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Abstract: This study proposes the integration of attention modules, feature-fusion blocks, and
baseline convolutional neural networks for developing a robust multi-path network that leverages its
multiple feature-extraction blocks for non-hierarchical mining of important medical image-related
features. The network is evaluated using 10-fold cross-validation on large-scale magnetic resonance
imaging datasets involving brain tumor classification, brain disorder classification, and dementia
grading tasks. The Attention Feature Fusion VGG19 (AFF-VGG19) network demonstrates superiority
against state-of-the-art networks and attains an accuracy of 0.9353 in distinguishing between three
brain tumor classes, an accuracy of 0.9565 in distinguishing between Alzheimer’s and Parkinson’s
diseases, and an accuracy of 0.9497 in grading cases of dementia.

Keywords: artificial intelligence; deep learning; attention module; feature fusion; magnetic
resonance imaging

1. Introduction

Deep learning (DL) [1] is a subset of artificial intelligence (A.I.) methods that has been
gaining popularity in recent years, and it has been applied to various fields, including
medical imaging, such as magnetic resonance imaging (MRI). MRI is a non-invasive imag-
ing technique that uses a magnetic field and radio waves to produce detailed images of
the body’s internal structures [2]. The technique provides high-resolution images and can
diagnose a wide range of conditions.

DL algorithms have been used to improve the diagnostic accuracy and efficiency of
MRI by automating the analysis of images and identifying patterns that are not visible to
the human eye [3]. The algorithms can be trained to recognize specific patterns, such as
tumors or abnormal brain structures, which can aid in diagnosing diseases [4].

One of the main advantages of using DL in MRI is that it can analyze large amounts
of data quickly and accurately [5]. Traditional image analysis methods require manual
interpretation by radiologists, which can be time-consuming and subjective. DL algorithms can
be trained to analyze images, automatically saving time and improving diagnostic accuracy.

One of the main applications of DL in MRI is analyzing brain images [6]. Algorithms
have been developed to detect and diagnose brain tumors, identify brain structures, and
predict the progression of diseases such as Alzheimer’s [7]. This can aid in the early
detection and treatment of brain diseases, leading to better patient outcomes. Another
application of DL in MRI is the analysis of cardiac images [8]. Algorithms have been
developed to detect and diagnose heart conditions, such as heart failure and arrhythmia.
This can aid in the early detection and treatment of heart diseases.

DL algorithms have also been used to improve the diagnostic accuracy and efficiency
of MRI in analyzing images of the prostate, liver, and pancreas; and to detect and diagnose
prostate cancer, liver fibrosis, and pancreatic cancer [9].
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One of the main challenges of using DL in MRI is the limited availability of labelled
data. MRI images are often difficult to obtain and expensive to acquire, making it chal-
lenging to train DL algorithms. Additionally, the images can be of poor quality, making it
difficult to detect specific patterns.

Another challenge is the variability in the MRI images. They can vary depending on
the imaging protocol and the acquisition parameters. This can make it non-trivial to train
generalized DL algorithms able to cope with variations in acquisition parameters.

Recent advances in the architecture and functions of convolutional neural networks
(CNNs) [10] have allowed for a dramatic improvement in the performance of these mod-
els. Attention mechanisms [11] are a popular addition to CNNs, allowing for adaptive
refinement of the feature maps to identify essential components of the image. Optimization
strategies [12] such as batch normalization and dropout have enabled faster convergence
and higher accuracy when applied to CNNs. In addition, feature fusion techniques such as
sparse coding, autoencoders, and multi-resolution processing have been used to combine
the strengths of multiple feature maps and have been shown to significantly improve the
accuracy of CNNs.

The study proposes an innovative modification of a well-established CNN developed
by the Virtual Geometry Group (VGG) [13] and named after it. We propose the integration
of feature-fusion blocks and attention models to enrich the encapsulation of important
image features that lead to more precise image classification. This network is employed to
classify brain MRI images in brain tumor classification and brain disorder discrimination
and grading.

The paper is structured as follows: In Section 2, we briefly describe the entities of DL, the
attention modules, and feature-fusion blocks. The proposed network is described in detail. In
addition, the employed datasets are presented. In the Section 3, the results of the study are
presented. Discussion and concluding remarks take place in Sections 5 and 6, respectively.

2. Related Work

Sadad et al. [14] utilized the Unet architecture with ResNet50 as a backbone to perform
segmentation on the Figshare dataset, achieving an impressive intersection over union
(IoU) score of 0.9504. The researchers also employed preprocessing and data augmentation
techniques to improve classification accuracy. They used evolutionary algorithms and rein-
forcement learning in transfer learning to perform multi-classification of brain tumors. The
study compared the performance of different DL models, such as ResNet50, DenseNet201,
MobileNet V2, and InceptionV3; and demonstrated that the proposed framework out-
performed the state-of-the-art methods. The study also applied various CNN models to
classify brain tumors, including MobileNet V2, Inception V3, ResNet50, DenseNet201, and
NASNet, achieving accuracies of 91.8%, 92.8%, 92.9%, 93.1%, and 99.6%, respectively. The
NASNet model showed the highest accuracy among all the models.

Allah et al. [15] investigated the effectiveness of a novel approach to classify brain
tumor MRI images using a VGG19 feature extractor and one of three different types of
classifiers. To address the shortage of images needed for deep learning, the study employed
a progressive, growing generative adversarial network (PGGAN) augmentation model to
generate “realistic” brain tumor MRI images. The findings demonstrated that the proposed
framework outperformed previous studies in accurately classifying gliomas, meningiomas,
and pituitary tumors, achieving an accuracy rate of 98.54%.

In [16], a novel hybrid CNN-based architecture was proposed to classify three types
of brain tumors using MRI images. The approach involves utilizing two methods of hybrid
deep learning classification based on CNN. The first method combines a pre-trained Google-
Net model of the CNN algorithm for feature extraction with SVM for pattern classification,
while the second method integrates a finely tuned Google-Net with a soft-max classifier.
The performance of the proposed approach was evaluated on a dataset containing a total of
1426 glioma images, 708 meningioma images, 930 pituitary tumor images, and 396 normal
brain images. The results revealed that the finely tuned Google-Net model achieved an
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accuracy of 93.1%. However, the accuracy was improved to 98.1% when the Google-Net
was combined with an SVM classifier as a feature extractor.

Kang et al. [17] applied transfer learning and utilized pre-trained deep convolutional
neural networks to extract deep features from MRI images of the brain. These extracted
features were evaluated using various machine learning classifiers, and the top three
performing features were selected and combined to form an ensemble of deep features.
This ensemble was then used as input to several machine learning classifiers to predict the
final output. We evaluated the effectiveness of different pre-trained models as deep feature
extractors, various machine learning classifiers, and the impact of the ensemble of deep
features for brain tumor classification using three openly accessible brain MRI datasets.
The experimental results revealed that using an ensemble of deep features significantly
improved performance, and SVM with radial basis function kernel outperformed other
machine learning classifiers, particularly for large datasets.

Sivaranjini et al. [18] used a DL neural network to classify MRI images of healthy
individuals and those with Parkinson’s disease (PD). The researchers utilized the AlexNet
convolutional neural network architecture to improve the accuracy of Parkinson’s disease
diagnosis. By training the network with MRI images and testing it, the system was able to
achieve an accuracy rate of 88.9%. This demonstrates that deep learning models can aid
clinicians in diagnosing PD more objectively and accurately in the future.

Bhan et al. [19] successfully diagnosed PD from MRI images. The LeNet-5 architecture
and a dropout algorithm achieved 97.92% accuracy using batch normalization on a large
dataset consisting of 10,548 images. This method has the potential to accurately diagnose
various stages of PD.

Hussain et al. [20] presented a 12-layer CNN for binary classification and detection
of Alzheimer’s disease using brain MRI data. The proposed model’s performance is
evaluated and compared to existing CNN models based on accuracy, precision, recall, F1
score, and receiver operating characteristic (ROC) curve using the open access series of
imaging studies (OASIS) dataset. The model attained an accuracy of 97.75%, higher than
any previously published CNN models on this dataset.

Salehi et al. [21] used to detect and classify Alzheimer’s Disease (AD) at an early stage
by analyzing MRI images from the ADNI database. The dataset consisted of 1512 mild,
2633 normal, and 2480 AD images. The CNN model achieved a remarkable accuracy of
99%, surpassing the performance of several other studies.

3. Materials and Methods
3.1. Deep Learning

DL is a branch of machine learning that uses neural networks with many layers to
learn patterns and features from data [10]. It is based on the idea that a neural network can
learn to recognize data patterns like a human brain does [1].

DL algorithms comprise multiple layers of artificial neural networks, interconnected layers
of nodes, or artificial neurons. These layers work together to extract features from the data and
make predictions. The first layer of a DL network is typically responsible for recognizing simple
features, such as edges or shapes, while the last layer makes the final prediction.

DL networks are trained using large amounts of data, fed into the network, and used
to adjust the weights and biases of the artificial neurons. The goal is to adjust these weights
and biases, so the network can correctly classify or predict the output for new input data.
This process is known as supervised learning, where the network is trained on labelled
data [22].

DL networks are also used in unsupervised learning, where the network is not pro-
vided with labelled data and has to find patterns and features on its own. This can be
useful for image compression, anomaly detection, and generative models.
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3.2. Attention Feature-Fusion VGG19

The study proposes an innovative expansion of the baseline VGG19 network. It
circumvents the baseline’s hierarchical feature extraction method using handcrafted feature
fusion blocks and feature concatenation. The latter modification led to the creation of the
Feature-Fusion VGG19 network [23]. Here, we propose an extension of this network that
leverages the attention modules. The components of the Attention Feature-Fusion VGG19
(AFF-VGG19) network are analytically described below.

3.2.1. Virtual Geometry Group

VGG19 is a CNN architecture developed by the Visual Geometry Group (VGG) at the
University of Oxford in 2014 [13]. It is a deeper version of the VGG16 architecture known
for its excellent performance in image classification tasks.

The VGG19 network architecture comprises 19 layers, including 16 convolutional
layers and three fully connected layers. The convolutional layers extract features from the
input image, while the fully connected layers are used for classification. The architecture
uses a small 3 × 3 convolutional kernel size, which allows for a deeper architecture with
more layers.

One of the critical features of the VGG19 architecture is its use of tiny convolutional
filters, which allows the network to learn more fine-grained features from the input im-
age [13]. Additionally, the network uses many filters in each convolutional layer, which
allows it to learn many features from the input image.

The VGG19 network was trained on the ImageNet dataset, a large dataset of images
labelled with one of 1000 different classes. The network was trained using the stochastic
gradient descent (SGD) optimization algorithm with a batch size of 128 and a learning rate
of 0.001.

The VGG19 network achieved state-of-the-art performance on the ImageNet dataset [24],
with an accuracy of 92.7% on the validation set. This made it one of the most accurate CNNs
at its release, and it is still considered a very accurate network today.

Training VGG19 from scratch involves learning 143 million parameters, a colossal
number for small-scale datasets. Supplying such a network with inadequate amounts of
data results in underfitting. Therefore, we considered the fine-tuning option, which borrows
the architecture and some pre-assigned conditions to reduce the number of trainable
parameters. The initial network training defined the untrainable weights, which were
defined using the ImageNet database [24]. Though the latter dataset consists of irrelevant
images (non-medical), successful training helps the network learn how to extract low-level
image features (e.g., edges, shapes), which are met in medical images also. Therefore, it is
fair to transfer this knowledge to other domains [25–27].

We propose that the VGG19 network of the study is fine-tuned to extract approximately
5 million trainable parameters to circumvent underfitting. We selected to train the deep
convolutional layers and freeze the first ones because abstract and high-level features are
learned from the deeper convolutional layers of the network.

3.2.2. Feature Fusion Modification

Feature fusion is a modification to the traditional CNN architecture that allows for
extracting features from an input image in a non-hierarchical way. This modification is
used to improve the performance of CNNs in tasks, such as image classification, object
detection, and semantic segmentation.

In traditional CNNs, features are extracted hierarchically. Lower-level features are
learned in the earlier layers, and higher-level features are learned in the later layers. How-
ever, feature fusion CNNs extract features from multiple layers simultaneously and combine
to form a single set of features. This allows for extracting low-level and high-level features
in a non-hierarchical way.

There are several different ways to implement feature fusion in a CNN. One standard
method combines different layers, such as convolutional layers, pooling layers, and fully
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connected layers. These layers are trained to extract features from the input image at
different levels of abstraction. The features from each layer are then combined to form a
single set of features.

Another method is to use feature pyramid networks (FPN), which combines features
from different layers of a CNN in a pyramid-like structure. This allows for the extraction of
features at different scales, which can be helpful in tasks such as object detection, where the
size of the object can vary greatly.

A third method is to use an attention-based feature fusion technique, which uses an
attention mechanism to selectively focus on different regions of the input image when
extracting features. This allows the network to pay more attention to the regions of the
image that are most important for the task at hand.

We propose using simple feature-fusion blocks that solely connect the output of the
convolutional blocks directly to the top of the network (Figure 1). A feature-fusion block
involves a batch normalization, dropout, and global average pooling layers. These layers do
not extract additional features. The feature-fusion blocks are placed after the second, third,
and fourth convolutional groups and are connected to the output of the max pooling layers
that follow (Figure 1). In this way, the extorted image features of each convolutional group
are connected directly to the classification layer at the top of the network, ensuring that no
further processing is applied. Therefore, the feature-fusion blocks negate the hierarchical
feature-extraction manner of the VGG19.
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3.2.3. Attention Mechanism

The attention mechanism is a technique used in convolutional neural networks (CNNs)
to focus on the essential parts of an image when making predictions. It allows the network
to selectively attend to different regions of the input image rather than treating the entire
image as a single input.
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The attention mechanism is typically implemented as an additional layer in the CNN,
which is trained to learn the importance of different input image regions. This layer is often
referred to as the attention layer. The attention layer is trained to learn a weighting for each
region of the input image, which is used to determine the importance of that region when
making predictions.

There are different attention mechanisms, but one of the most widely used is the “soft
attention” mechanism. It is a different form of attention, which means it can be trained
with backpropagation. This is accomplished by computing a set of attention weights for
each region of the input image and then using these weights to weight the contributions of
each region to the final prediction.

The attention mechanism can be applied differently in CNNs depending on the task. For
instance, in image captioning, attention can focus selectively on different regions of an image
when generating a text description of the image. In image classification, attention can be used
to focus on specific regions of an image that are most relevant to the class of interest.

We propose using five-layered attention modules located after the second, third, and
fourth convolutional groups and connected to the output of the following max pooling
layers. The first layer is a batch normalization layer. The second, third, fourth, and fifth
layers are convolutional operations utilizing 64, 16, 1, and x filters of 1 × 1 kernel size. The
x number depends on the convolution group to which the attention module belongs. The
attention module in the second group has an x of 128. Accordingly, the third and fourth
groups have an x of 256 and 512, respectively. The extracted features are multiplied with
the output of the convolutional group and connected to the network’s top.

3.3. Datasets of the Study

The study enrols three classification datasets derived from four repositories, as pre-
sented in Table 1.

Table 1. Study’s datasets overview.

Dataset Source (s) Number of Images

Brain Tumors Dataset

https://www.kaggle.com/datasets/adityakomaravolu/
brain-tumor-mri-images (accessed on 24 November 2022).

https://www.kaggle.com/datasets/roroyaseen/brain-
tumor-data-mri (accessed on 24 November 2022).

7023 and 19,226.
Total 26,249

Brain Disorders Dataset https://www.kaggle.com/datasets/farjanakabirsamanta/
alzheimer-diseases-3-class (accessed on 24 November 2022). 7756

Dementia Grading Dataset https://www.kaggle.com/datasets/sachinkumar413
/alzheimer-mri-dataset (accessed on 24 November 2022). 6400

3.3.1. Brain Tumors Dataset

Glioma is a type of brain tumor that arises from glial cells, which are the supporting
cells of the nervous system [28]. They can be benign or malignant, and the malignant
forms can be very aggressive. Symptoms can include headaches, seizures, and changes in
cognitive function. Meningioma is a type of brain tumor arising from the meninges, the
protective membranes covering the brain, and spinal cord [28]. They are generally benign
tumors, but can cause symptoms such as headaches, seizures, and changes in cognitive
function. Pituitary tumors develop in the pituitary gland, a small gland located at the base
of the brain that produces hormones that regulate growth, metabolism, and other bodily
functions [28]. Pituitary tumors can be benign or malignant and can cause symptoms such
as headaches, vision problems, and changes in hormone levels.

In the present study, the final brain tumors dataset combines two publicly available
datasets (Table 1). The datasets contain MRI images of glioma (8208 images), meningioma
(7866 images), pituitary tumors (8175 images), and controls (2000). Henceforth, the classes
are addressed as follows: glioma (G), meningioma (M), and pituitary (P).

The images are preprocessed and converted into JPEG format. The dataset is suitable
for training DL networks for discriminating the classes.

https://www.kaggle.com/datasets/adityakomaravolu/brain-tumor-mri-images
https://www.kaggle.com/datasets/adityakomaravolu/brain-tumor-mri-images
https://www.kaggle.com/datasets/roroyaseen/brain-tumor-data-mri
https://www.kaggle.com/datasets/roroyaseen/brain-tumor-data-mri
https://www.kaggle.com/datasets/farjanakabirsamanta/alzheimer-diseases-3-class
https://www.kaggle.com/datasets/farjanakabirsamanta/alzheimer-diseases-3-class
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
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3.3.2. Brain Disorders Dataset

AD is a progressive brain disorder that affects memory, thinking and behavior [29]. It
is the most common cause of dementia, a general term for a decline in cognitive function
severe enough to interfere with daily life. AD symptoms typically develop slowly and
worsen over time, eventually leading to severe cognitive impairment and the inability to
carry out daily activities [29]. The cause of AD is not fully understood. However, it is
thought to be related to genetic, lifestyle, and environmental factors.

PD is a progressive nervous system disorder that affects movement [29]. It is caused
by the loss of dopamine-producing cells in the brain, leading to symptoms such as tremors,
stiffness, slow movement, and difficulty with balance and coordination. Parkinson’s disease
can also cause non-motor symptoms such as depression, anxiety, and cognitive impairment.
The cause of PD is not fully understood. However, it involves a combination of genetic and
environmental factors. There is no cure for PD, but medications and other treatments can
help manage symptoms.

The study’s dataset contains 7756 MRI images separated into three classes: PD with
906 images, AD with 3200 images, and controls with 3650 images. All the images are
176 × 208 pixels in size and come in JPEG format. This dataset is used to teach the network
to distinguish between these classes.

3.3.3. Dementia Grading Dataset

Dementia is a general term for a decline in cognitive function severe enough to interfere
with daily life. The severity of dementia can be graded or classified in various ways, but
the most widely used system is the clinical dementia rating (CDR) scale [30,31]. The CDR
scale ranges from 0 to 3, with 0 indicating no dementia, 1 indicating very mild dementia,
2 indicating mild dementia, and 3 indicating moderate to severe dementia.

The CDR scale assesses six areas of cognitive function: memory, orientation, judgment
and problem solving, community affairs, home and hobbies, and personal care. The score
in each area is used to determine the overall CDR score.

The CDR scale is a widely used and accepted tool for evaluating the severity of
dementia and tracking its progression over time. Other scales used to grade dementia are
the global deterioration scale (GDS) and the global clinical impression of change (GCIC).

It is important to note that while grading or classifying the severity of dementia can be
helpful for research and tracking the progression of the disease, it is not always a definitive
measure of an individual’s cognitive or functional abilities.

The dataset of the particular study is collected from several websites/hospitals/public
repositories and consists of MRI images of 128 × 128 pixel size. The total number of images
is 6400. The distribution between classes is as follows: mildly demented (896 images),
moderately demented (64 images), non-demented (3200 images), and very mildly demented
(2240 images). Henceforth, the above classes are addressed as: mildly demented (Mi),
moderately demented (Mo), and very mildly demented (VMi).

The images are preprocessed and converted into JPEG format.

3.4. Experiment Setup

The experiments were conducted on a workstation featuring an 11th Gen Intel®Core™
i9-11900KF @3.50GHz processor, an NVIDIA GeForce RTX 3080 Ti GPU and 64 GB of RAM,
running a 64-bit operating system. Tensorflow 2.9.0 and Sklearn 1.0.2 were used during the
experiments, both written in Python 3.9.

The assessment of the models was conducted using 10-fold cross-validation. During
each fold, the accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predicted value
(PPV), negative predicting value (NPV), false positive rate (FPR), false negative rate (FNR),
F-1 score (F1) of the run were calculated based on the recorded true positives (T.P.), false
positives (FP), true negatives (TN), and false negatives (FN) of each class. In addition, from
the predicted probabilities, we computed the area under curve score (AUC).
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4. Results

Section 4.1 describes the classification performance of the AFF-VGG19 network on the
brain tumor dataset. Section 4.2. presents the results of the network when classifying the
brain disorders dataset. Accordingly, in Section 4.3., the performance of AFF-VGG19 in the
dementia grading dataset is presented. Finally, Section 4.4. presents comparisons between
the proposed AFF-VGG19 network and alternative state-of-the-art networks.

4.1. Brain Tumor Classification

The proposed network achieves an aggregated accuracy of 0.9353, computed based
on the total true positives between the classes. The model shows excellent performance in
distinguishing between tumor and non-tumor MRI images. Specifically, the network exhibits
an accuracy of 0.9795 in the control class, with a very small FPR (0.0219), as Table 2 presents.

Table 2. Performance metrics of AFF-VGG19 on the brain tumor dataset. G stands for glioma, M for
meningioma, P for pituitary.

ACC SEN SPE PPV NPV FPR FNR F1 AUC

G 0.9505 0.9676 0.9427 0.8849 0.9846 0.0573 0.0324 0.9244 0.9552
M 0.9304 0.9062 0.9408 0.8675 0.9591 0.0592 0.0938 0.8864 0.9235
P 0.9572 0.9161 0.9758 0.9449 0.9626 0.0242 0.0839 0.9303 0.9460

Control 0.9795 0.9960 0.9781 0.7895 0.9997 0.0219 0.0040 0.8808 0.9871

For the G class, the network achieves an accuracy of 0.9505, a sensitivity of 0.9676, and
a specificity of 0.9427. The AUC score reaches 0.9552. For the M class, the network achieves
an accuracy of 0.9304, a sensitivity of 0.9062, and a specificity of 0.9408. The AUC score
reaches 0.9235. Accordingly, for the P class, the network achieves an accuracy of 0.9572, a
sensitivity of 0.9161, and a specificity of 0.9758. The AUC score reaches 0.9460.

The relatively large FNR (0.0938) and accuracy (0.9304) in the M class indicate that
the network performs sub-optimally in the discrimination of the M class from the rest
(M versus ALL classification).

4.2. Brain Disorders Classification

AFF-VGG19 achieves an aggregated accuracy of 0.9565. The model shows excellent
performance in distinguishing between AD-PD and control MRI images. Specifically, the
network exhibits an accuracy of 0.9621 in the control class, with a very small FPR (0.0375),
as Table 3 presents.

Table 3. Performance metrics of AFF-VGG19 on the brain disorders dataset. AD stands for
Alzheimer’s disease and PD for Parkinson’s disease.

ACC SEN SPE PPV NPV FPR FNR F1 AUC

AD 0.9409 0.9222 0.9541 0.9339 0.9458 0.0459 0.0778 0.9280 0.9382
PD 0.9489 0.9860 0.9160 0.9125 0.9866 0.0840 0.0140 0.9479 0.9510

Control 0.9621 0.9592 0.9625 0.7718 0.9944 0.0375 0.0408 0.8553 0.9608

For the AD class, the network achieves an accuracy of 0.9409, a sensitivity of 0.9222,
and a specificity of 0.9541. The AUC score reaches 0.9382. For the PD class, the network
achieves an accuracy of 0.9489, a sensitivity of 0.9860, and a specificity of 0.9160. The AUC
score reaches 0.9510.

AFF-VGG19 yields a relatively high FPR in PD detection and a larger FNR in AD
detection (0.0840 and 0.0778, respectively).

4.3. Dementia Grading

AFF-VGG19 achieves an aggregated accuracy of 0.9497. The model shows excellent
performance in distinguishing between Mo-Mi-VMi and control MRI images. Specifically,
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the network exhibits an accuracy of 0.9769 in the control class, with a very small FPR
(0.0394), as Table 4 presents. In addition, a very low FNR is recorded (0.0069).

Table 4. Performance metrics of AFF-VGG19 on the dementia grading dataset. Mo stands for
moderate, Mi for mild, and VMi for very mild.

ACC SEN SPE PPV NPV FPR FNR F1 AUC

Mo 0.9670 0.9531 0.9672 0.2268 0.9995 0.0328 0.0469 0.3664 0.9601
Mi 0.9264 0.8281 0.9424 0.7007 0.9712 0.0576 0.1719 0.7591 0.8853

VMi 0.9539 0.9362 0.9635 0.9324 0.9656 0.0365 0.0638 0.9343 0.9498
Control 0.9769 0.9931 0.9606 0.9619 0.9929 0.0394 0.0069 0.9772 0.9769

For the Mo class, the network achieves an accuracy of 0.9670, a sensitivity of 0.9531,
and a specificity of 0.9672. The AUC score reaches 0.9601. For the Mi class, the network
achieves an accuracy of 0.9264, a sensitivity of 0.8281, and a specificity of 0.9424. The
AUC score reaches 0.8853. For the VMi class, the network yields an accuracy of 0.9539, a
sensitivity of 0.9362, a specificity of 0.9635, and an AUC of 0.9498.

Figure 2 summarizes the performance of AFF-VGG19. Figure 2 presents the ROC
curve, and the training and validation accuracy and loss for the brain tumor and brain
disorder datasets.

Information 2023, 14, x FOR PEER REVIEW 10 of 15 
 

 

score reaches 0.8853. For the VMi class, the network yields an accuracy of 0.9539, a sensi-
tivity of 0.9362, a specificity of 0.9635, and an AUC of 0.9498. 

Table 4. Performance metrics of AFF-VGG19 on the dementia grading dataset. Mo stands for mod-
erate, Mi for mild, and VMi for very mild. 

 ACC SEN SPE PPV NPV FPR FNR F1 AUC 
Mo 0.9670 0.9531 0.9672 0.2268 0.9995 0.0328 0.0469 0.3664 0.9601 
Mi 0.9264 0.8281 0.9424 0.7007 0.9712 0.0576 0.1719 0.7591 0.8853 

VMi 0.9539 0.9362 0.9635 0.9324 0.9656 0.0365 0.0638 0.9343 0.9498 
Control 0.9769 0.9931 0.9606 0.9619 0.9929 0.0394 0.0069 0.9772 0.9769 

Figure 2 summarizes the performance of AFF-VGG19. Figure 2 presents the ROC 
curve, and the training and validation accuracy and loss for the brain tumor and brain 
disorder datasets. 

 
Figure 2. Training–validation accuracy–losses and ROC curve of AFF-VGG19. 

  

Figure 2. Training–validation accuracy–losses and ROC curve of AFF-VGG19.



Information 2023, 14, 174 10 of 13

4.4. Comparison with The State-Of-The-Art

AFF-VGG19 obtains the highest aggregated accuracy in every dataset (Table 5) com-
pared to state-of-the-art CNNs, which do not use attention modules. In addition, the
baseline VGG19 network stands out among its competitors when comparing non-attention-
based models. Specifically, VGG19 exhibits the best accuracy in the brain tumor dataset
(accuracy of 0.9108), the best accuracy in the brain disorder dataset (accuracy of 0.8981),
and the fourth-best accuracy in the dementia grading dataset (accuracy of 0.9022).

Table 5. Accuracy of 17 state-of-the-art networks on the three datasets of the study.

Brain Tumor Brain Disorder Dementia Grading

Xception 0.8850 0.8925 0.8786
VGG16 0.8897 0.8704 0.9088
VGG19 0.9108 0.8981 0.9022

ResNet152 0.8600 0.8646 0.8983
ResNet152V2 0.8801 0.8613 0.8984
InceptionV3 0.8713 0.8657 0.8961

InceptionResNetV2 0.8848 0.8605 0.8872
MobileNet 0.8689 0.8511 0.9091

MobileNetV2 0.8512 0.8312 0.9150
DenseNet169 0.8732 0.8442 0.9066
DenseNet201 0.8715 0.8495 0.8891

NASNetMobile 0.8594 0.8695 0.9011
EfficientNetB6 0.8734 0.8726 0.8975
EfficientNetB7 0.8606 0.8717 0.8892

EfficientNetV2B3 0.8804 0.8693 0.8814
ConvNeXtLarge 0.8732 0.8463 0.9095

ConvNeXtXLarge 0.8702 0.8422 0.8898
ATT-FF-VGG19 0.9353 0.9565 0.9497

The results of Table 5 justify the selection of the baseline VGG19 as the main component
for an attention-based feature-fusion network.

The study compares the proposed method and methods presented by recent related
works on similar datasets. Table 6 summarizes the results.

Table 6. Comparisons with related research.

First Author Ref. No. Test Data Size Classes Method ACC SEN SPE

Sadad [14] 612
slices G-M-P NASNet 0.996 - -

Allah [15] 460
slices G-M-P VGG19

G: 0.9854
M: 0.9857

P: 1

G: 0.9777
M: 0.9804

P: 1

G: 0.9914
M: 0.9871

P: 1

Rasool [16] 692
slices G-M-P-controls Google-Net 0.981

G: 0.978
M: 0.973
P: 0.989
N: 0.987

Kang [17] 692
slices DenseNet-169 0.9204 - -

This study 26,249
slices G-M-P-controls AFF-VGG19

G: 0.9505
M: 0.9304
P: 0.9572

G: 9676
M: 0.9062
P: 0.9161

G: 0.9427
M: 0.9062
P: 0.9758

Bhan [19] 1055
Slices PD-controls LeNet-5 0.9792 - -

Sivaranjini [18] 36
patients PD-controls AlexNet 0.889 - -

Hussain [20] 11
patients AD-controls CNN 0.9775 AD: 0.92

C: 1 -
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Table 6. Cont.

First Author Ref. No. Test Data Size Classes Method ACC SEN SPE

This study 7756
slices PD-AD-controls AFF-VGG19 PD: 0.9409

AD: 0.9489
PD: 0.9222
AD: 0.9860

PD: 0.9541
AD: 0.9160

Salehi [21] 7635
slices Mi-VMi-controls CNN 0.99 - -

Mohammed [32] 6400
slices Mi-VMi-Mo-controls AlexNet 94.8 93 97.75

This study 6400
slices Mi-VMi-Mo-controls AFF-VGG19

Mo: 0.967
Mi: 0.9264

VMi: 0.9539

Mo: 0.9531
Mi: 0.8281

VMi: 0.9362

Mo: 0.9672
Mi: 0.9424

VMi: 0.9635

Compared to recent literature, the present study utilized large-scale data (brain tumor
and brain disorders datasets). Still, the results are consistent with the literature and verify
that the proposed methodology is robust for big-data classification.

4.5. Reproducibility

This section presents the results of statistical significance tests to verify the reproducibility
of the experiments and the stability of the proposed approach. For this purpose, AFF-VGG19
was trained and validated under a 10-fold cross-validation on each dataset 20 times, and a
T-test was performed. The results verify that the model produces consistent outcomes without
statistically significant deviations from the initially reported accuracy (Table 7).

Table 7. Statistical significance test results.

Brain Tumor Brain Disorder Dementia Grading

Mean 0.9355 0.9558 0.9491
Standard Deviation 0.002 0.002 0.001

t-statistic 0.4 −1.09 −1.9
Null Hypothesis Mean = 0.9355 Mean = 0.9565 Mean = 0.9497

Result

At the 0.05 level, the
population mean is
NOT significantly

different from the test
mean (0.9353).

At the 0.05 level, the
population mean is
NOT significantly

different from the test
mean (0.9565).

At the 0.05 level, the
population mean is
NOT significantly

different from the test
mean (0.9497).

5. Discussion

DL will likely play an important role in disease diagnosis and classification from MRI
images. With the ability to detect subtle changes in MRI images, accurately diagnose and
classify diseases, detect and segment lesions, identify biomarkers, develop personalized
medicine, and develop new diagnostic tools and therapies, deep learning has the potential
to revolutionize medical imaging and improve patient outcomes.

The study proposed a modification of the baseline VGG19 network that improves its
feature-extraction capabilities. Integrating the feature-fusion block and attention module
avoided the hierarchical nature of the baseline model and improved the classification
accuracy. The model was evaluated using three MRI datasets related to brain tumor
discrimination, brain disorder classification, and dementia grading. The AFF-VGG19
network demonstrates superiority against state-of-the-art networks. It attains an accuracy
of 0.9353 in distinguishing between three brain tumor classes, an accuracy of 0.9565 in
distinguishing between AD and PD, and an accuracy of 0.9497 in grading cases of dementia.
The high FPR in PD detection and high FNR in AD detection may have their cause in
the fact that these two classes may give similar findings and patterns in specific parts of
the image, such that they confuse the model as there are no distinct differences. For this
purpose, it would be useful in future research to also consider clinical data that would
probably help to better and more accurately determine the image classes.
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Without integrating the attention and feature-fusion blocks, the baseline VGG19
network proved superior to the rest of the pretrained networks (Table 5). Therefore,
the attention and feature-fusion blocks were implemented using the baseline VGG19
architecture as the main feature-extraction pipeline.

The study has limitations that the authors aim to tackle in the future. Firstly, the pro-
posed network needs further evaluation using more MRI datasets to verify its effectiveness.
Secondly, more fine-tuning and hyper-parameter tuning may be required depending on the
particular dataset and classification task. In the present study, the same parameters were
used for each dataset, which may decrease the efficiency. Thirdly, the attention modules
can be further improved and attached to other state-of-the-art networks.

A CNN can be trained to identify features such as edges, textures, and shapes in an
image associated with a particular disease or abnormality. By visualizing the intermediate
representations of the network, medical experts can gain insights into which features the
network is using to make its predictions. This can help to validate the network’s predictions
and provide additional information that can be used to support medical decision-making.
In this context, the lack of post-hoc explainability-enhancing algorithms in the present
study is a limitation and an opportunity for future studies.

Nevertheless, the proposed network achieves a top accuracy in every task. It proves
to be superior to the baseline VGG19 model and other pretrained networks.

6. Conclusions

Recent advances in the architecture and functions of CNNs have allowed for a dramatic
improvement in the performance of these models. The study proposes an innovative
modification of VGG19 with integration of feature-fusion blocks and attention models
to enrich the encapsulation of important image features that lead to more precise image
classification. The AFF-VGG19 network demonstrated obtained an accuracy of 0.9353 in
distinguishing between three brain tumor classes, an accuracy of 0.9565 in distinguishing
between AD and PD, and an accuracy of 0.9497 in grading cases of dementia from MRI
images. Future research should focus on evaluating the network using more datasets,
enhancing the explainability of the framework, and tuning the attention modules to obtain
more precise results.
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