness does not get food and needs to fly to other areas for food.

The number of sparrows aware of the danger is set to 20% of the total population in
the experiment. At the same time, according to rules 5 and 6, the initial positions of these
sparrows are randomly generated with the mathematical expression

Xt+1
i,j =


Xt

best + β
∣∣∣Xt

i,j − Xt
best

∣∣∣ fi > fg

Xt
i,j + K · (

∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

) fi = fg

(23)

where Xt
best denotes the global optimal position at t iteration; β is the step control parameter,

and β ∼ N(0, 1), K denotes the direction of sparrow movement; fi, fg and fw denote the
current sparrow individual, global best and global worst fitness values, respectively; and ε
is a constant to ensure that the denominator is not zero.

When fi > fg, the sparrows at the edge of the population are vulnerable to attack;
when fi = fg, the sparrows in the middle of the population are aware of the danger and
start to approach other sparrows.

3.3. Localization Method for FDIAs Based on the SSA–CNN

The structure of the localization method for FDIAs proposed in this paper is shown in
Figure 2. The input is a dimensional measurement vector, each row of which represents a
measurement vector. The value of each dimension of each measurement vector represents
different specific physical quantities in the power network, namely active power, reactive
power, line active current and line reactive current from Equation (2). The measurement
vectors are classified with the SSA–CNN classification model proposed in this paper, where
each dimension of the measurement vectors represents a label. After the classification
model, the output classification vectors are also dimensional vectors, but the elements
in the classification vectors are all 0 and 1 because, after the measurement vectors pass
through the last layer of the CNN that is the fully connected layer, the data can be mapped
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to the interval (0, 1) due to the characteristics of the sigmoid activation function; then, the
mapped values are classified as 0 and 1 with the logical judgment formula, which constitute
the output classification vectors.
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The value of each dimension of the output classification vectors is used to determine
whether a specific bus or line is under a false data injection attack. As in Figure 2, for
the 2nd line measurement vector (233.81,−160.33,−24.68, · · ·,−5.55)T , the data in the first
three dimensions represent the active power of bus 1, the active current flowing from bus
2 to bus 1 and the active current flowing from bus 3 to bus 4, respectively. The output
classification vector obtained is (0, 0, 1, · · ·, 0)T ; therefore, based on the classification vector
result, the lines between bus 3 and bus 4 can be judged to be under attack. In fact, attackers
do not just attack a bus or a line, they usually attack a small area, which may contain several
buses and several lines, so the output classification vector becomes a one-dimensional
column vector consisting of several ones and zeros.

4. Simulation Experiments
4.1. Simulation Experiment Settings

The simulation experiments were performed on IEEE14-bus and IEEE118-bus test
systems. In order to realize the localization method for FDIAs, information, such as the
topology and parameters of the test systems, needs to be obtained.

Taking the IEEE14-bus test system as an example, its topology and parameter informa-
tion are obtained from MATPOWER, whose system information is shown in Table 1, and
its topology and measurement information are shown in Figure 3. In Figure 3, the numbers
alone represent different buses, the numbers in the circles represent different flow measure-
ments, and the numbers in the rectangles represent different injection measurements.
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Table 1. Information of the IEEE14-bus Test System.

Parameter Number

Buses 14
Lines 20

Total Measurements 19
Injection Measurements 7

Flow Measurements 12
Unmeasured Lines 8
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The IEEE14-bus test system has 19 measurements, of which seven are injection mea-
surements, and 12 are flow measurements, as shown in Figure 3. The flow between bus 1
and bus 2 is measured by meter 1, injected power at bus 1 is measured by meter 13, and the
rest are similar.

Since a normal FDIA can be detected with the smart grids’ bad data detectors, this
paper uses the construction of invisible false data as described in Section 2.2 to construct
the attack vector. Taking the IEEE14-bus system as an example, there are 19 dimensions
of measurement vectors. The true values of the measurement vectors are obtained from
MATPOWER, adding Gaussian noise with a variance of 0.02 as the actual measurement
vectors. Then, the attack vectors are added to the actual measurement vectors to generate
the measurement vectors being attacked. Only parts of the areas are hit, so only the
corresponding parts of the measurement vectors are tampered with. According to the
above method, the measurement vectors being attacked are generated randomly; at the
same time, the corresponding classification vector sets are generated. For the IEEE14-
bus test system, 12,000 volume measurement vectors are generated, and the ratio of the
training set, validation set and test set is 4:1:1; for the IEEE118-bus test system, 6000 volume
measurement vectors are generated, and the ratio of the training set, validation set and test
set is also 4:1:1.

To evaluate the localization accuracy of the algorithms, the true positive rate (TPR),
false positive rate (FPR) and F1 score are used as the performance evaluation metrics. In
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this paper, the true positive rate TPR is defined as the probability that the attacked region
is successfully located, the false positive rate FPR indicates the probability that the region
not attacked is mislocated, and the F1 score is a composite metric that indicates the balance
between the accuracy rate and the recall rate. The expressions of TPR, FPR, Precision,
Recall and F1 score are shown as

TPR =
TP

TP + FN
(24)

FPR =
FP

FP + TN
(25)

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

F1 = 2× Precision× Recall
Precision + Recall

(28)

where TP denotes the number of successfully located attacked localizations, FN denotes
the number of attacked localizations that were not located, FP denotes the number of
regions not attacked that were mislocated, and TN denotes the number of regions not
attacked that were not located.

4.2. Simulation Results of the SSA–CNN

For the CNN model, there are six hyperparameters to be optimized, which are learning
rate, number of iterations, batch size, number of filters, length of convolutional kernels
and number of convolutional layers. Together, these six hyperparameters constitute the
population number in the SSA. Table 2 shows the optimization range of the SSA for different
hyperparameters and the optimization results in the two test systems, IEEE14-bus and
IEEE118-bus. For different systems, the SSA optimization results for all six hyperparameters
are different, which is caused by the system size and data differences.

Table 2. SSA optimized hyperparameters of the CNN model.

Model Hyperparameter Optimization Scope Optimization Results
IEEE-14 IEEE-118

CNN

learning rate [0.001, 0.01] 0.0036 0.0020
number of iterations [50, 200] 83 175

batch size [100, 200] 190 157
number of filters {16, 32, 64, 128, 256} 64 128

length of convolutional kernels [2, 5] 3 2
number of convolutional layers [2, 5] 3 4

The maximum number of iterations M of the SSA is set to 10, and the adaptation value
change curves of the SSA for the IEEE14-bus and IEEE118-bus test systems are shown in
Figures 4 and 5, respectively, where the number of iterations is calculated from 0. It can be
observed from the figures that, in the IEEE14-bus test system, the fitness value decreases
rapidly as the number of iterations increases; after the 5th iteration, the decline begins to
slow down and stabilizes by the 7th iteration; and finally, the fitness value at the end of the
7th, 8th and 9th iterations is the same.

In the IEEE118-bus test system, the fitness value decreases more rapidly from the 0th
to the 2nd iteration, after which the fitness value decreases more slowly and eventually
stabilizes after the 6th iteration with the same value at the end of the 6th, 7th, 8th and
9th iterations.



Information 2023, 14, 180 12 of 16

Information 2023, 14, x FOR PEER REVIEW 13 of 17 
 

 

stabilizes after the 6th iteration with the same value at the end of the 6th, 7th, 8th and 9th 
iterations. 

 
Figure 4. Adaptability values of the SSA for the IEEE14-bus test system. 

 
Figure 5. Adaptability values of the SSA for the IEEE118-bus test system. 

Table 3 shows the fitness values of the IEEE14-bus and IEEE118-bus test systems for 
each iteration. It can be observed that the fitness value of the IEEE14-bus test system con-
verges to 0.00038 after the 7th iteration, and that of the IEEE118-bus test system converges 
to 0.00178 after the 6th iteration. This may be due to the fact that the CNN model is more 
fitting and adaptive to the data of the IEEE14-bus test system, which will also lead to a 
more efficient and effective localization of the SSA–CNN algorithms on the IEEE14-bus 
test system. 

Table 3. Iterative adaptation values for the IEEE14-bus and IEEE118-bus test systems. 

Number of Iterations IEEE14 IEEE118 
0 0.00089 0.00236 
1 0.00080 0.00206 
2 0.00076 0.00191 
3 0.00067 0.00193 
4 0.00059 0.00189 

Figure 4. Adaptability values of the SSA for the IEEE14-bus test system.

Information 2023, 14, x FOR PEER REVIEW 13 of 17 
 

 

stabilizes after the 6th iteration with the same value at the end of the 6th, 7th, 8th and 9th 
iterations. 

 
Figure 4. Adaptability values of the SSA for the IEEE14-bus test system. 

 
Figure 5. Adaptability values of the SSA for the IEEE118-bus test system. 

Table 3 shows the fitness values of the IEEE14-bus and IEEE118-bus test systems for 
each iteration. It can be observed that the fitness value of the IEEE14-bus test system con-
verges to 0.00038 after the 7th iteration, and that of the IEEE118-bus test system converges 
to 0.00178 after the 6th iteration. This may be due to the fact that the CNN model is more 
fitting and adaptive to the data of the IEEE14-bus test system, which will also lead to a 
more efficient and effective localization of the SSA–CNN algorithms on the IEEE14-bus 
test system. 

Table 3. Iterative adaptation values for the IEEE14-bus and IEEE118-bus test systems. 

Number of Iterations IEEE14 IEEE118 
0 0.00089 0.00236 
1 0.00080 0.00206 
2 0.00076 0.00191 
3 0.00067 0.00193 
4 0.00059 0.00189 

Figure 5. Adaptability values of the SSA for the IEEE118-bus test system.

Table 3 shows the fitness values of the IEEE14-bus and IEEE118-bus test systems for
each iteration. It can be observed that the fitness value of the IEEE14-bus test system con-
verges to 0.00038 after the 7th iteration, and that of the IEEE118-bus test system converges
to 0.00178 after the 6th iteration. This may be due to the fact that the CNN model is more
fitting and adaptive to the data of the IEEE14-bus test system, which will also lead to a
more efficient and effective localization of the SSA–CNN algorithms on the IEEE14-bus
test system.

Table 3. Iterative adaptation values for the IEEE14-bus and IEEE118-bus test systems.

Number of Iterations IEEE14 IEEE118

0 0.00089 0.00236
1 0.00080 0.00206
2 0.00076 0.00191
3 0.00067 0.00193
4 0.00059 0.00189
5 0.00041 0.00188
6 0.00040 0.00178
7 0.00038 0.00178
8 0.00038 0.00178
9 0.00038 0.00178
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The localization simulation experiments of the FDIA are performed on the IEEE14-bus
and IEEE118-bus test systems using the optimized hyperparameters of the SSA in Table 2.
Figures 6 and 7 show the change curves of accuracy and loss value of the CNN model
during training. As can be observed from the figures, both accuracy and loss value converge
quickly. Although there are some fluctuations in the training process, they tend to stabilize.
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The SSA–CNN localization algorithms proposed in this paper are simulated and com-
pared with the common CNN, the DNN localization algorithms in [20], the DT localization
algorithms in [29], the KNN localization algorithms in [30] and the ELM localization algo-
rithms in [31]. To be fair, all localization algorithms are performed using the same data
sets. In Table 4, the performance metrics of the different localization algorithms in the
two tested systems are presented in percentage form. For the IEEE14-bus test system, the
TPR, FPR and F1 scores of the algorithms proposed in this paper are 99.85, 0.03 and 99.89,
respectively, which are the best among all the algorithms. The TPR and F1 scores of the
CNN, DNN and ELM are slightly lower than those of this paper, but their FPR is higher
than that of this paper with the FPR of the CNN being 53 times higher than that of this
paper. The TPR of DT and KNN is not satisfactory, only 75.37 and 79.78, respectively; at
the same time, the FPR is also higher. For the IEEE118-bus test system, the TPR, FPR and
F1 scores of this paper’s algorithms are 97.14, 0.03 and 98.27, respectively, and the TPR is
slightly lower than that of the IEEE14-bus test system, which may be due to the increase
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in the measurement data and noise. The TPR of the CNN is 8% lower than that of the
IEEE14-bus test system; in contrast, the DNN’s TPR increases slightly, but its FPR increases
rapidly, leading to a decrease in its F1 score. The TPR of ELM in the IEEE118-bus test
system is 88.78%, and the FPR is higher than that of the IEEE14-bus test system, which is
2.40%. The performance index of the DT localization algorithms is similar to that of the
IEEE14-bus test system, but the TPR of the KNN localization algorithms decreases sharply,
which leads to a sharp decrease in its F1 score.

Table 4. Simulation results of the different algorithms.

IEEE-14 IEEE-118

Performance Index TPR FPR F1 TPR FPR F1
SSA–CNN 99.85 0.03 99.89 97.14 0.03 98.27

CNN 97.34 1.59 96.99 89.34 0.23 92.19
DNN 92.95 0.43 95.89 93.01 2.56 93.72

DT 75.37 1.18 77.00 72.31 1.33 73.18
KNN 79.78 0.94 87.78 56.61 1.12 63.60
ELM 93.79 1.34 95.40 88.78 2.40 91.58

In summary, the SSA–CNN localization algorithms proposed in this paper have better
performance indicators than other localization algorithms in terms of the TPR, FPR and
the overall F1 score. It should be emphasized that the localization algorithms for FDIAs in
this paper locate the attack to a specific bus or line, not to a certain area, and the simulation
and performance indexes are implemented and calculated accordingly.

5. Discussion

As a kind of cyber–physical system, a smart grid is vulnerable to network attacks,
among which, the FDIA is the typical one with strong concealment and destructiveness.
Through the method proposed in this paper, we can efficiently locate the false data injection
attack so as to guarantee the safe and stable operation of smart grids.

6. Conclusions

In this manuscript, localization algorithms for FDIAs based on the SSA–CNN for smart
grids are proposed. The measurement equations of smart grids and the way of constructing
an invisible FDIA are described in the second chapter. In the third chapter, the CNN model,
SSA and localization algorithms for the localization of FDIAs are proposed that use the
SSA–CNN to classify the measurement data of smart grids and then localize the attack
according to the physical significance of each measurement data, which can pinpoint the
specific attacked bus or line rather than the attack area. In the fourth chapter, the proposed
algorithms are simulated in the IEEE14-bus and IEEE118-bus test systems; the results show
that the algorithms have 99.85% and 97.14% localization accuracy in the two systems,
respectively, and the false detection rate is only 0.03% in both systems. The comparison of
the proposed algorithms with other advanced attack localization algorithms shows that the
localization accuracy of the other algorithms is lower than that of the proposed algorithms,
which proves the superiority of the proposed algorithms in the localization of FDIAs.

With the progress of automatic control and communication technologies, there are
expanding types of network attacks, and the attack methods are becoming increasingly
complex. The next stage of research focuses on the applicability of the algorithms to
different network attacks and the effectiveness for new types of network attacks.
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