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Abstract: A temporal model describes processes as a sequence of observable events characterised by
distinguishable actions in time. Conformance checking allows these models to determine whether any
sequence of temporally ordered and fully-observable events complies with their prescriptions. The
latter aspect leads to Explainable and Trustworthy AI, as we can immediately assess the flaws in the
recorded behaviours while suggesting any possible way to amend the wrongdoings. Recent findings
on conformance checking and temporal learning lead to an interest in temporal models beyond the
usual business process management community, thus including other domain areas such as Cyber
Security, Industry 4.0, and e-Health. As current technologies for accessing this are purely formal and
not ready for the real world returning large data volumes, the need to improve existing conformance
checking and temporal model mining algorithms to make Explainable and Trustworthy AI more
efficient and competitive is increasingly pressing. To effectively meet such demands, this paper
offers KnoBAB, a novel business process management system for efficient Conformance Checking
computations performed on top of a customised relational model. This architecture was implemented
from scratch after following common practices in the design of relational database management
systems. After defining our proposed temporal algebra for temporal queries (xtLTLf), we show that
this can express existing temporal languages over finite and non-empty traces such as LTLf. This
paper also proposes a parallelisation strategy for such queries, thus reducing conformance checking
into an embarrassingly parallel problem leading to super-linear speed up. This paper also presents
how a single xtLTLf operator (or even entire sub-expressions) might be efficiently implemented
via different algorithms, thus paving the way to future algorithmic improvements. Finally, our
benchmarks highlight that our proposed implementation of xtLTLf (KnoBAB) outperforms state-of-
the-art conformance checking software running on LTLf logic.

Keywords: logical artificial intelligence; knowledge bases; query plan; temporal logic; conformance
checking; temporal data mining; intraquery parallelism

1. Introduction

(Temporal) conformance checking is increasingly at the heart of ARTIFICIAL INTELLI-
GENCE activities: due to its logical foundation, assessing whether a sequence of distin-
guishable events (i.e., a trace) does not conform to the expected process behaviour (process
model) reduces to the identification of the specific unfulfilled temporal patterns, represented
as logical clauses. This leads to Explainable AI, as the process model’s violation becomes
apparent. Clauses are the instantiation of a specific behavioural pattern (i.e., template) that
expresses temporal correlation between actions being carried out (activations) and their
expected results (targets). These, therefore, differ from traditional association rules [1], as
they can also describe complex temporal requirements: e.g., whether the target should
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immediately follow (ChainResponse) or precede (ChainPrecedence) the activation, if the
former might happen any time in the future (Response), or if the target should have never
happened in the past (Precedence). These temporal constraints can be fully expressed in
a LINEAR TEMPORAL LOGIC OVER FINITE TRACES (LTLf) and its extensions; this logic
is referred to as linear as it assumes that, in a given sequence of events of interest, only
one possible future event exists immediately following a given one. This differs from
stochastic process modelling, where each event is associated with a probabilistic distribu-
tion of possibly following events [2,3]. Such a formal language can be extended to express
correlations between activations and targets through binary predicates correlating data
payloads. Events are also associated with either an action or a piece of state information
represented as an activity label. Collections of traces are usually referred to as log.

Despite its theoretical foundations, state-of-the-art conformance checking techniques
for entire logs expose sub-optimal run-time behaviour [4]. The reasons are the following:
while performing conformance checking over relational databases requires computing
costly aggregation conditions [5], tailored solutions do not exploit efficient query planning
and data access minimisation, thus requiring scanning the traces multiple times [6]. Effi-
ciency becomes of the uttermost importance after observing that conformance checking’s
run-time enhancement has a strong impact on a whole wide range of practical use case sce-
narios (Section 1.1). To make conformance checking computations efficient, we synthesise
temporal data derived from a system (be it digital or real) to a simplified representation in
the Relational Database model. In this instance, we use xtLTLf, our proposed extension
of LTLf, to represent process models. While the original LTLf merely asserts whether a
trace is conformant to the model, our proposed algebra returns all of the traces satisfying the
temporal behaviour, as well as activated and targeted events. As a temporal representation
in the declarative model provides a point-of-relativity in the context of correctness (i.e.,
time itself may dictate if traces maintain correctness throughout the logical declarations
expressed by the model), the considerations of such temporal issues significantly increase
the checking requirement. This is due to a need to visit logical declarations for correctness
in the context of each temporal instance.

This paper extends our previous work [4], where we clearly showed the disruptiveness
of the relational model for efficiently running temporal queries outperforming state-of-the-
art model checking systems. While our original work [4] provided just a brief rationale
behind the success of KnoBAB (The acronym stands for KNOWLEDGE BASE FOR ALIGN-
MENTS AND BUSINESS PROCESS MODELLING). The Business Process Mining literature often
uses the term Knowledge Base differently from customary database literature: while in the
former, the intended meaning is a customary relational representation for trace data, in the
latter, we often require that such representation provides a machine-readable representation
of data in order to infer novel facts or to detect inconsistencies., this paper wants to dive
deep into each possible contribution leading to our implementation success.

1. As an extension from our previous work, we fully formalise the logical data model
(Section 3.1) and characterise the physical one (Section 4) in order to faithfully repre-
sent our log. This will prelude the full formalisation of the xtLTLf algebra;

2. Contextually, we also show for the first time that the xtLTLf algebra (Section 3.2) can
not only express declarative languages such as Declare [7] as in our previous work
but can express the semantics of LTLf formula by returning any non-empty finite trace
satisfying the latter if loaded in our relational representation (see Appendix A.2). We
also show for the first time a formalisation for data correlation conditions associated
with binary temporal operators;

3. Differently from our previous work, where we just hinted at the implementation of
each operator with some high level, we now propose different possible algorithms for
some xtLTLf operators (Section 6), and we then discuss both theoretically (Supplement
II.2) and empirically (Section 7.1) which might be preferred under different trace length
ε or log size |L| conditions. This leads to the definition of hybrid algorithms [8];
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4. Our benchmarks demonstrate that our implementation outperforms conformance
checking techniques running on both relational databases (Section 7.2) and on tailored
solutions (Section 7.5) when customary algorithms are chosen for implementing
xtLTLf operators;

5. Finally, this paper considerably extends the experimental section from our previous
work. First, we show (Section 7.3) how the query plan’s execution might be paral-
lelised, thus further improving with super-linear speed-up our previous running time
results. Then, we also discuss (Section 7.4) how different data accessing strategies
achievable through query rewriting might affect the query’s running time.

Figure 1 provides a graphical depiction of this paper’s table of contents, with the
mutual dependencies between its sections. Appendices and Supplements start from p. 50.

§1. Introduction

§2. Preliminaries (p. 9)

§3. Logical Model

§3.1 Model Definition (p. 17)

§3.2 eXTended LTLf

Algebra (p. 19)

§4. Physical Database
Design (p. 24)

§5. Query Processing and
Optimization (p. 26)

§6. Algorithmic Implementations
(p. 34)

§7. Results and Discussion (p. 39)

§8. Conclusions (p. 49)
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Figure 1. Table of Contents.

Figure 2 provides a bird-eye view of the overall KnoBAB architecture: in the upper
half, we show how a log is loaded in our business process management system as a
series of distinct tables providing some activity statistics (CountingTable) and full payload
information (AttributeTable) in addition to reconstructing the unravelling of the events
as described by their traces (ActivityTable). On the other hand, the lower half shows the
main steps of the query engine transforming a declarative model into a DAG query plan
accessing the previously-loaded relational tables. The most recent version of our system
is on GitHub ( https://github.com/datagram-db/knobab as accessed the 5 March 2023).
When not explicitly stated, all the links were last accessed the 5 March 2023.

https://github.com/datagram-db/knobab
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Max-SAT Query

Declare Model (𝓜)

Response(Referral, CA_15-3 >= 23.5, FollowUp, CA_15-3 
  < 23.5) where Referral.CA_15-3 > FollowUp.CA_15-3

Succession(Referral, CA_15-3 >= 23.5, FollowUp, CA_15-3 
 < 23.5) where Referral.CA_15-3 > FollowUp.CA_15-3

Choice(Mastectomy, CA_15-3 >= 50 && biopsy = true, 
Lumpectomy, CA_15-3 >= 50 && biopsy = true) A

to
m
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n 
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e

LTLf Model (𝓜)

Response(𝒫2, 𝒫3) where Referral.CA_15-3 > FollowUp.CA_15-3

Succession(𝒫2, 𝒫3)  where  Referral.CA_15-3 > FollowUp.CA_15-3

Choice(𝒫8, 𝒫12) 

Atomℒ,τ(𝒫2) Atomℒ,τT(𝒫3)Atomℒ,τ(𝒫3) Atomℒ,τA(𝒫2)

AndFutureΘOrτAtomℒ,τA(𝒫2)Orτ

OrτNotUntil

Atomℒ,τA(𝒫8)Or

OrAnd
Ⓐ

Max-SAT

Ⓑ

Log

Trace Payload { loc_po = "LN", p_id = "001A" }

Referral { CA_15-3 = 69 }

Mastectomy { CA_15-3 = 69, biopsy = true }

FollowUp { CA_15-3 = 10 }

Trace Payload { loc_po = "NE",  p_id = "002A" }

Referral {  CA_15-3 = 20 }

Trace Payload { loc_po = "YO",  p_id = "003A" }

Referral { CA_15-3 = 61 }

Lumpectomy { CA_15-3 = 61, biopsy = true }

FollowUp { CA_15-3 = 55 }

Counting Table

ActivityId Trace Count

__trace__payload 1 1

__trace__payload 2 1

__trace__payload 3 1

Referral 1 1

Referral 2 1

Referral 3 1

Mastectomy 1 1

Mastectomy 2 0

Mastectomy 3 0

FollowUp 1 1

FollowUp 2 0

FollowUp 3 1

Lumpectomy 1 0

Lumpectomy 2 0

Lumpectomy 3 1

Activity Table

ID ActivityId Trace Event Prev Next
#1 __trace__payload 1 1 NULL #4

#2 __trace__payload 2 1 NULL #5

#3 __trace__payload 3 1 NULL #6

#4 Referral 1 2 #1 #7

#5 Referral 2 2 #2 NULL

#6 Referral 3 2 #3 #10

#7 Mastectomy 1 3 #4 #8

#8 FollowUp 1 4 #7 NULL

#9 FollowUp 3 4 #10 NULL

#10 Lumpectomy 3 3 #6 #9

Attribute Table [CA15-3]

ActivityId Value Offset
Referral 20 #5

Referral 61 #6

Referral 69 #4

Mastectomy 69 #7

FollowUp 10 #8

FollowUp 55 #9

Lumpectomy 61 #10

Attribute Table [location]

ActivityId Value Offset
__trace_payload "LN" #1
__trace_payload "NE" #2

__trace_payload "YO" #3

Data Loading + Indexing

INPUT DATA (HUMAN READABLE) COLUMN-BASED Relational Database

QUERY PLAN §S.2

Atoms

Atom Predicates(A,p)
𝒫1 Referral(-∞ ≤ CA_15-3 < 23.5)
𝒫2 Referral(23.5 ≤ CA_15-3 < ∞)
𝒫3 FollowUp(-∞ ≤ CA_15-3 < 23.5)
𝒫4 FollowUp(23.5 ≤ CA_15-3 < ∞)
𝒫5 Mastectomy(biopsy = false ∧ -∞  ≤ CA_15-3 < 50)

𝒫6 Mastectomy(biopsy = false ∧ 50 ≤ CA_15-3 < ∞ )

𝒫7 Mastectomy(biopsy = true ∧ -∞  ≤ CA_15-3 < 50)
𝒫8 Mastectomy(biopsy = true ∧ 50 ≤ CA_15-3 < ∞)
𝒫9 Lumpectomy(biopsy = false ∧ -∞  ≤ CA_15-3 < 50)
𝒫10 Lumpectomy(biopsy = false ∧ 50 ≤ CA_15-3 < ∞ )
𝒫11 Lumpectomy(biopsy = true ∧ -∞  ≤ CA_15-3 < 50)
𝒫12 Lumpectomy(biopsy = true ∧ 50 ≤ CA_15-3 < ∞)

xt
LT

L f
 C

om
pi

le
r

Globally

Model Atomoization 
§5.1.1

Atomℒ,τA(𝒫12)

Attribute Table [patient]

ActivityId Value Offset
__trace_payload "001A" #1
__trace_payload "002A" #2

__trace_payload "003A" #3
①

②

③

(§4)

Attribute Table [biopsy]

ActivityId Value Offset
Mastectomy true #7
Lumpectomy true #10

Ⓐ

Ⓑ

Ⓒ

Ⓐ

Ⓑ

Ⓒ

(§5.1.2 -
§5.1.3) Ⓒ

Exists{1,𝒫3}

 

(Orτtrue 

(Atomℒ,τ(𝒫) 
 | 𝒫 ∈ {𝒫1, 𝒫4-𝒫12})) 

And

Or

Figure 2. KnoBAB Architecture for Breast Cancer patients. Each trace À–Â represents one single patient’s clinical history, represented with unique colouring,
while each Declare clause A – C prescribes a temporal condition that such traces shall satisfy. Please observe that the atomisation process does not consider data
distribution but rather partitions the data space as described by the data activation and target conditions. In the query plan, green arrows indicate access to shared
sub-queries as in [9], and thick red ellipses indicate which operators are untimed.
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1.1. Case Studies

The present section shows a broad-ranging set of real case studies requiring efficient confor-
mance checking computations in LTLf. This, therefore, motivates the need for our proposed approach
in a practical sense.

1.1.1. Cyber Security

Intrusion detection for cyber security aims at auditing an environment for identifying
potential flaws that can be remedied and fixed later. While anomaly-based approaches raise
an alarm if the observed behaviour differs significantly from the expected one, signature-
based approaches check whether attack patterns might be recognised from the environment.
The latter are often used to mitigate the high false-alarm rates of the former [10]. Expected
behaviour might be encoded as process models expressed in LTLf, which, when violated,
lead to the detection of an attack: such a language can be directly exploited to represent
several different kinds of attacks, such as Denial Of Service, Buffer Overflows, and Pass-
word Guessing [10]. In his dissertation [11], Ray shows how malware can be detected
by determining LTLf formulae discriminating between system–calls patterns generated
by malicious software from expected run-time behaviour. Recent developments [12,13]
showed that it is possible to perform prediction (and therefore reasoning) on potentially
infinite sequences by analysing a finite subsequence of the overall behaviour within a
sliding window; Buschjäger et al. [12] predict future events not covered by the sliding
window by correlating them to the patterns observed in such a window. By associating a
positive label to each finite subsequence preceding or containing an attack, and a negative
one otherwise, we can also extract temporal models detecting subsequences containing
attacks [14]. This entails that real-time verification boils down, to some extent, to offline
monitoring, as we guarantee that it is sufficient to analyse currently-observed behaviours
to predict and detect an attack. The learned model, once validated, can be exploited in the
aforementioned real-time verification systems [10].

Example 1. The Cyber Kill Chain® framework (https://www.lockheedmartin.com/en-us/capabilitie
s/cyber/cyber-kill-chain.html as accessed the 5 March 2023) allows the identification and prevention
of intrusion activities on computer systems. This framework is based on a military tactic simply
known as a kill chain (https://en.wikipedia.org/wiki/Kill_chain, 5 March 2023), which breaks down
the attack into the following phases: target identification, marshalling and organizing forces towards
the target, starting an attack, and target neutralisation. Lockheed Martin reformulated these steps
to be transferred to the IT world and redirected the attack against a virtual target. These phases were
reformulated as follows:

Reconnaissance (rec): An attacker observes the situation from the outside in order to identify
targets and tactics. As the attacker mainly collects information regarding the system’s vulnerabilities,
this is the hardest part to detect.

Weaponisation (weap): After gathering the information, the cybercriminal implements his strat-
egy through a software artefact. This detection will have greater chances of success in the future
after post-mortem analysis, when either a temporal model is mined over the collected attack data or
the strategy is directly inferred from available artefacts (e.g., malaware).

Payload or Delivery (del): The cybercriminal devises a way to infiltrate the host system that
hides the previously produced artefact (e.g., a Trojan). This must sound as harmless as possible to
fool the system.

Exploitation (expl): The cybercriminal exploits the system’s vulnerabilities and infiltrates it
through the previous “cover”. At this stage, the defensive system should raise the alarm if any kind
of unusual behaviour is detected while increasing the security level.

Installation (inst): The weapon escapes the payload and gets installed into the host computer
system. At this point, any kind of suspected behaviour might be detected by malicious system calls.

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://en.wikipedia.org/wiki/Kill_chain
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Command & Control (comm): The weapon establishes a communication with the cybercriminal
for receiving orders from the attacker. The system should detect any kind of suspicious network
communication and should attempt to break the communication channel.

Action (act): The intruder starts the attack on the system. At this stage, the attack should be
more evident, and the Industrial IoT Shields (iiot_sh), such as network devices protection, should
be activated.

Figure 3a describes the actions (and therefore activity labels) of interest. Having defined the
actions that should be monitored, records of activities can be stored as traces within a log. This is
represented in Figure 3b, where we define three distinct attacks as distinct traces (σ1, σ2, σ3). Each
trace contains the event information leading up to the completion of an attack attempt (which may
be (un)successful). Data payload information is also considered, and here this is provided as the
unique timestamp (ts) associated with each event. Trace payload information is not simulated here
but is described and applied in Example 2.

WeaponisationPayloadExploitation

Installation Command and Control Action

Reconnaissance

(a)

(b)
Figure 3. We can express a cyber-security scenario by considering (a) possible situations in a Cyber
Kill Chain, than are then (b) represented in the activity labels’ names associated to the events.

A temporal model might describe a completely successful attack. The occurrence of the afore-
mentioned phases can be described through a temporal declarative language Declare [7], where
each constraint is an instantiated Declare clause (see Table 1). Our declarative language should
be able to state the following requirements: A all reconnaissance events should be followed by a
weaponisation, B there should be no IoT shields in place, and C either command and control or
action should occur.

On blockchains, each trace event represents a proper blockchain event, thus including function
or event invocations issued by one or more smart contracts. In particular, smart contracts are sets
of conditions specified in self-executing programs [15], which include protocols within which the
parties will fulfil some promises [16]. Given that smart contracts can also be seen as postconditions
activated upon the occurrence of specified pre-conditions [17], they are also exploited as security
measures reducing malicious and accidental exceptions [15]. As per previous considerations, we can
directly encode the smart contract premises in LTLf, as well as represent the whole smart contract
as a whole LTLf formula under the assumption that the blockchain guarantees its execution [17].
Therefore, we can perform post-mortem analysis checking whether a given run-time abides by the
rules imposed by the system.
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Table 1. Declare templates illustrated as exemplifying clauses. A ∧ p (B ∧ q) represents the activation
(target) condition, A (B) denotes the activity label, and p (q) is the data payload condition.

Type Exemplifying Clause (cl) Natural Language Specification for Traces LTLf Semantics (JclK)

Si
m

pl
e

Init(A, p) The trace should start with an activation A ∧ p

Exists(A, p, n) Activations should occur at least n times

{
3(A ∧ p ∧©(JExists(A, p, n− 1)K)) n > 1
3(A ∧ p) n = 1

Absence(A, p, n + 1) Activations should occur at most n times ¬JExists(A, p, n + 1)K
Precedence(A, p, B, q) Events preceding the activations should not satisfy the target ¬(B ∧ p)W (A ∧ p)

(M
ut

ua
l)

C
or

re
la

tio
n

ChainPrecedence(A, p, B, q) The activation is immediately preceded by the target. �(©(A ∧ p)⇒ (B ∧ q))
Choice(A, p, A′, p′) At least one of the two activation conditions must appear. 3(A ∧ p) ∨3(A′ ∧ p′)
Response(A, p, B, q) The activation is either followed by or simultaneous to the target. �((A ∧ p)⇒ 3(B ∧ q))
ChainResponse(A, p, B, q) The activation is immediately followed by the target. �((A ∧ p)⇒ ©(B ∧ q))
RespExistence(A, p, B, q) The activation requires the existence of the target. 3(A ∧ p)⇒ 3(B ∧ q)
ExclChoice(A, p, A′, p′) Only one activation condition must happen. JChoice(A, p, A’, p′)K∧ JNotCoExistence(A, p, A’, p′)K
CoExistence(A, p, B, q) RespExistence, and vice versa. JRespExistence(A, p, B, q)K∧ JRespExistence(B, q, A, p)K
Succession(A, p, B, q) The target should only follow the activation. JPrecedence(A, p, B, q)K∧ JResponse(A, p, B, q)K
ChainSuccession(A, p, B, q) Activation immediately follows the target, and the target immedi-

ately preceeds the activation.
�((A ∧ p)⇔ ©(B ∧ q))

AltResponse(A, p, B, q) If an activation occurs, no other activations must happen until the
target occurs.

�((A ∧ p)⇒ (¬(A ∧ p) U (B ∧ q)))

AltPrecedence(A, p, B, q) Every activation must be preceded by an target, without any other
activation in between

JPrecedence(A, p, B, q)K∧�((A ∧ p)⇒ ©(¬(A ∧ p)W (B ∧ q))

N
ot

. NotCoExistence(A, p, B, q) The activation nand the target happen. ¬(3(A ∧ p) ∧3(B ∧ q))
NotSuccession(A, p, B, q) The activation requires that no target condition should follow. �((A ∧ p)⇒ ¬3(B ∧ q))

1.1.2. Industry 4.0

Smart factories enable the collection and analysis of data through advanced sensors
and embedded software for better decision-making. These enable monitoring each phase
of the entire production process in both real-time and domain-specific applications where
the safety of both autonomous cyber-physical systems as well as human workers is at
stake [18]. This is of the uttermost importance, as both humans and machines cooperate in
the same environment where a minimal violation of safety requirements might damage the
overall production process, thus reflecting in maintenance costs. This calls for logical-based
formal methods providing correctness guarantees [19]. Run-time verification [19] and
prediction [13] have started gaining momentum against customary static analysis tools: in
fact, real complex systems such as factories are often hard to predict and analyse before
execution. As run-time verification can be deployed as a permanent testing condition on the
environment, Mao et al. [19] show that this approach is complete, thus reducing the compli-
cated model-checking problem into a simpler conformance checking one. PROGRAMMABLE

LOGIC CONTROLLERS (PLC) are at the heart of this mechanism, where controllers can make
decisions over previously-observed events. PLC work is similar to smart contracts in the
previous scenario: at each “scan cycle”, the controllers perceive through sensors the status
change of the environment (e.g., variations of temperature and pressure). This information
is then fed to the internal logic, which, on the other hand, might decide to intervene directly
in the environment by sending signals to some actuators (e.g., controlling the pressure
and temperature on the system). Due to the similarity of PLC to smart contracts, these
might also exploit LTLf for determining security requirements: when a safety condition
is violated, the PLC might activate an alarm while ensuring that the system works within
safe operation ranges [19]. Please observe that ptLTL, also defined in [19], is a version of
LTL allowing reasoning on past events so as to avoid semi-decidable computations for
traces of infinite length, might be still represented through an equivalent LTLfformula
evaluated over a finite sliding window [13] bounded by the first and the latest event. Please
observe that the difference between LTL and LTLf is that only the latter considers traces of
finite length.

In some other industrial scenarios, we might be interested in detecting unexpected
variations in time series reflecting the fluctuation of some perceived variables (e.g., varia-
tions in temperature and pressure). The latest developments [13] showed that (industrial)
time series could also be represented as traces: we might assign to each event an activity
label v if the current event has a data payload whose values upper bound the ones from
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immediately preceding event’s payload, and ¬v otherwise. Consequently, we can encode
disparate data variation patterns in LTLf reflecting different types of data volatility or steep
increases/decreases [13]. This shows how LTLf can also represent anomaly-based problems
by reducing them to the identification of anomaly patterns [20].

1.1.3. Healthcare

A medical process describes clinical-related procedures as well as organisational man-
agement ones (e.g., registration, admission, and discharge) [21]. The renowned openEHR
(https://www.openehr.org/ accessed the 5 March 2023) standard distinguishes the former
in four main archetypes: an observation, recording patients’ clinical symptoms (e.g., body
temperature, blood pressure); an evaluation, providing preliminary diagnosis and assessing
the patient’s health based on the former results; and an instruction, the execution of the
treatment plan proposed by a physician (e.g., prescribing, examining, and testing). An
action describes the way to intervene or treat medical patients according to the treatment
plan (e.g., drug administration, blood matching). Once encoded as such, each process
representing an instantiation of a medical process, i.e., a patient’s clinical course, can be
then collected and represented in a log. As such, each action is going to be represented as a
distinct activity label of a given event [22] that might contain relevant payload information
recording the outcome of the clinical procedures, as well as demographical information
related to the patient [21] for future socio-clinical analyses [23].

Declarative temporal languages such as Declare can then be exploited to provide a
descriptive approach specifying temporal constraints among activities without strictly
enforcing their order of completion, thus restricting the order of application of a specific
set of activities [21]. As these models come with temporal semantics expressed in LTLf,
these are, for all intents and purposes, process models. As such, these might be applied to
detect discrepancies between clinical guidelines, expressed by the aforementioned model,
and the actual process executions collected in a log. This is of the utmost concern as often
deviations represent errors compromising the patient recovery [22], which, if efficiently
and identified in advance, lead to an increased patient satisfaction as well a reduction of
healthcare costs (e.g., due to mismanagement) [21].

Example 2. To minimise costs and unrequired procedures, only ill patients should receive treatment.
Thus, sufferers not receiving treatment (false negatives) and non-sufferers receiving treatment (false
positives) need to be minimised. Figure 2 proposes a simplified scenario where we consider two
event payload keys: CA 15-3 (cancer antigen concentration in a patient’s blood) and biopsy
(biopsies should be taken before any procedure is acted upon). Our model targets only breast cancer
patients with successful therapies that describe a medical protocol and the desired patients’ health
condition at each step. C states that two possible surgical operations for breast tumours are
mastectomy or lumpectomy if the biopsy is positive and the CA-13.5 is way above (≥ 50) the guard
level, being 23.5 units per mL, and A – B any successful treatment should decrease the CA-13.5
levels, which should be below the guard level; such correlation data condition is expressed via a
Θ condition (introduced by a where). A twinned negative model (not in Figure) might better
discriminate healthy patients from patients where the therapy was unsuccessful. Novel situations
can be represented as a log. For example, in Figure 2, we have three patients: À a cancer patient with
a successful mastectomy, Á a healthy patient, and Â an unsuccessful lumpectomy, thus suggesting
that the patient might still have some cancerous cells. Given the aforementioned model, patient
À will satisfy the model as the surgical operation was successful, Á will not satisfy the model
because neither a mastectomy nor a lumpectomy was required (M is only fulfilled for successful
procedures), and Â will not satisfy the target condition, even though the correlation condition
was met. Our model of interest should only return À as an outcome of the conformance checking
process.

https://www.openehr.org/
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2. Preliminaries

eXtensible Event Stream (XES). This paper relies on temporal data represented as
a temporally ordered sequence of events (trace or streams), where events are associated
with at most one action described by a single activity label [24]. In this paper, we formally
characterize payloads as part of both events and traces while, in our previous work, we
only considered payloads from events [25].

Given an arbitrarily ordered set of keys K and a set of values V, a tuple [26] is a finite
function p : K → V (also p ∈ VK), where each key is either associated with a value in V or
is undefined. After denoting ⊥ as a null element missing from the set of values (⊥ /∈ V),
we can express that κ is not associated with a value in p as p(κ) = ⊥, thus κ /∈ dom(p). An
empty tuple ε has an empty domain.

(Data) payloads are tuples, where values can represent either categorical data or nu-
merical data. An event σi

j is a pair 〈a, p〉 ∈ Σ×VK, where Σ is a finite set of activity labels,

and p is a finite function describing the data payload. A trace σi is an ordered sequence
of distinct events σi

1, . . . , σi
n, which is distinguished from the other traces by a case id i; n

represents the trace’s length (n = |σi|). If a payload is also associated with the whole trace,
this can be easily mimicked by adding an extra initial event containing such a payload
with an associated label of __trace_payload. A log L is a finite set of traces

{
σ1, . . . , σm }.

In this paper, we further restrict our interest to the traces containing at least one event,
as empty traces are meaningless as they are not describing any temporal behaviour of
interest. Finally, we denote as β : Σ ↔ { 1, . . . , | Σ| } the bijection mapping each activity
label occurring in the log to an unique id.

Example 3. The log L in Figure 2 comprises three distinct traces L =
{

σ1, σ2, σ3 }. In particular,
the second trace comprises two events σ2 = σ2

1 σ2
2 , where the first event represents the trace payload,

and therefore σ2
1 = 〈__trace_payload, p〉 having p(loc_po) = NE and p(p_id) = 002A. The

other event is σ2
2 = 〈Referral, p̃〉, where payload p̃ is only associated with the CA-13.5 levels as

p̃(CA-13.5) = 20. Similar considerations can be carried out for the other log traces.

Linear Temporal Logic over finite traces (LTLf). LTLf is a well-established extension
of modal logic considering the possible worlds as finite traces, where each event represents
a single relevant instant of time. The time is thereby linear, discrete, and future-oriented.
This entails that that the events represented in each trace are totally ordered and, as LTLf
quantifies only on events reported in the trace, all the events of interest are fully observable.
The syntax of an well-formed LTLf formula ϕ is defined as follows:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ©ϕ | �ϕ | 3ϕ | ϕ U ϕ′ (1)

where a ∈ Σ. Its semantics is usually defined in terms of First Order Logic [27] for a given
trace σi at a current time j (e.g., for event σi

j ) as follows:

• An event satisfies the activity label a iff. its activity labels is a: σi
j � a⇔ σi

j = 〈a, p〉;
• An event satisfies the negated formula iff. the same event does not satisfy the non-

negated formula: σi
j � ¬ϕ⇔ σi

j 6� ϕ;

• An event satisfies the disjunction of LTLf sub-formulæ iff. the event satisfies one of
the two sub-formulæ: σi

j � ϕ ∨ ϕ′ ⇔ σi
j � ϕ ∨ σi

j � ϕ′;

• An event satisfies the conjunction of LTLf formulæ iff. the event satisfies all of the
sub-formulæ: σi

j � ϕ ∧ ϕ′ ⇔ σi
j � ϕ ∧ σi

j � ϕ′;

• An event satisfies a formula at the next step iff. the formula is satisfied in the incoming
event if present: σi

j � ©ϕ⇔ i < |σj| ∧ σi
j+1 � ϕ;

• An event globally satisfies a formula iff. the formula is satisfied in all the following
events, including the current one: σi

j � �ϕ⇔ ∀j ≤ x ≤ |σi|.σi
x � ϕ;
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• An event eventually satisfies a formula iff. the formula is satisfied in either the present
or in any future event: σi

j � 3ϕ⇔ ∃j ≤ x ≤ |σi|.σi
x � ϕ;

• An event satisfies ϕ until ϕ′ holds iff. ϕ holds at least until ϕ′ becomes true, which
must hold at the current or a future position: σi

j � ϕ U ϕ′ ⇔ ∃j ≤ y ≤ |σi|.σi
y �

ϕ′ ∧
(
∀x ≤ z < y.σi

z � ϕ
)

Other operators can be seen as syntactic sugar: Weak-Until is denoted as
ϕ W ϕ′ := ϕ U ϕ′ ∨�ϕ, while the implication can be rewritten as ϕ ⇒ ϕ′ := (¬ϕ) ∨
(ϕ ∧ ϕ′). Generally, binary operators bridge activation and target conditions appearing in
two distinct sub-formulæ. The semantics associated with activity labels, consistently with
the literature on business process execution traces [25], assumes that, in each point of the
sequence, one and only one element from Σ holds. We state that a trace σi is conformant
to an LTLf formula iff. it satisfies it starting from the first event: σi � ϕ⇔ σi

1 � ϕ, and is
deviant otherwise [25]. The Declare language described in the next paragraph provides an
application for such logic. As relational algebra describes the semantics for SQL [28,29],
LTLf is extensively applied [30] as a semantics for formally expressing temporal and
human-readable declarative constraints such as Declare.

At the time of the writing, different authors proposed several extensions for represent-
ing data conditions in LTLf. The simplest extensions are compound conditions a∧ q, which
are the conjunction of data predicate q ∈ Prop to the activity label a [25]. Nevertheless,
this straightforward solution is not able to express correlation conditions in the data which
might be relevant in business scenarios [31], as representing correlations as single atoms
requires decomposing the former into disjunctions of formulae [32]. Despite prior attempts
to define a temporal logic expressing correlation conditions, no explicit formal semantics
on how this can be evaluated was provided [6]. This poses a problem to the current practi-
tioner, as this hinders the process of both checking formally the equivalence among two
languages expressing correlation conditions, as well as providing a correct implementation
of such an operator. We, on the other hand, propose a relational representation of xtLTLf,
where the semantics of all of the operators, thus including the ones requiring correlation
conditions, is clearly laid out and implemented.

Declare. Temporal declarative languages pinpoint highly variable scenarios, where
state machines provide complicated graph models that can be hardly understandable by the
common business stake-holder [33]. Among all possible temporal declarative languages, we
constrain our interest to Declare, originally proposed in [7]. Every single temporal pattern
is expressed through templates (i.e., an abstract parameterised property: Table 1 column 2),
which are parametrised over activation, target, or correlation conditions. Template names
induce the semantic representation in LTLf JclK of each model clause cl . Therefore, a trace
σi is conformant to a Declare clause iff. it satisfies its associated semantic representation
in LTLf (σi � cl ⇔ σi � JclK). At this stage, activation (and target) conditions are predicates
A ∧ p (and B ∧ q) in such a clause asserting required properties for the events’ activity
label (A and B) and payload (p and q). An event in a given trace activates (or targets) a
given clause if they satisfy the activation (or target) condition. Please observe that neither
activation nor target conditions postulate the temporal (co)occurrence between activating
or targeting events, as this is duty is transferred to the specific LTLf semantics of the clause.
A trace vacuously satisfies a clause if the trace satisfies the clause despite no event in the
trace satisfied the activation condition. After this, we state that a trace non-vacuously satisfies
the declarative clause if the trace satisfies the clause and one of the following conditions
is satisfied:

• The clause provides no target condition and it exists at least one activating event;
• The clause provides a target condition but no binary (payload) predicate Θ, and the

declarative clause establishes a temporal correlation between (at least one) activating
event and (at least one) targeting one;

• The clause provides both a target condition and a binary predicate Θ, while the
activating and targeting events satisfying the temporal correlation as in the previous
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case also satisfy a binary Θ predicate over their payloads; in this situation, we state
that the activating and targeting event match as they jointly satisfy the correlation
condition Θ.

Finally, the presence of activating events is a necessary condition for non-vacuous
satisfiability.

We can then categorize each Declare template from [30] through these conditions
and the ability to express correlations between two temporally distant events happening
in one trace: simple templates (Table 1, rows 1–3) only involving activation conditions;
(mutual) correlation templates (rows from 4 to 15), which describe a dependency between
activation and target conditions, thus including correlations between the two; and negative
relation templates (last 2 rows), which describe a negative dependency between two events
in correlation. Despite these templates possibly appearing quite similar, they generate
completely different finite state machines, thus suggesting that these conditions are not
interchangeable (http://ltlf2dfa.diag.uniroma1.it/, 5 March 2023). Figure 4 exemplifies the
behavioural difference between two clauses differing only on the template of choice.

C A D A B

Response (A, true, B, true)

B D A B

A B A C C

C A D A B

Precedence (A, true, B, true)

B D A B

A B A C C

Figure 4. Two exemplifying clauses distinguishing Response and Precedence behaviours. Traces are
represented as temporally ordered events associated with activity labels (boxed). Activation (or
target) conditions are circled here (or ticked/crossed). Ticks (or crosses) indicate a (un)successful
match of a target condition. For all activations, there must be an un-failing target condition; for
precedence, we shall consider at most one activation. These conditions require the usage of multiple
join tests per trace.

A Declare Model is composed of a set of clausesM = { cl }l≤n,n∈N which have to
be contemporarily satisfied in order to be true. A trace σi is conformant to a model
M iff. such a trace satisfies each LTLf formula JclK associated with the model clause
cl ∈ M. Consequently, a Declare model can be represented as a finitary conjunction of
the LTLf representation of each of its clauses, JMK :=

∧
cl∈MJclK: for this, the MAXIMUM-

SATISFIABILITY PROBLEM (Max-SAT) for each trace counts the ratio between the satisfied
clauses over the whole model size. This consideration can be extended later on to also data
predicates through predicate atomisation [25], as discussed in the next paragraph.

Relational Models and Algebras. The relational model was firstly introduced by
Codd [34] to compactly operate over tuples grouped into tables. Such tables are rep-
resented as mathematical n-ary relations < that can be handled through a relational algebra.
Upon the effective implementation of the first RELATIONAL DATABASE MANAGEMENT SYS-
TEMS (RDBMS), such algebra expressed the semantics of the well-known declarative query
language, SQL. The rewriting of SQL in algebraic terms allowed the efficient execution

http://ltlf2dfa.diag.uniroma1.it/


Information 2023, 14, 173 12 of 60

of the declarative queries through abstract syntax tree manipulations [28]. Our proposed
xtLTLf (Section 3.2) takes inspiration from this historical precedent, in order to run confor-
mance checking and temporal model mining queries over an relational representation of
the log via relational tables (Section 3.1).

More recently, column-oriented DBMS such as MonetDB [35] proposed a new way to
store data tables: instead of representing these per row, these were stored by column.
There are several advantages to this approach, including better access to data when
querying only a subset of columns (by eliminating the need to read columns that are not
relevant) as well as discarding null-valued cells. This is achieved by representing each
relation <(id, A1, . . . , An) in the database schema as distinct binary relations <Ai (id, Ai)
for each attribute Ai in <. As this decomposition guarantees that the full-outer natural
join ./ 1≤i≤n<Ai over the decomposed tables is equivalent to the initial relation <, we can
avoid representing NULL values in each single binary relation, thus limiting our space
allocation to the values effectively present in the data. We therefore took inspiration
from this intuition for representing the payload information, thus storing one single
table per payload attribute. To further optimise the query engine, it is also possible
to boost the query performance by guaranteeing that the results always have a fixed
schema, mainly listing the record ids satisfying the query conditions [36]. As we will see
while introducing our temporal operators (Section 3.2), we will also guarantee that each
operator returns the output in the same schema, thus guaranteeing time and memory
optimality.

Finally, the nested relational model [37] extends the relational model by relaxing its
first normal form (1NF), thus allowing table cells to contain tables and relations as values.
Relaxing this 1NF allows for storing data in a hierarchical way in order to access an
entire sub-tree with a single read operation. We will leverage this representation for
our intermediate result representation, in order to associate multiple activation, target,
or correlation conditions to one single event, thus including any relevant future event
occurring after it.

Common Subquery Problem. Query caching mechanisms [38] are customary solu-
tions for improving query runtime by holding partially-computed results in temporary
tables referred to as materialised views, under the assumption that the queries sharing
common data are pipelined [39]. Recently, Kechar et al. [9] proposed a novel approach
that can also be run when queries are run contemporarily: it is sufficient to find the shared
subqueries before actually running them so that, when they are run, their result is stored
into materialised views thus guaranteeing that these are computed at most once.

Example 4. Figure 2 shows how this idea might be transferred to our use case scenario requiring
running multiple declarative clauses: RESPONSE is both a subquery of SUCCESSION as well as
a distinct declarative clause of interest. Green arrows indicate operators’ output shared among
operators expressed in our proposed xtLTLf extension of xtLTLf. Please also observe that operators
with the same name and arguments but marked either with activation, target, or no specification are
considered different as they provide different results, and therefore are not merged together. This
includes distinctions between timed and untimed operators, which will be discussed in greater detail
in Section 3.2.

To further minimize tables’ access times, it is possible to take this reasoning to its
extreme by minimising the data access per data predicate in order to avoid accessing the
same table multiple times. In order to do so, we need to partition the data space according
to the queries at our disposal as in our previous work [25]. This process can be eased if we
assume that each payload condition p and p′ for the declarative clauses within a modelM
is represented in Disjunctive Normal Form (DNF) [40]: in this scenario, data predicates q are
in DNF if they are a disjunction of one or more conjunctions of one or more data intervals
referring to just one payload key.



Information 2023, 14, 173 13 of 60

Example 5. The model illustrated in Figure 3a and discussed in former Example 1 comes
with data conditions associated with neither activation nor target conditions. Therefore, no
atomisation process is performed. Thus, each event in a log might just be distinguished by its
activity label [25].

Given an LTLf expression ϕ containing compound conditions, we denote Dϕ as the
set of distinct compound conditions in ϕ. We refer to the items in Dϕ as atoms iff. for each
pair of distinct compound conditions in it, they never jointly satisfy any possible payload
p (More formally, ∀p.∀a ∈ Σ.∀a ∧ q, a ∧ q′ ∈ Dϕ.(q 6= q′) ⇒ (q(p) ⇒ ¬q′(p))). Ref. [25]
shows a procedure showing how any formula ϕ can be rewritten into an equivalent one ϕ′

by ensuring that Dϕ′ contains atoms. This can be achieved by constructing Dϕ′ first from
ϕ (Algorithm 1), and then converting each compound conditions in ϕ as disjunctions of
atoms in Dϕ′ , thus obtaining ϕ′.

Algorithm 1 Atomisation: Dϕ-encoding pipeline.
1: global µ← {}; ad← {}; ak← {}

2: procedure COLLECTINTERVALS(a, DNF) . DNF:=
∨

1≤i≤n
∧

1≤k≤m(i) lowi,k ≤ ki,k ≤ upi,k
3: for all conj ∈ DNF and low ≤ k ≤ up ∈ conj do
4: µ(a, k).put([low, up])
5: end for

6: procedure COLLECTINTERVALS(M) .M :=
∧

1≤i≤|M| clausei(A, p,B, p′)
7: for all clausei(A, p,B, p′) ∈ M do
8: if p 6= True then COLLECTINTERVALS(A, p)
9: if p′ 6= True then COLLECTINTERVALS(B, p′)

10: end for

11: procedure Dϕ-ENCODING( )
12: for all a ∈ Σ do
13: for all k ∈ K do
14: µ(a, k)←SEGMENTTREE(µ(a, k))
15: end for
16: for all partition ∈×k∈K µ(a, k).elementaryIntervals() do . partition := (lowk ≤ k ≤ upk)k∈K
17: pi ←new atom()
18: pi := a∧ partition
19: ak(a).put(pi)
20: for all lowk ≤ k ≤ upk ∈ partition do
21: ad(a, lowk ≤ k ≤ upk).put(pi)
22: end for
23: end for
24: if ak(a) = ∅ then
25: ak(a)← {a}
26: end if
27: end for

We collect all the conjunctions referring to the same payload key into a map µ(a, κ)
(Line 4). After doing so, we can construct a Segment Tree [41] from the intervals in µ(a, κ),
thus identifying the elementary intervals partitioning the collected intervals (Line 14). These
elementary intervals also partition the payload data space associated with events for each
activity label a. This can be achieved by combining each elementary interval in each
dimension κ for a (Line 16) and then associating it with a new atom representing such a
partition (Line 18) that is then guaranteed to be an atom by construction. This entails that
each interval lowκ ≤ κ ≤ upκ will be characterised by the disjunction of all of the atoms pi
comprising such interval (Line 21). Given this, we can then associate to each activation
condition A that is associated with an activation payload condition p the disjunction of
atoms that are collected by the following formula:
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Atomµ,ad(A, p) :=
⋃

conj∈p

⋂
(low≤κ≤up)∈conj

⋃
I∈µ(A,κ).findElementaryIntervals(low,up)

ad(A, I) (2)

If we assume that the dimension of µ(a, κ) for each a ∈ Σ and κ ∈ K is at most m, our
implementation available at https://github.com/datagram-db/knobab/blob/main/incl
ude/yaucl/structures/query_interval_set/structures/segment_partition_tree.h (5 March
2023) builds such trees in ∑1≤i≤m log(i) + m ∈ O(m · log(m)) time, as we first insert the
intervals into the data structure and then we guarantee to minimise the tree representation,
requiring a linear visit cost to the whole tree data structure. The time complexity of
Dϕ-ENCODING() is m|K|(1 + log m + |Σ|) ∈ O(m|K||Σ|).

Example 6. Each distinct payload conditions associated with either activation or target conditions
in Figure 2 can be expressed as one single atom, as there are no overlapping data conditions associated
with the same activity label, and each data condition can be mapped into one single elementary
interval associated with an activity label. The next example will provide another use case example
and a different model on the same dataset leading to a decomposition of payload conditions into a
disjunction of several atoms. Table 2 shows the partitioning of the data payloads associated with
each activity label in the log by the elementary interval of interest.

Table 2. Definition of the atoms from Figure 2 in terms of partitioning over the elementary intervals.

Referral CA-15.3 < 23.5 CA-15.3 ≥ 23.5

p1 p2

Mastectomy CA-15.3 < 50 CA-15.3 ≥ 50

biopsy = false p5 p6
biopsy = true p7 p8

FollowUp CA-15.3 < 23.5 CA-15.3 ≥ 23.5

p3 p4

Lumpectomy CA-15.3 < 50 CA-15.3 ≥ 50

biopsy = false p9 p10
biopsy = true p11 p12

Example 7. Let us suppose to return all the false negative and false positive Mastectomy cases
that are not caused by data imputation errors. For this, we want to obtain all of the negative biopsies
having CA15.3 levels greater than the guard level of 50 and positive biopsies having CA15.3 below
the same threshold. Under the assumption that biopsy values were imputed through numerical
numbers thus leading to more imputation errors, we are ignoring cases where both CA15.3 and
biopsy values are out of scale, that is, we want to ignore the data where CA15.3 levels are negative
or above 1000, and where the biopsy values are neither true (1.0) nor false (0.0). For this, we can
outline the following model:

M′ = {Choice(Mastectomy, biopsy = 0.0∧ CA15.3 ≥ 50,Mastectomy, biopsy = 1.0∧ CA15.3 < 50),

Absence(Mastectomy, CA15.3 > 1000∨ CA15.3 < 0),

Absence(Mastectomy, biopsy 6= 1.0∨ biopsy 6= 0.0)}
(3)

This implies that we are interested in decomposing the intervals pertaining to both CA-15.3
and biopsy into elementary intervals: Table 3a shows that only CA-15.3 < 50 and CA-15.3 ≥ 50
are decomposed into two elementary intervals, as the former also includes the range CA-15.3 < 0,
while the latter also includes CA-15.3 > 1000. Elementary intervals not occurring in the initially
collected ones are not reported in this graphical representation. Table 3b shows the partitioning

https://github.com/datagram-db/knobab/blob/main/include/yaucl/structures/query_interval_set/structures/segment_partition_tree.h
https://github.com/datagram-db/knobab/blob/main/include/yaucl/structures/query_interval_set/structures/segment_partition_tree.h
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of the Mastectomy data payload induced by the elementary intervals of interest; the former data
conditions can be now rewritten after Equation (2) in the Supplement as follows:

1.
∨

Atomµ,ad(Mastectomy,biopsy=0.0∧CA15.3≥50) = p12 ∨ p17

2.
∨

Atomµ,ad(Mastectomy,biopsy=1.0∧CA15.3<50) = p4 ∨ p9

3.
∨

Atomµ,ad(Mastectomy,CA15.3>1000∨CA15.3<0) = p1 ∨ · · · ∨ p5 ∨ p16 ∨ · · · ∨ p20

4.
∨

Atomµ,ad(Mastectomy,biopsy 6=0.0∨biopsy 6=1.0) = p1 ∨ p3 ∨ p5 ∨ p6 ∨ p8 ∨ p10 ∨ p11 ∨ p13 ∨ p15 ∨ p16 ∨
p18 ∨ p20

where each atom is defined as a conjunction of compound conditions defined upon the previously
collected elementary intervals. Some examples are then the following:

• p1 := biopsy < 0∧ CA-15.3 < 0
• p2 := biopsy = 0∧ CA-15.3 < 0

This decomposition will enable us to reduce the data access time while scanning the tables
efficiently.

Table 3. Intermediate steps to generate distinct atoms for the Referral data predicates from Example 7.

(a) Interval decomposition in basic intervals µ(Mastectomy, ·).

µ(Mastectomy, CA-15.3)

CA-15.3 < 0 CA15.3 < 0
CA-15.3 < 50 CA15.3 < 0, 0 ≤ CA-15.3 < 50
CA-15.3 ≥ 50 50 ≤ CA15.3 ≤ 1000, CA-15.3 > 1000

CA-15.3 > 1000 CA15.3 > 1000

µ(Mastectomy, biopsy)

biopsy = 0 biopsy = 0
biopsy = 1 biopsy = 1
biopsy 6= 0 biopsy < 0, 0 < biopsy < 1, biopsy = 1, biopsy > 1
biopsy 6= 0 biopsy < 0, biopsy = 0, 0 < biopsy < 1, biopsy > 1

(b) Atom generation by partitioning the data space×κ∈K µ(Mastectomy, κ).elementaryIntervals() with K = { biopsy, CA-15.3 }.

biopsy < 0 biopsy = 0 0 < biopsy =< 1 biopsy = 1 biopsy > 1

CA15.3 < 0 p1 p2 p3 p4 p5
0 ≤ CA15.3 < 50 p6 p7 p8 p9 p10

50 ≤ CA15.3 ≤ 1000 p11 p12 p13 p14 p15
CA15.3 > 1000 p16 p17 p18 p19 p20

Further Notation. We represent relational tables as a sequence of records indexed by
id as per the physical relational model: given a relational table T, T[i] represents the i-th
record in T counting from 1. We denote f = [x 7→ y, z 7→ t] as a finite function such that
f (x) = y and f (z) = t. Table 4 collects the notation used throughout the paper.
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Table 4. Table of Notation for symbols χ ∈ T defined as (χ := E ) or characterised by (E(χ)) E .

Symbol (χ) Definition (E) Type (T ) Comments

Set Theory
∅ Set An empty set contains no items.

(�, S)
A partially ordered set (poset) is a relational structure for which �
is a partial ordering over S [40]. � over S might be represented as
a lattice, referred to as the Hasse diagram.

>S ∀a ∈ S.a � >S S Given a poset (�, S), >S is the unique greatest element of S.

{C U\C Set Complement set: given an universe U , the complement returns all
of the elements that do not belong to C.

×κ∈K
f (κ) f (κ1)× · · · × f (κn) dom( f )|K| Generalised cross product for ordered sets K where κ1 ≺ · · · ≺ κn

|C| ∑c∈C 1 N The cardinality of a finite set indicates the number of
contained items.

℘(C) {T|T ⊆ C} Set The powerset of C is the set whose elements are all of the subsets of
C.

XES Model & LTLf
Σ Set Finite set of activity labels
K Set Finite set of ordered (payload) keys, κ
V Set Finite set of (payload) values
p [κ1 7→ v1, . . . ] VK Tuple (or finite function) mapping keys κ1 ∈ K to values in v1 ∈ V
⊥ ⊥ /∈ V NULL value
σi

j 〈p, a〉 Σ×VK Event
σi σi

1, . . . , σi
n Sequence Trace, sequence of temporarily ordered events.

L {σ1, . . . , σm} Set Log, set of traces.
β Σ↔ {1, . . . , |Σ|} Bijection mapping each activity label to its unique identifier.
ϕ Equation (1) Expression An LTLf expression.
� Γ � ϕ denotes that ϕ is satisfied for the world/environment Γ.

xtLTLf
ψ Section 3.2 Expression eXTended LTLf Algebra expression.

A(k)/T(k)/M(h, k) ω Marks associated with activation/target/matching conditions.

ρ { 〈i, j, L〉 , . . . } Ω = {℘(N×N× S)|S ∈
℘(ω)} Intermediate representation returned by each xtLTLf operator

T[i] T[i] ∈ T Accessing the i-th record of a sequence T.
Θ(x, y) Binary Predicate Correlation condition between activated and targeted events.

Θ−1(y, x) Θ(x, y) Binary Predicate Inverted/Flipped correlation condition.
True Binary Predicate Always-true binary predicate.

Ei
Θ(M1, M2) Equation (S1) Algorithm 7 Existential matching condition for which there exists at least one

event in M1, M2 providing a match.

Ai
Θ(M1, M2) Equation (S2) Algorithm 9 Universal matching condition returning a non-empty set if each

event expressed in the maps M1, M2 provides a match.

T F,i
Θ (M1, M2) Equation (S3) T F,i

Θ (M1, M2) ∈
℘(ω) ∪ {False}

Testing functor returning False iff., despite the maps containing
activated and targeted events, the matching condition Fi

Θ(M1, M2)

is empty. It returns Fi
Θ(M1, M2) otherwise.

Pseudocode
↑ Null pointer or terminated iterator.

Iterator(ρ) POINTER On ρ non-empty, it returns the iterator pointing to the first record
in ρ

current(it) DEREFERENCE Element pointer by the pointer/iterator it.

LOWERBOUND(d, b, e, ν) BINARY SEARCH

Given a beginning b and end e iterator range within a sequential
and sorted data structure by increasing order, LOWERBOUND
returns either the first location in this range pointing at a value
greater or equal to ν or e otherwise.

UPPERBOUND(d, b, e, ν) BINARY SEARCH

Given a beginning b and end e iterator range within a sequential
and sorted data structure by increasing order, UPPERBOUND
returns either the first location in this range pointing to a value
strictly less to ν or e otherwise.

Time Complexity
ε N Maximum trace length.

` N Maximum length of the third component of the intermediate
representation.

https://en.cppreference.com/w/cpp/algorithm/lower_bound as accessed the 5 March 2023. https://en.cpprefe
rence.com/w/cpp/algorithm/upper_bound as accessed the 5 March 2023.

3. Logical Model

Differently from our previous work [4], we provide a full definition of the (logical) model, thus
describing the relational schema and how such tables are instantiated in order to fully represent the
original log L (Section 3.1). This is a required preliminary step, as this will provide the required
background to understand the definitions for the xtLTLf operators (Section 3.2). These operators,

https://en.cppreference.com/w/cpp/algorithm/lower_bound
https://en.cppreference.com/w/cpp/algorithm/upper_bound
https://en.cppreference.com/w/cpp/algorithm/upper_bound
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differently from the LTLf ones, are defined over the aforementioned model and assess the satisfiability
of multiple traces loaded in such a model.

The discussion on how such tables are loaded and indexed is postponed when discussing the
physical model (Section 4), as well as the different algorithms associated with the different operators
(Section 6).

3.1. Model Definition

KnoBAB provides a tabular (i.e., relational) representation of the log L, in order to effi-
ciently query it through tailored relational operators (xtLTLf). If the log does not contain data
payloads, the entire log can be represented in two relational tables, CountingTableL(Activity,
Trace,Count) and ActivityTableL(Activity,Trace,Event,Prev,Next). While the former can
efficiently assess how many events in the same given trace share the same activity label,
the latter allows a faithful reconstruction of the activity label associated with the traces. In
particular, we use the former to assess whether a trace contains a given activity label at all.
Such tables are then defined as follows:

Definition 1 (CountingTable). Given a log L, the CountingTableL(Activity,Trace,Count)
counts for each trace in L how many times each activity label occurs. More formally:

CountingTableL =
[
〈β(a), i, |{σi

j ∈ σi|σi
j = 〈a, p〉}|〉

∣∣∣ a ∈ Σ, σi ∈ L
]

A record 〈β(a), i, n〉 states that the i-th trace from the log σi ∈ L contains n occurrences of
a-labelled events with id β(a).

Definition 2 (ActivityTable). Given a logL, the ActivityTable (Activity,Trace,Event,Prev,Next)
lists all of the possible events occurring in each log trace, where Prev (π) and Next (φ) are offsets
pointing to the row representing the immediately preceding or following event in the trace if any.
More formally:

ActivityTableL =
[
〈β(a), i, j, π, φ〉

∣∣ a ∈ Σ, σi ∈ L, σi
j ∈ σi, σi

j = 〈a, p〉
]

A record 〈β(a), i, j, π, φ〉 states that the j-th event of the i-th log trace (σi
j ∈ σi, σi ∈ L) has

an activity label a and that its preceding and following events (if any) are respectively located on the
π-th and φ-th record of the same table. Each record of this table should also satisfy the following
integrity constraints:

• (j = 1∧ π = ⊥) ∨ (∃h, π′, φ′. 〈h, i, j− 1, π′, φ′〉 ∈ ActivityTableL[π]);
• (j = |σi| ∧ φ = ⊥) ∨ (∃h, π′, φ′. 〈h, i, j + 1, π′, φ′〉 ∈ ActivityTableL[φ])

Please observe that Prev and Next are computed after bulk inserting while loading and
indexing the data (see LOADINGANDINDEXING from Algorithm 2). If a log is associated
with either trace or event payloads, we must store for each payload the values associated
with keys k in an AttributeTablek

L(Activity,Value,Offset), where Offset points to the
event described in the ActivityTableL.

Definition 3 (AttributeTable). Given a log L, for each attribute κ ∈ K associated with at least
one value in a payload, we define a table AttributeTableκ

L(Activity,Value,Offset) associating
each value to the pertaining event’s payload as follows:

AttributeTableκ
L =

[
〈β(a), p(κ), π〉

∣∣ σi ∈ L, σi
j ∈ σi, σi

j = 〈a, p〉 , p(κ) 6= ⊥
]

A record 〈β(a), v, π〉 states that the event σi
j = 〈a, p〉 stored in the ActivityTable associated

with the π-th offset contains a payload p associating κ to a value v (p(κ) = v).

Please observe that, similarly to the former table, the offset π is also computed while
loading and indexing the data: this is discussed in greater detail in Section 4.2.2.
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Algorithm 2 Populating the Knowledge Base (Section 4.2)

1: procedure BULKINSERTION(L)
2: Σ, K ← ∅
3: for all σi ∈ L do
4: Σ← Σ ∪ {a}
5: for all σi

j = 〈a, p〉 ∈ σi do
6: CountBulkMap[β(a)][i] = CountBulkMap[β(a)][i] + 1
7: ActToEventBulkVector[β(a)].put(〈i, j〉)
8: TraceToEventBulkVector[i][j] = j
9: for all κ ∈ dom(p) do

10: K ← K ∪ {κ}
11: AttBulkMapk[β(a)][p(κ)].put(〈i, j〉)
12: end for
13: end for
14: end for

15: procedure LOADINGANDINDEXING(L)
16: actTableOffset← 1
17: for all β(a) ∈ {1, . . . , |Σ|} do
18: ActivityTableL.primary_index[β(a)]← actTableOffset
19: for all σi ∈ L do
20: CountingTableL.load(〈β(a), i, CountBulkMap[β(a)][i]〉)
21: end for
22: for all 〈i, j〉 ∈ ActToEventBulkVector[β(a)] do
23: ActivityTableL.load[〈β(a), i, j, ↑, ↑〉]
24: TraceToEventBulkVector[i][j] = actTableOffset
25: actTableOffset← actTableOffset+ 1
26: end for
27: end for
28: for all κ ∈ K and β(a) ∈ {1, . . . , |Σ|} do
29: begin← |AttributeTableκ

L|, map← {}
30: for all 〈ν, lst〉 ∈ AttBulkMapk[β(a)] and 〈i, j〉 ∈ lst do . σi

j = 〈a, p〉 with ν = p(κ)
31: offset← TraceToEventBulkVector[i][j]
32: AttributeTableκ

L.load(〈β(a), ν, offset〉)
33: AttributeTableκ

L.secondary_index[offset]← |AttributeTableκ
L|

34: end for
35: AttributeTableκ

L.primary_index[β(a)]← 〈begin, |AttributeTableκ
L|〉

36: end for
37: for all σi ∈ L and σi

j ∈ σi do
38: curr← TraceToEventBulkVector[i][j]
39: if j = 1 then
40: ActivityTableL.secondary_index[i]← 〈curr, TraceToEventBulkVector[i][|σi|]〉
41: else
42: ActivityTableL[curr](Prev)← TraceToEventBulkVector[i][j− 1]
43: end if
44: if j < |σi| then
45: ActivityTableL[curr](Next)← TraceToEventBulkVector[i][j1]
46: end if
47: end for

48: function RECONSTRUCTLOG(L)
49: L′ ← ∅
50: for all 〈i, 〈begin, end〉〉 ∈ ActivityTableL.secondary_index do
51: ςi ← []; j← 1
52: repeat
53: r ← ActivityTableL[begin]
54: a← β−1(r(Activity))
55: p← {}
56: for all κ ∈ K s.t. ∃o. 〈begin, o〉 ∈ AttributeTablek.secondary_index do
57: p(κ)← AttributeTablek[o](Value) . AttributeTablek[o](Offset) = begin
58: end for
59: ςi

j ← 〈a, p〉 ; σi.put(ςi
j)

60: begin← r(Next); j← j + 1
61: until begin 6=↑
62: L′.put(ςi)
63: end for
64: return L′

Example 8. Figure 2 provides a graphical depiction of the tables storing our data. The records
are also sorted by ascending order induced by the first three cells of each record, as required by our
Physical Database Design (Section 4). For representation purposes, the first cell of each row shows
the activity label a rather than its associated unique id β(a).
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3.2. eXTended LTLf Algebra (xtLTLf)

We extend the operators provided in our previous work [4] into more minimal ones, thus
better describing the data access on the relational model. Furthermore, we provide a full formal
characterisation for each of these operators via their access to the aforementioned relational tables.
Please observe that, similarly to the relational algebra, each xtLTLf operator might come with
different possible algorithms [42], which are discussed in Section 6.

Our operators, assessing the behaviour of non-empty traces, come in two flavours:
timed and untimed. While the former are marked by a τ and return all of the traces’ events
for which a given condition holds, the latter guarantee that such a condition will hold any
time from the beginning of the trace. Furthermore, these operators assess the satisfiability
of all the log traces simultaneously and not only one trace at a time as per LTLf.

Each xtLTLf operator returns a nested relational table ρ with schema IntermediateResult(
Trace, Event, MarkList(Mark)) implemented as an ordered set of triplets 〈i, j, L〉, where
each triplet states that an event σi

j from trace σi satisfies a condition specified by the

returning operator. If L (MarkList(Mark)) is not empty, the current event σi
j might have

observed events σi
k and σi

h satisfying either an activation (A(k) ∈ L, k ≥ j), a target
(T(k) ∈ L, k ≥ j), or a correlation condition (M(h, k) ∈ L, k, h ≥ j). The nested relation L is
implemented as a vector ordered by mark type and referenced event id. ρ is implemented as
a vector and sorted by increasing Trace and Event id, as sorted vectors guarantee efficient
intersection and union operations, as well as efficient event counting within the same trace
through linear scanning. Binary operators associated with a non-True binary predicate Θ
return matching/correlation conditions M(h, k) ∈ L if at least one activation and one target
condition were matched, depending on the definition of the operator. As we are going to
see next, if the output comes from a base operator, as defined in the next section, L might
contain a single activation or target corresponding to the immediately returned event.

3.2.1. Base Operators

First, we discuss the base operators directly accessing the tables. These might have an
associated marker specifying whether the event of interest is considered an activation (A)
or a target (T) condition; if none is required, the mark can be omitted from the operator.
The Activityτ(a)LA/T operator lists all of the events associated with an activation label a. As
the ActivityTableL directly provides this information, this operator is defined as follows:

ActivityL,τ
A/T(a) = { 〈i, j, {A/T(j)}〉 | ∃π, φ. 〈β(a), i, j, π, φ〉 ∈ ActivityTableL }

We can also make similar considerations for single elementary interval representable
as an LTLf compound condition a ∧ lower ≤ κ ≤ upper, which can be run as a single range
query over an AttributeTableκ

L. As each of its records has an offset π to the ActivityTableL,
this resolves the trace id and event id information required for the intermediate result. This
operator can therefore be formalised as follows:

CompoundL,τ
A/T(a, κ, [lower, upper]) =

{
〈i, j, {A/T(j)}〉

∣∣∣ ∃π, π′, φ, v. lower ≤ v ≤ upper, 〈β(a), v, π〉 ∈ AttributeTableκ
L,

ActivityTableL[π] = 〈β(a), i, j, π′, φ〉
}

If we want to list all of the initial (or terminal) events of a trace, we can directly access
the ActivityTable and provide a linear scan over the number of the possible traces through
its associated secondary index. If we are not interested in whether the trace starts with a
specific activity label, then we can define the FirstL,τ

A (and LastL,τ
A ) operators as follows:

FirstL,τ
A = { 〈i, 1, {A(1)}〉 | ∃a, φ. 〈β(a), i, 1,⊥, φ〉 ∈ ActivityTableL }

LastL,τ
A =

{
〈i, |σi|, {A(|σi|)}〉

∣∣∣ ∃a, π. 〈β(a), i, |σi|, π,⊥〉 ∈ ActivityTableL
}
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On the other hand, Init (and Ends) are the specific refinements of the former operators
if we are also interested in retrieving events with a specific activity label. These can be
defined as follows:

InitLA(a) = { 〈i, 1, {A(1)}〉 | ∃φ. 〈β(a), i, 1,⊥, φ〉 ∈ ActivityTableL }

EndsLA(a) =
{
〈i, 1, {A(|σi|)}〉

∣∣∣ ∃π. 〈β(a), i, |σi|, π,⊥〉 ∈ ActivityTableL
}

Given a natural number n, Exists(a, n)LA lists the traces containing at least n events
with an activity label a. As Absence(a, n)LA is the substantial negation of the former, this lists
the traces containing at most n− 1 events with an activity label a. Please observe that these
operators directly provide the formal semantics for the homonym Declare template. As
the CountingTable precisely contains the counting information required to solve this query,
these operators can be formalised as follows for n ∈ N>0:

ExistsLA(a, n) = { 〈i, 1, {A(1)}〉 | ∃m ≥ n. 〈β(a), i, m〉 ∈ CountingTableL }

AbsenceLA(a, n) = { 〈i, 1, {A(1)}〉 | ∃m < n. 〈β(a), i, m〉 ∈ CountingTableL }

The following paragraph shows how these last two operators can be generalised
for counting the salient event information returned by any sub-expression returning an
operand ρ.

3.2.2. Unary Operators

The unary xtLTLf operators come in two flavours: the first ones extend some of the
former operators for compound conditions or atoms not necessarily associated with activity
labels, while the second ones directly extend the unary operators from LTLf.

Base Operators’ generalisations. We extend the definition of Init/Ends or Exists/Absence
for any possible set of events of interest listed in an intermediate result ρ, not necessarily
associated with the same activity label. We first define Exists and Absence operator as such:
instead of exploiting the counting table, we now actually need to count the events returned
in ρ for each trace and return an intermediate result triplet iff. they satisfy the counting
condition. These can be then defined as follows for n ∈ N>0:

Existsn(ρ) =
{
〈i, 1,∪〈i,j,Lj〉∈ρLj〉

∣∣∣ n ≤ |{〈i, j, L′〉 ∈ ρ}|
}

Absencen(ρ) =
{
〈i, 1,∪〈i,j,Lj〉∈ρLj〉

∣∣∣ n > |{〈i, j, L′〉 ∈ ρ}|
}

Similarly, while the operators accessing the CountingTable (Exists/Absence) return the
result by linearly scanning such a table, their generalised counterparts require scanning
their operand ρ as returned from a subexpression of choice, and then creaming them off
depending on how many events per trace were in ρ. As we might observe, we might exploit
the previously provided operators when we want to evaluate conditions only associated
with activity labels, while we might need to exploit the former if we are interested in results
associated with compound conditions whose evaluation is returned in ρ.

Finally, we refine Init and Ends for a given operand ρ, to keep only the events at the
beginning or end of a given trace:

Init(ρ) = { 〈i, j, L〉 ∈ ρ | j = 1 }

Ends(ρ) =
{
〈i, 1, L〉

∣∣∣ 〈i, |σi|, L〉 ∈ ρ
}

Further details on our intended notion of these operators’ generality if compared to
the corresponding base operators can be found in Appendix A.1.

LTLfextensions. The unary xtLTLf operators work differently from the corresponding
ones in LTLf: while the latter compute the semantics from the first occurring operator



Information 2023, 14, 173 21 of 60

appearing in the formula towards the leaves, the former assume to receive intermediate
results from the leaves.

This structural difference also imposes an explicit distinction between timed and un-
timed operators. This is required as each operator is completely agnostic from the semantics
associated with the upstream operator, and therefore the downstream operator has to com-
bine the incoming intermediate results appropriately. This motivates why LTLf operators
do not have to provide such an explicit distinction from their syntactical standpoint.

Such a premise motivates the counter-intuitive definition of the timed Nextτ operator
if compared to the homonym in LTLf: as this needs to return the events for which desired
temporal constraints happen immediately after them, it needs to assume that the desired
forthcoming temporal behaviour is the one received as an input ρ, for which all the events
preceding the ones listed in ρ are the ones of interest. As per the previous statement, it also
follows that this operator shall never possess an equivalent untimed flavour. From these
considerations, Nextτ is formally defined as follows:

Nextτ(ρ) = { 〈i, j− 1, L〉 | 〈i, j, L〉 ∈ ρ, j > 1 }

where L fulfils the role of preserving the information of the events satisfying an activation,
target, or correlation condition independently from the event stated in the second compo-
nent of the intermediate representation record. Therefore, 〈i, j, L〉 shall be interpreted as
follows: σi

j witnesses the satisfaction of any activation, target, or correlation condition by
the events collected in L.

We now discuss the definition of “globally”. As per previous considerations, checking
that all of the events in a trace satisfy a given condition corresponds to retrieving all of the
events satisfying such a condition, for then counting if the length of the returned events
corresponds to the trace length. Similarly, the timed version of the same operator shall test
the same condition for each possible event and return the points in the trace after which
the desired condition always happens in the future. These operators are therefore defined
as follows:

Globallyτ(ρ) =

 〈i, j,∪ j≤k≤|σi |
〈i,k,Lk〉∈ρ

Lk〉

∣∣∣∣∣∣ 〈i, j, Lj〉 ∈ ρ, |σi| − j + 1 =
∣∣∣{〈i, k, Lk〉 ∈ ρ|j ≤ k ≤ |σi|}

∣∣∣


Globally(ρ) =
{
〈i, 1,∪〈i,j,Lk〉∈ρLk〉

∣∣∣ |σi| =
∣∣∣{〈i, k, Lk〉 ∈ ρ}

∣∣∣ }
The operators expressing the eventuality that a condition shall happen in the future

undergo similar considerations, with the only difference that these do not require to test
that all of the trace events from a given point in time will satisfy a given condition, as it
suffices that at least one event will satisfy it. The Future operator with its timed counterpart
are then formally defined as follows:

Futureτ(ρ) =

 〈i, j,∪ j≤k≤|σi |
〈i,k,Lk〉∈ρ

Lk〉

∣∣∣∣∣∣ ∃h ≥ j, L. 〈i, h, L〉 ∈ ρ


Future(ρ) =

{
〈i, 1,∪〈i,k,Lk〉∈ρLk〉

∣∣∣ ∃j, L. 〈i, j, L〉 ∈ ρ
}

Timed and untimed negations are implemented dissimilarly by design. While the
timed negation returns all of the events that are in the log but which were not returned in
the previous computation ρ, the untimed version returns the traces containing no events
associated with the provided input. These operators are therefore defined as follows:

Notτ(ρ) = { 〈i, j, ∅〉 | (@L. 〈i, j, L〉 ∈ ρ) ∧ ∃α, π, φ. 〈α, i, j, π, φ〉 ∈ ActivityTableL }

Not(ρ) = { 〈i, 1, ∅〉 | (@j, L. 〈i, j, L〉 ∈ ρ) ∧ ∃α, j, π, φ. 〈α, i, j, π, φ〉 ∈ ActivityTableL }
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3.2.3. Binary Operators

Differently from the LTLf binary operators, the xtLTLf binary operators are specifically
tailored to express data correlation conditions Θ between activation and target payloads.
This requires that one of the two operands, either ρ or ρ′, returns activated events while the
other provides targeted ones. Supplement I discusses the formal definition of predicates
assessing whether an event 〈i, j, L〉 ∈ ρ matches with another event 〈i, j′, L′〉 ∈ ρ′ on the
basis of their matched and activated events in L and L′. After this, we have the definition
of our required binary operators.

The until operators work similarly to the other LTLf-derived unary operators. The
timed until returns all of the events within the trace satisfying the until condition, expressed
by returning all of the “activated” events σi

j listed in the right operand (as they trivially

satisfy the until condition) alongside all of the “targeted’ events σi
j from the left operand

with k < j at a distance j − k + 1 from the second operand’s event while guaranteeing
that all the events in σi

k, . . . , σi
j−1 appear in the first operand while satisfying the matching

condition within this temporal window. The untimed version of this operator performs
such considerations only from the beginning of the trace. These are defined as follows:

UntilτΘ(ρ1, ρ2) =ρ2∪{
〈i, k, τ〉

∣∣∣∃j > k. 〈i, j, L〉 ∈ ρ2, (∀k ≤ h < j. 〈i, h, L〉 ∈ ρ1),

τ := T A,i
Θ ([k 7→ L]k≤h<j, [h 7→ Lh]k≤h<j,〈i,h,Lh〉∈ρ1

), τ 6= False
}

UntilΘ(ρ1, ρ2) ={ 〈i, j, L〉 ∈ ρ2 | j = 1 }∪{
〈i, 1, τ〉

∣∣∣ ∃j > 1, L. 〈i, j, L〉 ∈ ρ2, (∀1 ≤ k < j. 〈i, k, Lk〉 ∈ ρ1),

τ := T A,i
Θ ([k 7→ L]i≤k<j, [k 7→ Lk]i≤k<j,〈i,k,Lk〉∈ρ1

), τ 6= False
}

where T A,i
Θ performs (Please see Supplement I for more details.) the correlation tests and

returns the set of the matches if any and, if no match was successful, it returns False.
Differently from UntilτΘ and UntilΘ, the rest of the binary operators assume to receive
“activated” (or “targeted”) events from the left (right) operand. The timed conjunction
states that a join condition effectively happens in a given event σi

j if both operands return
such an event and their associated activation and target conditions match. Thus, we only
care for activation and target conditions at the same event σi

j . For its untimed counterpart,
we state that a trace satisfies the conjunction of events if at least one activation condition
from the left operand matching with a target from the right operand, if any, exists; this
corresponds to coalescing the activations and target conditions on the first event while
requiring that at least one of them occurs. These two operators can then be defined
as follows:

Andτ
Θ(ρ1, ρ2) =

{
〈i, j, τ〉

∣∣∣ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1, 〈i, j, L2〉 ∈ ρ2, τ := T E,i
Θ ([j 7→ L1], [j 7→ L2]), τ 6= False

}
AndΘ(ρ1, ρ2) =

{
〈i, 1, τ〉

∣∣∣ ∃j, j′, L, L′.(〈i, j, L〉 ∈ ρ1 ∧ 〈i, j′, L′〉 ∈ ρ2),

τ := T E,i
Θ ([1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ1}], [1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ2}]),

τ 6= False
}

The disjunctive version of the timed conjunctive operator returns either the result of
the conjunctive operator or the events that did not temporally match from each respective
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operator. The only difference with its untimed version is that the latter merges all potential
activation or target conditions from either of the two operands:

Orτ
Θ(ρ1, ρ2) = Andτ

Θ(ρ1, ρ2) ∪
{
〈i, j, L〉 ∈ ρ1

∣∣ @L′. 〈i, j, L′〉 ∈ ρ2
}

∪
{
〈i, j, L〉 ∈ ρ2

∣∣ @L′. 〈i, j, L′〉 ∈ ρ1
}

OrΘ(ρ1, ρ2) = AndΘ(ρ1, ρ2) ∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ ρ1}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ ρ2
}

∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ ρ2}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ ρ1
}

As we will see, the choice of characterizing Or with an Ei
Θ match while coalescing the

activation and target conditions on the first trace event allows us to express the Choice tem-
plate from Declare with one single operator while preserving its expected LTLf semantics.

3.2.4. Derived Operators

Similarly to relational algebra, we can now compose some frequently occurring opera-
tors together for enhancing the overall time complexity associated with the execution of
frequently appearing subqueries in Declare.

Appendix A.3 will show that computing these operators is equivalent to computing
their semantically equivalent xtLTLf expression containing multiple operators.

AndFutureτ
Θ(ρ1, ρ2) =

{
〈i, j, τ〉

∣∣∣ ∃L. 〈i, j, L〉 ∈ ρ1, (∃L′, k ≥ j. 〈i, k, L′〉 ∈ ρ2),

τ := T E,i
Θ ([j 7→ L], [j 7→ ∪h≥j,〈i,h,Lh〉∈ρ2

Lh]), τ 6= False
}

AndGloballyτ
Θ(ρ1, ρ2) =

{
〈i, j, τ〉

∣∣∣ ∃L. 〈i, j, L〉 ∈ ρ1, (∀|σi| ≥ k ≥ j.∃L′. 〈i, k, L′〉 ∈ ρ2),

τ := T A,i
Θ ([j 7→ L], [j 7→ ∪h≥j,〈i,h,Lh〉∈ρ2

Lh]), τ 6= False
}

For easing the pseudocode readability, we can also define an AtomL,τ
A/T(pi) operator

computing the conjunction of all of the compound conditions characterizing each atom:

AtomL,τ
A/T(pi) = Andτ

True
κ∈K

CompoundL,τ
A/T(a, κ, [lowκ , upκ ]) s.t. pi := a∧

∧
κ∈K

lowκ ≤ κ ≤ upκ

Properties of the xtLTLf Algebra. We furnish the previous definitions with some
formal proofs, which, so as not to burden the reader, are postponed to the Appendix A. We
show that xtLTLf is as expressive as traditional LTLf, as we can show that each LTLf expres-
sion evaluated over a finite and non-empty trace σ corresponds to an xtLTLf expression
evaluated over the representation of such a trace within the proposed logical model; as the
proofs of Lemmas A5 and A6 in Appendix A.2 are constructive, they show the translation
process from LTLf formulæ to equivalent xtLTLf expressions.

Next, we also show that the timed and untimed operators correspond to the intended
semantics: that is, for each timed operator having a corresponding untimed operator if the
former states that the timed formula is satisfied by the i-th trace starting from time j, it
follows that the sub-trace of i starting from time j will satisfy the corresponding untimed
formula. This shows the correctness of the untimed operators concerning their timed
definitions (Lemma A7).

In Appendix A.3, we show that the Declare template Choice can be fully implemented
by exploiting an untimed Or operator (Corollary A1) while the latter still abides to the
rules of LTLf semantics. We also motivate the need of the derived operators in terms of
equivalence to the intended xtLTLf expressions (Lemmas A9 and A10) as well as in terms
of improved computational complexity (Section 6.4) and run time (Section 7.1). The latter
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is discussed after describing the physical model in more detail alongside the algorithms
associated with each operator, which is introduced in the following section.

4. Physical Database Design

This section shows how the defined model (Section 3.1) is represented in primary memory in
terms of indices and data structures (Section 4.1). We also illustrate the algorithm loading a log in
such representation of choice (Section 4.2).

4.1. Primary Memory Data Structures

At the time of the writing, KnoBAB is primarily an in-memory database. This is a
common assumption in the conformance checking domain where most of the log datasets
are quite compact and nicely fit in primary memory.

In order to be both memory and time efficient in our operations, the sub-record
referring to the first three columns of both the CountingTableL and the ActivityTableL are
fully stored in primary memory as an unsigned 64-bit unsigned integer, while the Prev and
Next are more efficiently stored as pointers to the table records rather than being an offset.
After sorting the CountingTableL, we directly obtain the occurrence of each activity label a
within the log by accessing the records in the range [|L| · (β(a)− 1) + 1, |L| · β(a)].

Indexing data structures, on the other hand, eases the access to the ActivityTableL,
as different traces might have different lengths, and activity labels might be differently
distributed among the traces. Therefore, we exploit a clustered and sparse primary index
for determining which is the first event associated with a given activity label; as the traces in
such a table are represented as a doubly linked list, its secondary index maps each trace-id
to a block that, in turn, points to the head (first event of the trace) and the tail (last event of
the trace) of such a doubly linked list.

The deduplication of trace and event payloads in distinct AttributeTableκ
L for each key

κ follows the prescriptions of the query and memory-efficient representation of columnar-
based storages [35]. In our implemnetation, such tables are sorted in ascending order
by their three first columns. Each AttributeTableκ

L is also associated with two indices:
the clustered and sparse primary index maps each activity label’s id β(a) to the records
referring to values contained in a-labelled events, and a dense secondary index associates
an ActivityTableL record offset to an AttributeTableκ

L record offset if and only if the event
described in ActivityTableL has a payload containing a value associated with a key κ.
While data range queries leverage the former, the latter is used for reconstructing the
payload associated with a given event when identified by its offset in the ActivityTableL. A
relevant use case for doing so is the reconstruction of the event payload information while
performing the Θ correlation condition, as well as reconstructing the original log leading to
the loading of the internal database. RECONSTRUCTLOG function in Algorithm 2 shows the
computation of the latter.

Example 9. With reference to Figure 2, let us consider some events with activity label Mastectomy
associated with an unique id β(Mastectomy) = 3. The offsets for accessing the records in the
CountingTableL defining the number of events per trace with such a label is [3 · (3− 1) + 1, 3 · 3] = [7, 9].

The ActivityTableL’s primary index allows the access to the first record within the table
recording a Mastectomy event, i.e., ActivityTableL.primary_index[β(Mastectomy)] = 7 ; the
index implicitly returns the last event associated with such an activity label by decreasing the
offset to the following activity label by one, i.e., ActivityTableL.primary_index[β(Mastectomy) +
1] − 1 = 7: please remember that, if the activity label is such that β(a) = |Σ|, then the final
offset to be considered corresponds to the ActivityTableL size. This indicates that there exists only
one event throughout the whole log associated with such an activity label. We will exploit this
mechanism for returning the events associated with ActivityL,τ

A/T(Mastectomy). As the seventh

record of such a table refers to the third event of the first trace, ActivityL,τ
A (Mastectomy) will then

return { 〈1, 3, {A(3)}〉 }.
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Finally, we discuss how we can leverage AttributeTableκ
L’s primary indices for returning

results associated with an AtomL,τ
A/T operator. Let us consider atom p12: we can see that this is

associated with the elementary intervals Lumpectomy ∧ biopsy = true and Lumpectomy ∧ 50 ≤
CA_15.3 < +∞. By definition of the operator of interest, we then have that:

AtomL,τ
A (p12) = Andτ

True(CompoundL,τ
A (Lumpectomy ∧ biopsy = true),

CompoundL,τ
A (Lumpectomy ∧ CA_15.3 ≥ 50))

The first Compound operator will access the primary index from AttributeTablebiopsy
L while

the second one will access the one from AttributeTableCA_15.3
L . Then, the primary index of each ta-

ble maps each activity to the offsets of the first and last record: AttributeTablebiopsy
L .primary_index

[β(Lumpectomy)] = 〈2, 2〉 and AttributeTableCA_15.3
L .primary_index[β(Lumpectomy)] = 〈7, 7〉.

Then, within these returned record offsets, we perform range queries respectively looking for records
satisfying biopsy = true and 50 ≤ CA_15.3 < +∞. All of the ActivityTableLκ’s records satisfying
these conditions point to the tenth record of the ActivityTableL referring to the third event of the
third trace. Therefore, AtomL,τ

A (p12) returns { 〈3, 3, {A(3)}〉 }.

4.2. Populating the Database

We discuss two subsequent steps for loading a log in our proposed relational model: we
preliminarily sort the data by activity label id, event id, and values (Section 4.2.1) for then loading
the sorted record in the tables while generating their primary and secondary indices (Section 4.2.2).
These are computed in quasi-linear time with respect to the full log size.

4.2.1. Bulk Insertion

KnoBAB uses BULKINSERTION to pre-load the tables’ data into an intermediate repre-
sentation by pre-sorting it according to the ascending order induced by the first column of
the tables of interest. Algorithm 2 shows the loading of the following three maps referring
to the aforementioned tables. (i) CountBulkMap counts the occurrence of each activity label
per track, implying that the absence of a trace identifier for a given β(a) value presupposes
the absence of a given activity label a within a trace; as the name suggests, we use this
to later on populate the CountingTable. (ii) The ActToEventBulkVector prepares the inser-
tion of sorted data in ActivityTableL by associating an activity label to each event and its
associated trace containing it. (iii) Similarly to the ActToEventBulkMap, the AttBulkMapk
associates to each key κ the values p(κ) for each event σi

j with payload p and activity label
a, in order to prepare the insertion of sorted records in AttributeTableκ

L. Please observe that,
by construction, the set of pairs associated with each activity id β(a) is already sorted by
increasing trace and event id.

We also pre-allocate a TraceToEventBulkVector map (represented as a vector of vec-
tors) which will later associate each event trace to an offset on the ActivityTableL where such
event is stored. KnoBAB will later use this to calculate Prev and Next in the ActivityTable.
After this, KnoBAB knows the number of the traces within the log |L|, the length |σj|
for each trace σj, and the number of distinct activity labels |Σ| is known, as well as their
associated unique id β(a) for each a ∈ Σ. We can show that this procedure might be
computed in quasi-linear time with respect to the full log size (Lemma S1).

4.2.2. Loading and Indexing

We continue our discussion with LOADINGANDINDEXING. First, we can iterate over
the activity labels in ascending order of appearance (Line 17). All the tables including the
CountingTableL have activity ids β(a) as their first cell: by further iterating by increasing
trace id, we can immediately orderly store the records in CountingTableL (Line 20).

Second, we start populating the ActivityTableL (Line 23) where each record is associated
with an increasing offset of the table (Line 25). We can populate its primary index in order to
point at the record representing the first event of the first trace with the currently considered



Information 2023, 14, 173 26 of 60

activity label. We store such information in the pre-allocated traceToEventBulkVector
(Line 24), in order to later set the currently null pointer (↑) Next and Prev fields.

Third, we start populating each AttributeTableκ
L for each key κ ∈ K associated with at

least one value in a payload: as per the previous discussion, each record associates the
offset of event σi

j = 〈a, p〉 in the ActivityTableL with a value ν = p(κ) and the activity label
id β(a) (Line 32). We also populate its secondary index by associating each event offset in
the ActivityTableL to the current position in the AttributeTableκ

L (Line 33). The last iteration
finally populates each ActivityTableL’s secondary index (Line 50) and sets the Next (Line 45)
and Prev (Line 42) fields through the offset via TraceToEventBulkVector. After this, the
relational database is fully loaded in primary memory. The overall time complexity grows
linearly to the whole log representation (Lemma S2).

5. Query Processing and Optimisation

This section shows how a declarative model M is compiled to a query plan consisting of
xtLTLf operators (Section 5.1) so it can be run (Section 5.2) on top of the primary memory data
described in the previous section.

5.1. Query Compiler

The conversion of a declarative modelM into its corresponding xtLTLf query plan is struc-
tured into three main phases. First, the atomisation pipeline calls the preliminary Dϕ-encoding
from [25] for rewriting the data predicates appearing in each declarative clause as a disjunction
of mutually exclusive atoms (Section 5.1.1). Second, we (ii) rewrite each Declare constraint as a
xtLTLf formula from which we obtain a preliminary query plan represented as a DIRECT ACYCLIC

GRAPH (DAG) (Section 5.1.2). Third, we compute the scheduling order for the operators’ exe-
cution over the DAG, thus preparing the execution to a potential parallel evaluation of the query
(Section 5.1.3).

5.1.1. Atomisation Pipeline

The atomisation pipeline (Algorithm 3) represents each activation and target con-
dition as a set of disjunct atoms or activity labels. KnoBAB can always be configured
in two ways: to either fully represent each possible activation (or target) condition with
activity label a as a disjunction of atoms (or activity labels) if there exists at least one
declarative clause where a is also associated with a non-trivial payload condition (strat-
egy=AtomizeEverything), or to restrict atomisation to data conditions appearing in a
clause (strategy=AtomizeOnlyOnDataPredicates). Both can be set through the Atomisation-
Pipeline procedure in Algorithm 3. The Dϕ-encoding step guarantees that each activation or
target condition will be associated with at least one atom or activity label. While the former
approach will maximise the access to the AttributeTableL, the latter will maximise the access
to the ActivityTableL. Correlation conditions do not undergo this rewriting step. We discuss
the effects of each different strategy on the query runtime via empirical benchmarks in
Section 7.4. We can show that this step has a polynomial complexity with respect to the
model, key set, and element intervals’ maximum size (Lemma S3).

Example 10. With reference to Figure 3a, we might observe that, as no activation or target is ever
associated with payload conditions, the atomisation pipeline will never express each activation or
target condition as a disjunction of atoms, as no elementary interval is collected. Therefore, these
will be only associated with activity labels.

Example 11. With reference to Example 6, Figure 2 shows the atomised version of the declarative
model, where each activation and target condition is associated, in this case, with just one atom.
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Algorithm 3 Atomisation Pipeline (Section 5.1.1)
1: procedure ATOMISATIONPIPELINE(M, strategy)
2: COLLECTINTERVALS(M) . See Algorithm 1
3: Dϕ-ENCODING( ) . See Algorithm 1
4: for all clausel(A, p,B, p′) where Θ ∈ M do
5: if p=True and (strategy=AtomizeOnlyOnDataPredicates or ak(A) = {A}) then . Defining SA for clausel
6: clausel .left← {A}
7: else
8: clausel .left← ak(A) ∩ Atomµ,ad(A, p) . Equation (2)
9: end if

10: if p’=True and (strategy=AtomizeOnlyOnDataPredicates or ak(B) = {B}) then . Defining ST for clausel
11: clausel .right← {B}
12: else
13: clausel .right← ak(B) ∩ Atomµ,ad(B, p′) . Equation (2)
14: end if
15: end for

Example 12. Continuing with Example 7, where we discussed the outcome of the Dϕ-encoding
phase for a modelM′ in Equation (3), we obtain the following atomisation:

{Choice1(left = {p12, p17}, right = {p4, p9}),
Absence2(left = {p1, . . . , p5, p16, . . . , p20}, n = 1),

Absence3(left = {p1, p3, p5, p6, p8, p10, p11, p13, p15, p16, p18, p20}, n = 1)}

5.1.2. Query Optimiser

The query optimiser consists of three steps: (i) loading the xtLTLf formulæ associated with
each declarative clause at warm-up, (ii) exploiting the outcome of the Atomisation Pipeline to
instantiate the xtLTLf formulæ, (iii) and coalescing the single xtLTLf into one compact abstract
syntax DAG. Our query plan will not be represented as a tree as we merge as many nodes computing
the same result as possible, thus computing the same sub-expression at most once.

First, we load the translation map xtTemplates (Table 5) at warm-up through an
external script providing the temporal semantics associated with the clauses of interest
via partially-instantiated xtLTLf expressions. Such representation also supports negated
activation or target conditions, thus avoiding the need to compute a Not operator stripping
the information of either activation or target conditions. These are marked in the previous
table via set complementation, {. At the time of the writing, the scripts provide the
xtLTLf semantics for Declare templates. Future investigations will express other temporal
declarative languages such as [43] in xtLTLf, as well as other LTLf extensions including
“past” operators [17,19].

Second, we exploit the aforementioned map to convert each declarative clause into its
xtLTLf semantics ψ. If the clause is met for the first time, we proceed with its instantiation
by recursively visiting ψ until the leaves are reached: at this level, we potentially replace
the activation and target placeholders with the associated set of atoms. Disjunctions of
atoms and activity labels associated with leaf nodes as returned by the previous pipeline
are minimised by ensuring that each shared OrTrue computation across all of the atoms
and activity labels is computed at most once. If an atom is met, we decompose it into its
defining compound conditions (Line 14), thus guaranteeing that each compound condition
is evaluated via CompoundL,τ

A/T at most once across all of the atoms occurring in the xtLTLf
formula when running the query (Section 5.2.1).

Third, we complete the process by coalescing shared disjunct sub-expressions via a
map (queryCache) guaranteeing that all of the equivalent sub-expressions are all replaced by
just one instance of these. Finally, we associate each sub-expression referring to each clause
to the final query operator representing the expression’s root (queryRoot), either presenting
an aggregation or a conjunctive query.
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Table 5. Declare templates illustrated as their associated xtLTLf semantics. SA (and ST) denote the
disjunction of collected atoms and activity labels (represented as sets) associated with the activation
(and target) condition. The Atomisation Pipeline will return these sets. For declarative clauses that
can be directly represented as xtLTLf operators, we might have two different possible operators
depending on the atomisation result.

Exemplifying Clause (cl)
xtLTLf Semantics

SA = {A}, ST = {B} A,B ∈ Σ Otherwise (e.g., Atomisation)

Init(SA) InitLA(A) Init(SA)
Exists(SA, n) ExistsLA(A, n) Existsn(SA)

Absence(SA, n + 1) AbsenceLA(A, n) Absencen+1(SA)
Precedence(SA, S′) OrTrue(Until({S′, SA), Absence(S′, 1))
ChainPrecedence(SA, ST) where Θ Globally(Orτ

True(Orτ
True(LastL,τ , Nextτ({ST)), Andτ

Θ(Nextτ(SA), ST)))
Choice(SA, SA′ ) OrTrue(SA, SA′ )
Response(SA, ST) where Θ Globally(Orτ

True({SA, AndFutureτ
Θ(SA, ST)))

ChainResponse(SA, ST) where Θ Globally(Orτ
True({SA, Andτ

Θ(SA, Nextτ(ST))))
RespExistence(SA, ST) where Θ OrTrue(Absence(SA, 1), AndΘ(SA, ST))
ExclChoice(SA, SA′ ) AndTrue(OrTrue(Exists(SA, 1), Exists(SA′ , 1)), OrTrue(Absence(SA, 1), Absence(SA′ , 1)))
CoExistence(SA, ST) where Θ AndTrue(RespExistence(SA, ST) where Θ, RespExistence(SA′ , ST′ ) where Θ−1) s.t. SA′ = ST and ST′ = SA
Succession(SA, ST) where Θ AndTrue(Precedence(SA, S′), Response(SA, ST) where Θ) s.t. S′ = ST
ChainSuccession(SA, ST) where Θ Globally(Andτ

True(Orτ
True(Orτ

True(LastL,τ , Nextτ({ST′ )), Andτ
Θ−1 (Nextτ(SA′ ), ST′ )),

Orτ
True({SA , Andτ

Θ(SA , Nextτ(ST))))) s.t. SA′ = ST and ST′ = SA
AltResponse(SA, ST) where Θ Globally(Orτ

True({SA, Andτ
Θ(SA, Nextτ(UntilτTrue({SA, ST))))))

AltPrecedence(SA, ST) where Θ AndTrue(Precedence(SA, ST), Globally(Orτ
True({SA, Andτ

Θ(SA, Nextτ(Orτ
True(Untilτ({SA, ST), Globallyτ({SA)))))))

NotCoExistence(SA, ST) where Θ Not(AndΘ(SA, ST))
NotSuccession(SA, S′) Globally(OrTrue({SA, AndGloballyτ

True(SA, {ST)))

Example 13. The model in Figure 3a, when compiled and associated with a conjunctive query,
might produce the following xLTLf expression:

AndTrue

(
Globally

(
Orτ(Notτ(ActivityL,τ(rec)), AndFutureτ

True(ActivityL,τ
A (rec)), ActivityL,τ

T (weap))
))

,

AndTrue

(
Absence(iiot_sh, 1),

OrTrue(ActivityL(comm), ActivityL(act))
))

We might observe that this expression cannot be further minimised, as there are neither shared
atoms nor sub-expression in common. This can neither be achieved by rewriting Notτ(ActivityL,τ(rec))
as Orτ

True a∈Σ,
a 6=rec

ActivityL,τ(a), as the comm and act atoms associated with the choice clause are

untimed, while the former rewriting only included timed Activity operators. As these two different
flavours of operators do not necessarily return the same result, these nodes are not merged.

Example 14. With reference to Example 11 and Table 1, as the Response clause was associated with
the same activation and target condition to Succession, the former is indeed a subquery of the latter.
For this reason, these queries are fused together, thus guaranteeing that the result for Response is
computed at most once. As the query root requires the computation of Max-SAT, this one is always
going to be linked to the sub-expression being the representation of an original declarative clause.
Green arrows in Figure 2 indicate operators’ output shared among operators.

Example 15. This last example shows the effect of the reduction of the number of shared timed
union operators at the leaf level. By recalling the atomised model discussed in Example 12, we need
to represent each set of atoms as a timed disjunction of Atom operators. While doing so, we observe
that Choice and the first Absence condition share atoms p4 and p17, while the two Absence clauses
share all the atoms in {p1, p3, p5, p16, p18, p20}. Not ensuring that the timed unions associated with
these last elements are computed only once will result in both multiple data access to our relational
tables, as well as a considerable increase in run time as union operations are run twice. The detection
and minimisation of such kind of shared sub-queries cannot be merely computed through a simple
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caching mechanism, thus requiring a more sophisticated algorithm for determining the maximal
common subset shared among all of the possible sets of atoms (and potentially activity labels).

Algorithm 4 provides additional details on the implementation of such an approach.
Line 11 refers to the first phase and shows the point in the code where we associate each
negated leaf with the complementary set of atoms appearing after the decomposition
process. With respect to the second phase, Line 65 shows the rewriting of the Declare clause
into an intermediate xtLTLf by recursively visiting it in each of its operands until the leaves
are reached (Line 5). If during this visit we meet a binary operator marked as being the
“tester” for the correlation condition, we associate to it the Θ coming from the declarative
clause (Line 4); otherwise, the operator keeps the default True. Concerning the leaves,
for unary clauses, we consider the sole activation condition, while for binary clauses, we
might also consider target conditions. If the leaf node is associated with an SA (or ST)
containing more than one activity label or atom, we need to keep track of all of these while
representing such a leaf as a disjunction of such atoms

(Lines 18–25). Next, we optimize each disjunction of atoms and activity labels in order
to minimize the number of shared union computations (Line 48); such optimisation is
performed after fully visiting the xtLTLf expression, thus ensuring that each appearing
disjunction is actually collected (Line 69).

Line 14 shows where we collect atoms representing compound conditions while
guaranteeing that its associated CompoundL,τ

A/T operator is computed only once, as well as
decomposing it in its constituent compound conditions.

Finally, the method PUTINCACHE extends the queryCache map by guaranteeing that
each distinct disjunction of atoms is also represented at most once within the query plan.

Example 16. Figure 5 showcases the result of the application of such an algorithm while generating
unique xtLTLf expressions. Such an algorithm also guarantees the non-repetition of single-leaf
operators appearing in different clauses. Its upper box shows a query plan where common union
operations are shared across sub-trees by representing each sub-tree at most once. These are actually
represented in the query plan as opposed to the evaluation associated with the atoms, which is
discussed in Supplement III.1.

AtomL,τ (p12)

OrτTrue

AtomL,τ (p9)

OrτTrue

AtomL,τ (p4) AtomL,τ (p17) A B C

OrτTrue OrτTrue

OrτTrue

OrτTrue

Absence1OrTrue Absence1

ConjunctiveQuery

Orτ
True

AtomL,τ (p1) Orτ
True

AtomL,τ (p3) Orτ
True

AtomL,τ (p5) Orτ
True

AtomL,τ (p16) Orτ
True

AtomL,τ (p18) AtomL,τ (p20)

Figure 5. In-depth representation of the query plan associated with the model described in Example 15.
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Algorithm 4 Query Optimiser
1: global declare2xtLTLf ← {}; queryCache← {}; collectUnions← {}; Q ← {}; atomQ← ∅
2: global keyToLabelToSortedIntervals← {}; SΣ ← {}; Results← {}

3: function INSTANTIATE(ψ, Θ, SA, ST)
4: if ψ.hasTheta then ψ.theta← Θ
5: if ψ.arg= ∅ then . ψ is a leaf
6: if ψ.isActivation or ψ.isNeither then
7: ψ.atom← SA
8: else if ψ.isTarget then
9: ψ.atom← ST

10: end if
11: if ψ.negated then ψ.atom← { ψ.atom . Complementing the atoms from the universe set upon negation
12: for all atom ∈ ψ.atom do
13: if atom ∈ ⋃a∈Σ ak(a) then . The atom is generated from Dϕ-encoding
14: RETRIEVEINTERVALS(atom)
15: else atomQ.put(atom)
16: end if
17: end for
18: if |ψ.atom| > 1 then
19: disj← ∅
20: for all atom ∈ ψ.atom do
21: ψ′ ←new xtLTLf ()
22: ψ′.atom = {atom}
23: disj.put(atom)
24: end for
25: collectUnions[disj].put(ψ)
26: else
27: end if
28: else
29: for all arg ∈ ψ do
30: arg←INSTANTIATE(arg, Θ, SA, ST)
31: end for
32: end if

33: procedure COLLECTUNIONS( ) . DAG over the leaves undergoing union operations.
34: for all 〈atomSet, ψ′〉 ∈ FINITARYSETOPERATIONS(collectUnions, OrTrue) do . Algorithm S4
35: for all ψ ∈ collectUnions[atomSet] do
36: queryCache[ψ]← ψ′

37: end for
38: end for

39: procedure PUTINCACHE(ψ)
40: if ∃ψ′. 〈ψ, ψ′〉 ∈ queryCache then
41: return ψ′

42: else
43: for all arg ∈ ψ.args do
44: arg←PUTINCACHE(arg)
45: end for
46: ψ′ ← new xtLTLf ()
47: ψ′ ← ψ
48: queryCache[ψ]← ψ′

49: return ψ′

50: end if

51: procedure RETRIEVEINTERVALS(pi) . pi := a∧ partition
52: for all lowκ ≤ κ ≤ upκ ∈ partition do . pi =

∧
κ∈K lowκ ≤ κ ≤ upκ

53: if ∃h. 〈lowκ ≤ κ ≤ upκ , h〉 ∈ keyToLabelToSortedIntervals[κ][a] then
54: SΣ[pi].put(h)
55: else
56: Results.put(∅)
57: SΣ[pi].put(|Results|)
58: keyToLabelToSortedIntervals[κ][a].put(〈lowκ ≤ κ ≤ upκ , |Results|〉)
59: end if
60: end for

61: function QUERYOPTIMISER(M,queryRoot)
62: for all clausel(A, p,B, q) where Θ ∈ M do
63: if ∃ψ : xtLTLf. 〈clausel(A, p,B, q) where Θ, ψ〉 ∈ declare2xtLTLf then Q.push(ψ)
64: else
65: ψ← INSTANTIATE(xtTemplates[clausel], Θ, clausel .left, clausel .right)
66: Q.push(ψ)
67: end if
68: end for
69: COLLECTUNIONS( )
70: queryRoot.args← { PUTINCACHE(ψ) | ψ ∈ Q }
71: return queryRoot
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5.1.3. Enabling Intraquery Parallelism

The query scheduler (Algorithm 5) takes as an input the query compiled in the
previous phase and returns the scheduling order for achieving intraquery parallelism [42].
The previously generated expression might not be considered as an abstract syntax tree,
rather than an abstract syntax DIRECT ACYCLIC GRAPH (DAG) rooted in the entry-point
operator queryRoot, as we guarantee that sub-expressions appearing multiple times are
replaced by unique instances of them.

Therefore, we can freely represent the query plan as a DAG G in our pseudocode
notation, where each root operator in ψ is a single node while edges connect parent
operators to the siblings’ (ψ.args) root operator. Graph edges induce the execution order,
where any ancestor node needs to be run after all of its immediate siblings. A reversed
topological sort (Line 3) induces the order in which the operations should be run. To
know which of these operators can be run contemporarily (i.e., scheduled together [44])
as they share no interdependencies, we compute for each node its maximum distance
from queryRoot (Line 6). This generates a layering [45] guaranteeing that all of the nodes
at the same levels share no mutual dependencies (Line 10). This enables the level-wise
parallelisation of the tasks’ execution (also referred to as Intraquery Parallelism [42]), thus
showing how such a problem can be reduced into an embarrassingly parallel problem by
parallelising the computation of each operator in the same given layer. This procedure
runs in linear time with respect to the number of operators appearing in the xtLTLf query
plan (Lemma S4). We benchmark query plan parallelisation with different task scheduling
policies in Section 7.3.

Algorithm 5 Query Scheduler (Section 5.1.3)

1: function QUERYSCHEDULER(G)
2: layer← {}
3: V ← REVERT(TOPOLOGICALSORT(G))
4: for all ψ ∈ V do
5: for all ψ′ ∈ ψ.args do
6: ψ′.distance← max(ψ′.distance, ψ.distance+ 1)
7: end for
8: end for
9: for all ψ ∈ V do

10: layer[ψ.distance].put(ψ)
11: end for
12: return layer

Example 17. The DAG in Figure 2 depicts a query plan, where operators’ dependencies are
suggested as arrows starting from the ancestors. The graph is also already represented as a layered
graph, as all of the nodes having the same maximum distance from the query root are aligned
horizontally. We might observe that none of the nodes within each layer shares dependencies.

5.2. Execution Engine

The execution engine (Algorithm 6) runs the previously compiled query (Section 5.1) on top of
the relational model populated from the XES log (Section 4.2). The computation will start from the
DAG query leaves directly accessing the relational database (Section 5.2.1) for then propagating the
results until the root of the DAG is reached (Section 5.2.2). At this point, we can perform the final
conjunctive or aggregation queries (Section 5.2.3).

At each stage, we exploit a functor A associating to each xtLTLf operator an algorithm which
will take the result from the ψ’s operands as an input while returning the expected output by formal
definition in an intermediate result ρ. This abstraction enables the separation between xtLTLf
syntax and multiple possible algorithmic implementations. Some algorithmic implementations for
such operators are discussed in Section 6.
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Algorithm 6 Execution Engine (Section 5.2)

1: function EXECUTIONENGINE(layer,L,A)
2: for all ψ ∈ atomQ (parallel) do ψ.result← A(ψ)
3: RUNDϕ-ENCODINGATOMS(L) . Algorithm S5
4: for all 〈distance, Ψ〉 ∈ layer do
5: for all ψ ∈ Ψ (parallel) do
6: if ψ.atom = {pi} and pi ∈

⋃
a∈Σ ak(a) then

7: ψ.result←A(AtomL,τ
· )(ψ) . Algorithm S5

8: else if ψ.atom = {a} ∧ a ∈ Σ then
9: continue . Already run in Line 2

10: else
11: ψ.result← (A(ψ))({ψ′.result|ψ′ ∈ ψ.args})
12: end if
13: end for
14: end for
15: queryRoot← layer[0]
16: return queryRoot.result

For this step, we will not discuss the computational complexity of evaluating the query plan as
this is heavily dominated by the computation of every single operator, the model of choice, and the
log size. For this reason, we only conducted empirical analysis by benchmarking the run time of the
whole execution engine, where models either only contain ActivityL,τ

A/T (Section 7.2) operators or

mainly AtomL,τ
A/T ones (Section 7.5).

5.2.1. Basic Operators’ Execution

Among all of the possible DAG node leaves, we first (Line 2) execute the leaves either
(i) directly associated with an activity label, or (ii) First and Last. For the former (i), each
activity label a is run through its correspondent ActivityL,τ

A/T(a) operator, whether either A
or T or none are going to be set depending on the fact that such atom refers to an activation
(ψ.isActivation) or target (ψ.isTarget) condition, or whether the associated result should
be ignored as a whole (ψ.isNeither). For the latter (ii), we directly access the data tables
and retrieve the data from them. As the tables are already sorted by trace and event id,
no further post-processing besides the insertion of activation or target label in the nested
component L of the intermediate representation is required.

Next, we evaluate the intermediate result associated with each atom generated by
the Dϕ-encoding (Line 3). Intuitively (Please refer to Supplement III.1 for a more in-depth
discussion with pseudocode.), this requires three subsequent phases. First, we obtain the
compound conditions grouped by key and activity label as collected at query compile time,
and we exploit them to pipeline multiple range queries over each AttributeTablek

L. The
associated results are cached. Second, we compute the results for each atom by intersecting
the previously cached results before actually computing the actual AtomL,τ

A/T . This also
guarantees that shared intersections are run at most once across all of the previously cached
results. Third, we exploit the former result to compute the AtomL,τ

A/T operator at the leaf
level on our DAG, while associating either an activation or a target mark in L depending
on the prior definition of our leaf-level operator.

5.2.2. Results Propagation

After running the basic operators and their derived counterparts (e.g., AtomL,τ
A/T), the

only xtLTLf operators that KnoBAB runs are the ones not accessing the relational tables.
KnoBAB implements three different A-s which are only sharing the implementation for
the aforementioned operators: one set is either strictly abiding by the formal definition
and completely ignoring the fact that the intermediate results are provided as an ordered
set of tuples or providing slower algorithms overall, one will leverage appropriate data
representation, thus outperforming the former operations, while the other will implement
hybrid algorithms for selecting the best performant implementation depending on the
data conditions through hybrid algorithms. An in-depth discussion of how different
operators might have different algorithmic implementations is postponed to a specific
section (Section 6).
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While computing these, we associate a temporary primary-memory cache (We can
completely free each intermediate cache if we are not computing a CONFIDENCE query
and if the furthest ancestor has already accessed it, or if the cache is unassociated with any
activation required by CONFIDENCE.) to each intermediate representation being computed
(ψ.result).

5.2.3. Conjunctive and Aggregation Queries

The first version of KnoBAB supports the CONJUNCTIVE QUERY of the model as well
as three aggregation queries: MAX-SAT, CONFIDENCE, and SUPPORT. While the former
requires a further untimed AndTrue among all the intermediate results associated with the
computation to each clause, the aggregation requires just an iteration over the provided
results. The conjunctive query is formulated as follows:

CONJUNCTIVEQUERY(ρ1, . . . , ρn) = AndTrue(ρ1, . . . AndTrue(ρn−1, ρn))

The Max-SAT will calculate the ratio of the intermediate results ρl associated with
each clause cl , over the total number of model clauses |M|. ActLeaves(ρl) is the untimed
union of the intermediate results yielded by activation conditions for the Declare clause
cl ∈ M. For cl , the CONFIDENCE represents the ratio between the number of traces
returned by ρl and the total number of traces that contain activation conditions. When the
same numerator is on the other hand divided by the total log traces, we have SUPPORT.
Following the computation of each ρl per clause cl , the aggregation functions can be
expressed as follows:

Max-SAT(ρ1, . . . , ρn) =

(
|{ l | ∃j, L. 〈i, j, L〉 ∈ ρl }|

|M|

)
σi∈L

CONFIDENCE(ρ1, . . . , ρn) =

(
|{ i | ∃j, L. 〈i, j, L〉 ∈ ρl }|

|ActLeaves(ρl)|

)
cl∈M

SUPPORT(ρ1, . . . , ρn) =

(
|{ i | ∃j, L. 〈i, j, L〉 ∈ ρl }|

|L|

)
cl∈M

The execution of such queries is performed in a non-parallel way, as each aggregation
query will appear at the top of the query plan, and this will be associated with the latest
execution run of the scheduler (Line 15). We then return and prompt the result associated
with the root node of our query plan (Line 16).

Example 18. As per previous discussions, the satisfaction of a model requires the satisfaction of
all constituent clauses. The model described as the bottom table in Figure 6 is the result of further
elaborating on the requirements from Example 1. This is only one example of a myriad of possible
solutions, which can either be manually defined (as here), or generated through mining/learning
techniques. Such model can be now used to compute the degree to which the model is satisfied, or per
trace, each requiring different metrics. An example of a trace-wise metric is Max-SAT while Support
and Confidence values can be computed per clause. By providing the trace metrics, we are able to
analyse the scenarios with respect to the model, and therefore help provide insight into the exhibits of
any backdoors in the software. On the contrary, providing model metrics allows us to establish the
suitability of a model and its constituent clauses; for example, clauses with low Support but high
Confidence may indicate a correlation between events. Finally, a conjunctive query will return all
the traces satisfying all the model clauses. From Figure 6, it is evident that the only trace where
a successful attack occurred is σ1, as returned by the Conjunctive Query, providing the grounds
that we have a suitable model. By exploiting the previous formulæ, we can compute the metrics as
Table 6. These metrics may provide some insight of correlations between events. For example, clause
B had Support(Confidence) values as 1.0, while clause C had 1/3 (1.0). This therefore indicates
that the activation of the latter occurred much less than that of the former; however, every time the
activation occurred, the clause was always fulfilled. Conclusions such as these can help to identify
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any weaknesses/strengths within the model and the system itself (here, the metrics obtained from C
may suggest that comm/act contain a correlation that needs investigating).

Figure 6. Assessing a high-level use case of an intrusion attack on a software system through a
declarative model.

Table 6. Conjunctive and Aggregation queries for Figure 6.

(a) Metric calculations per trace.

Trace MAX-SAT in Conjunctive Query

σ1
|{ c1,c2,c3 }|
|M| = 1.0 true

σ2
|{ c2 }|
|M| = 1/3 false

σ3
|{ c1,c2 }|
|M| = 2/3 false

(b) Metric calculations per clause.

Clause Support Confidence

A |{ σ1,σ3 }|
|L| = 2/3

|{ σ1,σ3 }|
|{ σ1,σ2,σ3 }|

= 2/3

B |{ σ1,σ2,σ3 }|
|L| = 1.0 |{ σ1,σ2,σ3 }|

|{ σ1,σ2,σ3 }|
= 1.0

C |{ σ1 }|
|L| = 1/3

|{ σ1 }|
|{ σ1 }|

= 1.0

6. Algorithmic Implementations

In this section, we show how the relational model and the proposed intermediate result repre-
sentation enable the definition of different operators boosting the query performance compared to an
equivalent xtLTLf expression obtained through the straightforward translation procedure entailed
by the lemmas in Appendix A.2 (LTLf-rewriting). Each subsection is going to discuss different
possible algorithms for implementing some operators, as well as discussing its associated pseudocode
and computational complexity.

6.1. Timed and Untimed Or/And

Algorithm 7 shows the implementation of the timed version of the Andτ
Θ (Line 27) and

Orτ
Θ (Line 28) operators, for then generalising this concept for the implementation of the

untimed AndΘ. We omit the discussion related to the implementation of the untimed OrΘ
operator for the sake of conciseness.
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As we see from their formal definition, any binary xtLTLf operator supports Θ condi-
tions. And (and Or) resembles a sorted set intersection (or union, Line 11), where we use
both trace (i) and event (j) id information from the intermediate result triplet as preliminary
equality condition for the match. We also use a Θ binary predicate to be tested over the
activated and targeted events in the third component (L). The event shared among the
operands is returned if either Θ is always true (Line 7) or, from this point in time, if there
exists one activated future activated event (in a L coming from the left operand) as well as
a targeted one (in a L coming from the right operand) satisfying the correlation (Line 4).
The match is then represented as a marked correlation condition M(h, k), which is then
collected in the L associated with the returned event (Line 5).

For the untimed AndΘ operator, we require to return one single trace i as 〈i, 1, L〉 if
either Θ is true and each operator has an event from σi, or if there exists at least one event
per operand from the same trace performing the match. This can be implemented in two
different ways: we can either group the records by trace id (Lines 31 and 32) and then
scan the intermediate results’ records (Line 38) associated with the same trace id (Line 36,
SLOWUNTIMEDAND) or straightforwardly scan them by trace id without exploiting the
preliminary aggregation (FASTUNTIMEDAND). This latter implementation is possible as the
intermediate results records are already sorted, thus allowing the results’ aggregation while
scanning the intermediate results without the need for any preliminary aggregation. We
show that the faster version is always faster than computing it with its slower counterpart
in Corollary S1.

Similar considerations can be also applied for the untimed Or operation, for which we
implemented equivalent SLOWUNTIMEDOR and FASTUNTIMEDOR, as we only need to
pay an additional linear scan for the unmatched traces.

6.2. Choice and Untimed Or

We prelude our analysis of derived operators by firstly discussing the difference in
computational complexity between providing the straightforward translation from LTLf to
xtLTLf and to exploiting equivalent expression rewriting in xtLTLf. We remind the reader
that the definition of Choice (see Table 1) states that either one condition or another should
occur anytime in the trace.

This requirement can be interpreted in two distinct ways: by either returning all the
traces satisfying the first condition or the second separately and then merging them, or
instead collecting all of the events satisfying either the former or the latter condition while
jointly scanning both operands, and then returning the traces where any one of them is
met. After observing (Please also refer to the experiments in Section 7.1 for the empirical
evidence of such theoretical claims.) that the SLOWUNTIMEDOR is actually slower than
FASTUNTIMEDOR and that the latter actually implements the Choice declarative clause
(Corollary A1), the time complexity of computing the LTLf rewriting of Choice in its
LTLf-rewriting is almost equivalent to the time complexity of FASTUNTIMEDOR, as we
can have an asymptotic constant speed-up in the best case scenario (Corollary S3). As
the untimed OrΘ behaves by computing a Future operator (Algorithm 8) on each of its
operands, the computation of an additional Future operator for each of its operands becomes
an omittable overhand.

6.3. Untimed Until(s)

We show how different data access policies for scanning the intermediate results affect
the overall computational complexity as well as their associated run time. Algorithm 9
provides two possible variants for the untimed until:
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Algorithm 7 xtLTLf pseudocode implementation for AndΘ and OrΘ operators
1: function T E,i

Θ (L, L′)
2: L′′ ← ∅; hasMatch← Θ = True . (Explicitly) computing T E,i

Θ
3: if Θ 6= True and L 6= ∅ and L′ 6= ∅ then
4: for all A(m) ∈ L and T(n) ∈ L′ s.i. Θ(m, n) do
5: L′′ ← L′′ ∪ {M(m, n) }; hasMatch← true
6: end for
7: else
8: L′′ ← L′′ ∪ L′ ∪ L
9: end if

10: if hasMatch then return L′′ else return False

11: function TIMEDINTERSECTIONΘ(ρ, ρ′, isUnion)
12: it←Iterator(ρ), it′ ←Iterator(ρ′)
13: while it 6=↑ and it′ 6=↑ do
14: 〈i, j, L〉 ← current(it), 〈i′, j′, L′〉 ← current(it′)
15: if i = i′ and j = j′ then
16: tmp← T E,i

Θ (L, L′)
17: if tmp 6= False then yield 〈i, j, tmp〉
18: next(it); next(it′);
19: else if i < i′ or (i = i′ and j < j′) then
20: if isUnion then yield 〈i, j, L〉 end if
21: next(it)
22: else
23: if isUnion then yield 〈i′, j′, L′〉 end if
24: next(it′)
25: end if
26: end while

27: function ANDτ
Θ(ρ, ρ′) TIMEDINTERSECTIONΘ(ρ, ρ′, false)

28: function ORτ
Θ(ρ, ρ′) TIMEDINTERSECTIONΘ(ρ, ρ′, true)

29: function SLOWUNTIMEDANDΘ(ρ, ρ′)
30: leftOperand← {}; rightOperand← {}
31: for all 〈i, j, L〉 ∈ ρ do rightOperand[i].put(〈i, j, L〉)
32: for all 〈i, j, L〉 ∈ ρ′ do rightOperand[i].put(〈i, j, L〉)
33: it←Iterator(leftOperand), it′ ←Iterator(rightOperand)
34: while it 6=↑ and it′ 6=↑ do
35: 〈i, R〉 ← current(it); 〈i′, R′〉 ← current(it′)
36: if i = i′ then
37: L′′ ← ∅; hasMatch← Θ = True
38: for all 〈i, j, L〉 ∈ R and 〈i, j′, L′〉 ∈ R′ do
39: tmp← T E,i

Θ (L, L′)
40: if tmp 6= False then
41: hasMatch← true; L′′ ← L′′ ∪ tmp
42: end if
43: end for
44: if hasMatch then yield 〈i, 1, L′′〉;
45: else if i < i′ then next(it)
46: else next(it′)
47: end if
48: end while

49: function FASTUNTIMEDANDΘ(ρ, ρ′)
50: it←Iterator(ρ), it′ ←Iterator(ρ′)
51: while it 6=↑ and it′ 6=↑ do
52: 〈i, ι, λ〉 ← current(it); 〈i′, ι′, λ′〉 ← current(it′)
53: if i = i′ then
54: L′′ ← ∅; canOptimize← false
55: it∗ ← it
56: while it∗ 6=↑ do
57: 〈i, j, L〉 ← current(it∗); it′∗ ← it′

58: if not canOptimize then
59: while it′∗ 6=↑ do
60: 〈i′, j′, L′〉 ← current(it′∗)
61: tmp← T E,i

Θ (L, L′)
62: if tmp 6= False then
63: hasMatch← true; L′′ ← L′′ ∪ tmp
64: end if
65: next(it′∗)
66: end while
67: if Θ = True then canOptimize← true
68: elseL′′ ← L′′ ∪ L
69: end if
70: next(it∗)
71: end while
72: if hasMatch then yield 〈i, 1, L′′〉;
73: it← it∗; it′ ← it′∗;
74: else if i < i′ then next(it)
75: else next(it′)
76: end if
77: end while
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Algorithm 8 xtLTLf pseudocode implementation for Future and Globally

1: function FUTURE(ρ) . O(|L|ε2)
2: for all 〈i, j, L〉 ∈ ρ do yield 〈i, j,

⋃
{ L′ | 〈i, j′, L′〉 ∈ ρ and j′ ≥ j }〉

3: end for

4: function GLOBALLY(ρ)
5: for all 〈i, j, L〉 ∈ ρ do
6: E← { j′ | 〈i, j′, L′〉 ∈ ρ and j′ ≥ j }
7: if |E| = `t − j then yield 〈i, j,

⋃
{ L′ | 〈i, j′, L′〉 ∈ ρ and j′ ∈ E }〉 end if

8: end for

All optimisations happen when the activation condition coming from the second
operand does not occur at the beginning of a trace (Lines 34 and 61). In the first variant,
we calculate, for all of the events in the first operand starting from the beginning of the
trace (Line 29, and Line 51 for the second variant), the position of the last activated event
preceding the current target condition with a logarithmic scan with respect to the length
of the first operand (Line 34). On the other hand, the second variant directly discards the
traces not starting with a target condition (Line 59) and, otherwise, it moves the scan of
the first operand—from that initial position—by an offset equal to the distance from the
event preceding activation (Line 61): if that position does not correspond to an activation
condition preceding the current activation condition, then we completely discard the
trace (Line 65). The matching conditions between activations and target are implemented
similarly (Lines 37–40 and 67–69). Lemma S7 shows that the second variant is better
asymptotically only for bigger datasets.

6.4. Derived Operators

Our previous observation for the untimed OrΘ led us to the definition of additional
derived operators with the hope of easing the overall computational complexity. We walked
in the same footsteps of relational algebra, where it was customary to merge multiple
operators into one single new operator if the latter might be implemented through a more
performant algorithm than computing an equivalent expression being the straightforward
translation of LTLf formulae into LTLf (LTLf rewriting).

For example, we can implement TIMEDANDFUTURE by extending the fast imple-
mentation of the timed AND operator, and considering all of the trace events from the
second operand succeeding the events from the first operand within the same trace. Similar
considerations can be carried out with TIMEDANDGLOBALLY, where in the former we
need to count whether all of the events from the current time until the end of the trace are
present in the rightmost operand, while in the latter we also need to skip the matched event
from the rightmost operand and start scanning from the following ones.

For simplicity’s sake, we postpone the discussion of these operands’ pseudocode as
well as the discussion of their computational complexity in Supplement II.2, where we
show that these two operators might come with two different algorithms, for which there
always exists one of them having a lower running time with respect to the equivalent
xtLTLf expression containing no derived operators. We can show formally that, while the
first implementation (variant) works better for smaller datasets, the second works better for
reasonably long traces when the number of the traces is upper bounded by an exponential
number of events (Corollary S2).
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Algorithm 9 Two implementations for the untimed xtLTLf UntilΘ.
1: function Ai

Θ(〈it′, bEnd〉 , 〈it, aEnd〉)
2: 〈i′, j′, L′〉 ← current(it′); L′′ ← ∅;
3: if Θ 6= True and L′ 6= ∅ then
4: for all A(k), M(k, k′) ∈ L′ do
5: aBeg← it
6: while aBeg 6=aEnd do
7: 〈i, j, L〉 ← current(aBeg)
8: if L = ∅ then L′′ ← L′′ ∪ L
9: else

10: anyMatch← false
11: for all T(h) ∈ L s.t. Θ(σi

k, σi
h) do anyMatch← true; L′′ ← L′′ ∪ {M(k, h)}

12: end for
13: if not anyMatch then return False
14: end if
15: end while
16: end for
17: else
18: while aBeg 6=aEnd do
19: 〈i, j, L〉 ← current(aBeg++); L′′ ← L′′ ∪ L
20: end while
21: L′ ← L′′ ∪ L′

22: end if
23: return L′′

24: function UNTIMEDUNTIL1
Θ(ρ, ρ′)

25: it←Iterator(ρ), it′ ←Iterator(ρ′)
26: while it′ 6=↑ do
27: 〈i′, j′, L′〉 ← current(it′); bend← UPPERBOUND(ρ′, it′, ↑, 〈i′, |σi′ |+ 1, ∅〉)
28: it← LOWERBOUND(ρ, it, ↑, 〈i′, 1, ∅〉)
29: atLeastOneResult← false; L′′ ← ∅
30: while it’ < bend do
31: if j′ = 1 then
32: atLeastOneResult← true; L′′ ← L′′ ∪ L; it′++
33: else
34: aEnd← UPPERBOUND(ρ, it, ↑, 〈i′, j′ − 1,>Ω〉)
35: if it = aEnd or DISTANCE(aEnd− 1, it) + 1 6= j′ − 1 then break
36: else . i = i′. Computing partial T A,i

Θ
37: tmp← Ai

Θ(〈it
′, bend〉 , 〈it, aEnd〉)

38: atLeastOneResult← atLeastOneResult or tmp 6= False
39: if tmp 6= False then L′′ ← L′′ ∪ tmp;
40: it′++
41: end if
42: end if
43: end while
44: if atLeastOneResult then yield 〈i, 1, L′′〉
45: it′ ← bend
46: end while

47: function UNTIMEDUNTIL2
Θ(ρ, ρ′)

48: it←Iterator(ρ), it′ ←Iterator(ρ′)
49: while it′ 6=↑ do
50: 〈i′, j′, L′〉 ← current(it′); bend← UPPERBOUND(ρ′, it′, ↑, 〈i′, |σi′ |+ 1, ∅〉)
51: it← LOWERBOUND(ρ, it, ↑, 〈i′, 1, ∅〉)
52: atLeastOneResult← false; L′′ ← ∅
53: while it’ < bend do
54: if j′ = 1 then
55: atLeastOneResult← true; L′′ ← L′′ ∪ L; it′++
56: else if it =↑ then break
57: else
58: 〈i, j, L〉 ← current(it);
59: if j > 1 then break
60: else
61: aEnd← MOVEFORWARD(it, j′ − 1); . (it) + j′ − 1
62: if aEnd =↑ then break
63: else
64: 〈ie, je, Le〉 ← current(aEnd)
65: if ie > i′ or je 6= j′ − 1 then break
66: else . i = i′ = ie. Computing partial T A,i

Θ
67: tmp← Ai

Θ(〈it
′, bend〉 , 〈it, aEnd〉)

68: atLeastOneResult← atLeastOneResult or tmp 6= False
69: if tmp 6= False then L′′ ← L′′ ∪ tmp;
70: it′++
71: end if
72: end if
73: end if
74: end if
75: end while
76: if atLeastOneResult then yield 〈i, 1, L′′〉
77: it′ ← bend
78: end while
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Table 7 shows the range of datasets used for benchmarking.

Table 7. Range of datasets used for benchmarking.

Competitor Dataset Traces |L| Events Distinct Activities |Σ|

SQL Miner

BPIC 2011 (original) 1143 150,291 624
BPIC 2011 (10) 10 2613 158

BPIC 2011 (100) 100 12,195 276
BPIC 2011 (1000) 1000 133,935 607

Declare Analyzer BPIC 2012 (original) 13,087 262,200 24

7. Results and Discussion

Our benchmarks exploited a Razer Blade Pro on Ubuntu 20.04: Intel Core i7-10875H
CPU @ 2.30 GHz–5.10 GHz, 16GB DDR4 2933 MHz RAM, 450 GB free disk space. All of
our datasets used for benchmarking (synthetic data generation (Section 7.1), BPIC_2011
(Sections 7.2 and 7.3), BPIC_2012 (Sections 7.4 and 7.5) and our proposed cancer example
(Section 1.1) are publicly available (https://dx.doi.org/10.17605/OSF.IO/2CXR7). Table 7
summarises these datasets’ features.

7.1. Comparing Different Operators’ Algorithms

We advocate that the choice of representing the intermediate representation as an ordered record
set allows the exploitation of efficient algorithms through which we might avoid costly counting and
aggregation operations [46]. From these comparisons, the operators fully assuming that the data are
sorted greatly outperform naïve operators. Walking in the footsteps of relational algebra, we show
that the computational complexity of so-called derived operators outperforms the computation of
an equivalent expression evaluated through either naïve or fast algorithms. The experiments are
discussed in order of presentation of the algorithms in the previous section.

To create a suitable testing environment, we synthetically generate data-less logs,
where the trace and log lengths are increased 10-fold at a time from 101–104 , with the
resulting sets |L| ∈ { 10, 100, 1000, 10, 000 } ε ∈ { 10, 100, 1000, 10, 000 }, with the most
extreme log consisting of 108 events. In some cases, we exceeded 16 GB of primary memory
on the testing machine; in the following results (Figure 7–10), M+ denotes an out of
memory exception. We chose to generate our data in place of using existing real-world
logs (https://dx.doi.org/10.17605/OSF.IO/2CXR7) , as the controlled scenario allows for
identifying the location and extent of any possible speed-ups. These data were up-sampled,
guaranteeing that a given log configuration was always a subset of the larger. The data
generation randomly assigned events from the universal alphabet (Σ = { A, B, C, D, E }),
up to the maximum length for the set in consideration, and we stored the resulting logs as
tab-separated files.

Our operators consider correlations between timed events A and B, where the computed
speed-up is per operator. Given this, we denote ρ1 = ActivityL,τ

A (A), ρ2 = ActivityL,τ
T (B), prior

to benchmarking, and we ignore the time required for accessing the data on the knowledge
base, as the focus of the present benchmarks is solely on the operators. Details of how
the custom clauses/derived operators are run are demonstrated in Table 8, while singular
operators are run sequentially.

Table 8. Proposed operator semantics vs. traditional.

Operator LTLf Rewriting Optimised

Choice OrΘ(Future(ρ1), Future(ρ2)) OrΘ(ρ1, ρ2)

TIMEDANDFUTURE AndΘ(ρ1, Futureτ(ρ2)) AndFutureτ
Θ(ρ1, ρ2)

TIMEDANDGLOBALLY AndΘ(ρ1, Globallyτ(ρ2)) AndGloballyτ
Θ(ρ1, ρ2)

https://dx.doi.org/10.17605/OSF.IO/2CXR7
https://dx.doi.org/10.17605/OSF.IO/2CXR7
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Figure 7. Results for the fast set operations Section 6.1 against the traditional logical implementation.

Untimed Or/And . The first group of experiments aim to challenge different possible
algorithms for the same xtLTLf operators, AndTrue and OrTrue, as discussed in Section 6.1.
The outcome of such experiments is given in Figure 7: our experiments reveal that, in every
case, the FAST- operators are always more performant than their logical counterparts. Our
benchmark confirms the cost of overhead encumbered by the SLOW- implementation, which
conforms linearly to increased log size, almost polynomially with trace length. This aggre-
gation is upper bounded with a quadratic with respect to trace length ε (Lines 31 and 32);
in the most extreme case (ε = 104), the cost is over one order of magnitude versus the
algorithm without aggregation. From now on, we always exploit our FAST- operators
in place of the SLOW- equivalent for representing non-derived xtLTLf operators, which
usually suffer the cost caused by the preliminary aggregation as per previous experiments.
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Figure 8. Results for the custom declarative clause implementations Section 6.2 against the traditional
logical implementation.
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Figure 9. Results for the UNTIL operator (Section 6.3).

Choice and Untimed Or. The next set of experiments is to evaluate the customary
declarative clause implementation, where we hypothesise reformulating the semantics
associated with Choice to provide performance gains from the absence of preliminary
aggregations via the UntimedFuture operator. In fact, the proposed optimisation derives
from the omittance of the Future operators for ρ1, ρ2, which formally comply with the
logical definition. For the untimed Future Section 3.2.2 operator, bounded scans can be
exploited, as the data are sorted with respect to trace id, and all the events that satisfy ρ for
the current trace id are included in the result. Therefore, we expect an overhead that grows
linearly with log size. Figure 8 shows that, in the best case (ε = 10), we gain 0.5 orders
of magnitude in performance. The findings affirm that log size has a greater influence on
computational overhead than trace length. For ε ≥ 103, the overhead resulting from the
Future operators steadily increases while both the trace length ε and the log size |L| grows,
albeit this is negligible in the logarithmic scale.
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Figure 10. Results for the derived operators TIMEDANDFUTURE and TIMEDANDGLOBALLY

Section 6.4. We include both variants of the fast implementations to analyse the environments
where each thrive.
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Untimed Until(s). Benchmarks from Figure 9 show that the first variant is almost
always more performant than the second one for considerably short traces, while the
latter becomes more efficient when ε increases. With significant increases to log size, the
latter becomes more performant; when |L| = 104, all cases show improved running times,
regardless of ε. The plots also show that the operator’s running time is polynomial with
respect to the number of traces in the log, as a consequence of the increased scans within
every single trace.

Derived Operators. The final set of experiments is to test whether the newly proposed
derived operators achieve more optimised results than those from their LTLf rewriting coun-
terpart (Table 8). For example, TIMEDANDGLOBALLY can be optimised with the customary
algorithms replacing one single operator with the execution of multiple pipelined operators.
Computations from LTLf rewriting demonstrate worse performance than the derived coun-
terparts across all operators; in the most extreme case TIMEDANDGLOBALLY, there is over
101.5 speed-up for ε = 104. We were able to conclude that different impersonations to the in-
ternal data storage of the optimised algorithm may provide better results depending on the
log size. As for UntimedUntil, we provide two implementations for TIMEDANDGLOBALLY

and TIMEDANDFUTURE, VARIANT-1 (Algorihtm S1) and VARIANT-2 (Algorihtm S2), with
the latter exploiting bounded reversed scans on the data.

TIMEDANDGLOBALLY: by merging the AND join operation with Globally, we only
consider elements within the same trace after the first operand. The logical implementation
performs these operations separately, and so cannot reap the benefits of a merged join [47].
Figure 10 shows that, in most cases, there is a linear performance gain with log size.
VARIANT-2 aims to exploit potential gains from a reversed scan of a trace while VARIANT-
1 provides a forwards scan for every activation. By performing a reverse scan, the latter is
able to prune further events from any activations happening in the past, as the condition
did not hold for the current time. For smaller trace lengths (ε ≤ 101), the VARIANT-
1 demonstrates better performance than VARIANT-2. With increased trace length, the latter
operators outperform the former, sometimes by over an order of magnitude (ε = 104).
In some cases, the VARIANT-1 performs slower than their LTLf-rewriting counterparts
(ε ≥ 103).

TIMEDANDFUTURE: the principal optimisation gains from this operator follow the
same reasoning as TIMEDANDGLOBALLY; however, the implementations of the variants
follow a unique approach. By exploiting the allocation of intermediate data structures in re-
verse, VARIANT-2 also provides improved performance for larger |L|. As with TIMEDAND-
GLOBALLY, VARIANT-1 outperforms the former for smaller trace lengths.

We conclude that VARIANT-1 (VARIANT-2) of TIMEDANDFUTURE and TIMEDAND-
GLOBALLY outperform each other for small (large) trace lengths. In addition, the first
variant of Until proves to be more performant than our second variant for smaller log
lengths. We design a mechanism for always running the fastest algorithm under the
previously-observed circumstances. We then need to calculate the average trace length
and the log size at data loading time (this only needs to happen once per log). Then,
at query time, the most optimal operator is chosen based on these values. We define
a HYBRID TRACE QUERY THRESHOLD γ of 102/2 (Lines 5 and 9) and a HYBRID LOG
QUERY THRESHOLD η of 103/2 (Line 1); values exceeding these thresholds will execute
the operators more tailored towards large trace (log) sizes. The pseudocode provided
as Algorithm 10 demonstrates how two different variants can be engulfed in one single
parametric algorithm.
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Algorithm 10 Hybrid Algorithms

1: function HYBRIDUNTIMEDUNTIL
η
Θ(ρ, ρ′)

2: if |L| ≥ η then return UNTIMEDUNTIL2
Θ(ρ, ρ′) . Algorithm 9

3: else return UNTIMEDUNTIL1
Θ(ρ, ρ′) . Algorithm 9

4: end if

5: function HYBRIDANDFUTURE
γ
Θ(ρ, ρ′)

6: if ε > γ then return ANDFUTURE2
Θ(ρ, ρ′) . Algorithm S1

7: else return ANDFUTURE1
Θ(ρ, ρ′) . Algorithm S2

8: end if

9: function HYBRIDANDGLOBALLY
γ
Θ(ρ, ρ′)

10: if ε ≥ γ then return ANDGLOBALLY2
Θ(ρ, ρ′) . Algorithm S1

11: else return ANDGLOBALLY1
Θ(ρ, ρ′) . Algorithm S2

12: end if

7.2. Relational Temporal Mining

We now move from synthetic data, required to tune hybrid algorithms and thoroughly test our
operators, towards real data benchmarks with no data payload conditions. We contextualise our
experiments for data-intensive model mining operations that can also be run on a relational model.
While doing so, we compare our runtimes both with hybrid operators with the one from the previous
paper [4], as well as run times from the relational model with traditional SQL queries.

SQLMiner, provided by Schonig et al. [5], utilises database architectures for declara-
tive process mining. We chose to test our hypothesis of engineering a custom database
architecture against state-of-the-art traditional relational databases (PostgreSQL 14.2). For
this set of experiments, we exploited the BPIC 2011 (Dutch academic hospital log) dataset
(https://dx.doi.org/10.17605/OSF.IO/2CXR7), as used in [5]. This log contained data
payload information, though the queries executed as [5] were comprised of data-less events.
The original dataset was sampled into sub-logs containing 10, 100, and 1000 traces, and the
sampling approach adopted the same behaviour as the synthetic dataset from the previous
set-up, where each sub-log is guaranteed to be a subset of the greater ones. Increased sizes
of datasets exhibited exponential increases in primary memory requirements and thus
justifies our sampling approach. Schönig [48] provides the templated implementations for
mining eight declarative clauses. As these are only templates, the models were instantiated
from the resulting combinations of the five most occurring events. Therefore, we generated
eight models, each consisting of 25 clauses. SQLMiner simulated this by creating a sec-
ondary Actions table, with each row containing the instantiated Declare template. SQLMiner
provides the Support values associated with each clause. We extend this to also provide
trace information, where each clause also contains the traces satisfying it. We also want to
test our hypothesis that our proposed hybrid operator pipeline (Section 7.1) can outperform
the pipeline set up from our previous work [4] that does not exploit the potential gains that
can be made from picking the best algorithm according to the data conditions, and only
uses our defined VARIANT-1 operators. The outcomes of these experiments are shown in
Figure 11, where each plot represents the execution times for a given elected template, with
the more complex queries located on the first row.

SQLMiner results. In the worst case, our running time is comparable with SQLMiner
(Response). Even for this case, SQLMiner returns only the Support information, while
KnoBAB also returns (for the same execution time) trace information. In SQL, providing
the least possible query alterations to provide the trace information causes 101.5 run
time increase, thus demonstrating that we are more performant on the same conditions.
Conversely, in the best case, we outperform SQLMiner by over five orders of magnitude.
By exploiting efficient database design, our custom query plan can minimise data access
and our computation avoided explicit computations of aggregations. In addition, guaran-
teeing that the intermediate results are always sorted allows for linear scanning cost for
counting operations. Responded Existence is a clear candidate for demonstrating the gains

https://dx.doi.org/10.17605/OSF.IO/2CXR7
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from custom database design: with access to our proposed CountingTableL, our solution
requires only a table look-up, while SQLMiner requires an aggregation requiring an entire
scan of the Log table. Combining this with the extended xtLTLf operators allows for
much more optimised query times; this is shown in the results, where KnoBAB is con-
sistently at least two orders of magnitude more performant with queries returning trace
information. As |L| increases beyond 102, the more complex queries were unable to finish
to completion for SQLMiner, exceeding the 16 GB primary memory of the benchmarking
machine.
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Figure 11. Results for relational temporal mining Section 7.2.

Pipeline results. The execution times for KnoBAB + Support and KnoBAB + Max-
SAT are comparable, while there is much greater variation for SQLMiner + Support and
SQLMiner + Trace Info. As support requires only an aggregation over intermediate results
(Section 5.2.3), we guarantee that we suffer at most a cost proportional to the model size,
so we expect a constant overhead based on model size. The large fluctuation in results for
SQLMiner is a culprit of the query rewriting provided by the PostgreSQL query engine;
in some cases, returning trace information yielded better results. In these experiments,
we combined the alternate ensemble methods with our proposed HYBRID operators. The
results demonstrate that, for most operators, there is a marginal improvement in time
complexity. For NotSuccession and Response, the improvement is more apparent, with
the former, for |L| = 10 providing 20% improvement against VARIANT-1. The reader is
encouraged to refer back to Figure 10 to explain this. The faster operators thrive with
|L| > 103, while, for traces within the region of 102, the gain is much less apparent. The
BPIC_2011 dataset has a corresponding average trace length of ∼220: exploiting the
VARIANT-2 operators within this region will therefore yield lesser benefit than much
larger |L|.

7.3. Query Plan Parallelisation

By keeping the immediately preceding experimental setting while considering the whole log as
well as extending the model size, we now benchmark our solution in a multithreaded environment,
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where we perform intra-query parallelism by running each operator laying in the same layer in
parallel as per previous discussions.

The correctness of our proposed parallelisation approach is guaranteed by the fact that
each thread in a given layer can operate independently with no interdependencies requiring
costly mutual exclusions. In place of directly using the pthread C++ library on multiple
tasks, we utilised a thread pool proposed by [49], to minimise the thread creation overhead,
while feeding the pool with the tasks denoted by for . . . (parallel) do statements in our
pseudocode Algorithm 6. We extended the library to support both static and dynamic
scheduling approaches proposed by the OpenMP specifications [50]; these are:

• BLOCKED STATIC : aims to balance the chunk sizes per thread by distributing any
leftover iterations;

• BLOCK-CYCLIC STATIC. Does not utilise balancing as the former. Instead, work
blocks are cyclically allocated over the threads;

• GUIDED DYNAMIC: aims to distribute large chunks when there is a lot of work still
to be completed; tasks are split into smaller chunks as the work load diminishes;

• MONOTONIC DYNAMIC: uses a single centralised counter that is incremented when
a thread performs an iteration of work. The schedule issues iterations to threads in an
increasing manner.

In addition to these, we also implemented two different scheduling policies splitting
the tasks to be run in parallel while estimating the running time that each operator will
take depending on the size of its associated operands (if any).

• TASK SIZE PREDICTION BLOCK STATIC provides an estimation of work required
per chunk. Then, these chunks are sorted in ascending work load, with the last
providing the greatest amount of computation. Threads are then assigned chunks
through a distribution algorithm, distributing the first and last chunk of the sorted
work to the first thread, the second and penultimate to the second, etc.. The algorithm
aims to distribute equal amounts of work to each thread, though assumes that the
workload is strictly increasing while workload sizes are evenly distributed;

• TASK SIZE PREDICTION UNBALANCED DYNAMIC: unlike the former, we as-
sume that the incoming work is not balanced. Instead, a chunk is taken, its work
size estimated and assigned to a thread. Then, the next thread will recursively re-
ceive chunks until the summed work load is approximate to that of the former. The
next thread is then pulled from the pool and the process repeated until all chunks
are assigned.

For this set of experiments, we exploited the full BPIC 2011 (Dutch hospital log) dataset.
We want to determine how varying the total number of threads affects execution time,
and therefore use only the original dataset with no sampling. This also demonstrates the
performance against the real-world scenario. Similarly to the previous mining approach
in Section 7.2, we generated models from the most occurring events labels. Here, we
extended the model size to consider the top 15 events for the same eight Declare templates,
thus resulting in 225 clauses. Extending the model size as such allows a better scalability
analysis on the large; in fact, a smaller model size would not be able to reap the benefits of
the dissected query plan, as it becomes more likely that there will not be enough work to
allocate; as more threads might be left idle in the pool, no speed-up can be achieved.

The results of our experiments are shown in Figure 12. Across all instances, the paral-
lelisation pipeline (line with data-points) proves more performant than any single threaded
executions (horizontal vertical bar). There also appears to be a great variation in speed-up
for different scheduling policies; MONOTONIC DYNAMIC, TASK SIZE PREDICTION UN-
BALANCED DYNAMIC, and GUIDED DYNAMIC consistently perform worse than all others.
In addition to this, the former schedules grant almost no gain with trace number, indicating
that dynamic scheduling is not only less performant than static in our use case scenario,
but also bears no potential gains by through thread scalability. This is especially true in
the case of Alternate Precedence, where all static policies have improved performance by
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at least an order of magnitude. Schedules also show different degrees of speed-ups. For
the dynamic and BLOCK-CYCLIC STATIC schedules, increasing the number of threads
has little effect on performance. In fact, adding threads proves to be detrimental in some
cases (BLOCK-CYCLIC STATIC & Chain Precedence). Conversely, the other static schedules
(BLOCKED STATIC and TASK SIZE PREDICTION BLOCK STATIC) achieve a super-linear
speed-up [51–53], as the thread count increases. The greatest gains in performance were
found for Alternate Precedence and Alternate Response with thread sizes of eight; there
are over two orders of magnitude improvement against a single threaded instance, and
almost the same speed up compared with the static schedules. As our problem is heavily
bounded on data access and on the size of it, reducing the task allocation size will create an
overall increase of cache misses, while these are minimised by associating each thread with
a greater amount of tasks.
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Figure 12. Results for parallelisation Section 7.3. ω indicates the set of threads in the thread pool, and
the red dashed horizontal lines indicate running times for single threaded instances.

7.4. Dϕ-Encoding Atomisation Strategies

We now want to test how distinct query atomisation strategies affect the query run time.
For this, we exploit a different dataset while we hardcoded some models suitable for highlighting
such differences.

While the AtomizeEverything strategy guarantees that all activation and targets
undergo the atomizaiton step if a clause is found that contains a data payload predicate, the
AtomizeOnlyOnDataPredicate atomises only those conditions containing a data payload
and considers the others as activity labels. As a consequence, the former is expected to
have more weighted access to AttributeTableL, while the latter to ActivityTableL. We analyse
the execution times over the same models M1–M5, where each model differs from the other
in the number of clauses as well as in data conditions.

For these experiments, we exploited the full BPIC 2012 (Dutch loan company) dataset.
This contained event/trace payload information and was comprised of activities occurring
for a loan transaction. The models exploited are visualised in Supplement Table S1a. We
define four models, increasing by five clauses, where each is a sub-model of the latter.
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These clauses consisted of both data and data-less payload conditions, in order to adhere to
our benchmarking hypothesis.

Results are shown in Figure 13 for both configurations, where there is a positive corre-
lation between model size and execution time, with a constant increase with each additional
set of clauses. For the smaller model size, AtomizeEverything outperforms AtomizeOn-
lyOnDataPredicate, though the former exhibits greater increases in running time as more
clauses are added. This therefore suggests that accessing the ActivityTableL becomes more
expensive than the AttributeTableL as the number of activation/target conditions increases.
To explain this, the reader is encouraged to refer back to Supplement Table S1a, which
defines the clauses that are added to each model, and therefore the new activities and atoms
that may require decomposition. With increased model sizes, AtomizeOnlyOnDataPredi-
cate suffers from duplicated memory access; as some events (e.g., A_SUBMITTED) are
accessed in both tables: while returning the events satisfying an atom requires the access to
the AttributeTablek

L for any given attribute k of interest, returning all of the events having a
given activity label requires accessing the ActivityTableL. The data access for the atomised
queries may duplicate access to the ActivityTableL, which becomes more costly as our model
size increases. Conversely, AtomizeEverything will atomize A_SUBMITTED from q1, as
clauses q2 and q3 contain payload conditions. Therefore, these queries only ever access the
AttributeTableL, and the duplication of data access is removed. For the smaller model size
M1, this gain is less apparent as the duplicated data access becomes negligible.
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Figure 13. Running times over different models (Table S1a) for different atomisation strategies.

7.5. Data-Aware Conformance Checking

We now consider another state-of-the-art solution, Declare Analyzer [6] for conformance
checking with payload information. This solution is tested against two different sets of models of
increasing sizes, with each of them providing either the worst or the best case scenario for KnoBAB.
These experiments exploit the same dataset as in the former experimental set-up, and also used in [6].

We represented the log for Declare Analyzer via MapDB (https://mapdb.org/), thus
reflecting a relational model representation. The authors do not consider trace payloads,
and therefore propose injecting trace payload as an extension of each event payload. On

https://mapdb.org/
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the other hand, KnoBAB injects the trace payload as a unique event at the beginning of
the trace (Section 2), thus reducing the overhead of testing an activation/target condition
per event while minimising data loading time. We wanted to investigate our solution’s
performance among the best/worst cases regarding the clauses of choice. Therefore, we
provide two scenarios. The first scenario (SCENARIO 1), also described in our seminal
paper [4], provides our worst case scenario models (Table S1a) where each additional set of
clauses consist of entirely novel activity labels and clauses and, within each sub-model, each
clause is distinguished by data payload conditions. Consequently, the query plan cannot
exploit gains made from data access minimisation as every condition is considered a unique
disjunction of atoms. Conversely, the second (SCENARIO 2) novel scenario describes our
best case. We encourage the reader to refer to this, where activation and target conditions
appear several times in different clauses (Table S2). Thus, there are many more instances
where data access can be minimised; for example, the model q1 ∧ q2 ∧ q3 ∧ q4 ∧ q5 considers
the activity label A_SUBMITTED across five instances. Following strategies such as in [9],
this can be reduced to one access. SCENARIO 1 (SCENARIO 2) results are shown from
Figure 14a (Figure 14b). For either scenario, we average 2–3 orders of magnitude more
performant than Declare Analyzer; even in the worst case (M4), we are over an order
of magnitude more performant. For both scenarios, we compute the following metrics:
Conjunctive Query (CQ) and Support, to analyse any variations between the ensemble
methods. KnoBAB + CQ outperforms KnoBAB + Support in all cases, where the cost
increase is linear with model size.

SCENARIO 1. For Declare Analyzer, increases in model size results in a constant
slope of 3.47× 102 ms per model size, while our solution demonstrates an initial slope of
2× 101 ms per model size, followed by a constant slope of 6× 100 ms per model size. To
explain this abrupt behaviour, the reader is encouraged to refer to Supplement Table S1a and
the query plan from Figure 2. KnoBAB thrives when data access is minimised; if this cannot
be achieved (due to the addition of novel activation/target conditions), potential gains
cannot be exploited. Every clause from M2 contains new activation/target labels/payload
conditions compared to M1. As a result, the number of atoms and leaves in the query plan
is doubled. However, M3 contains the activity label O_CANCELLED. This atom has already
been considered in the previous model, and so data access is optimised. Therefore, the
time increase from M2 to M3 is much less than that of the former. Subsequently, as M3 is
a sub-model of M4, the same gains are seen here (M4 contains entirely novel conditions).
Overall, the results show that we are not bounded by model size unlike Declare Analyzer,
which must perform an entire log scan per clause, while we can ignore irrelevant traces via
bounding/indexing across our tabular representation available to the relational model. Still,
our running times reflect the formal definition stated in Section 5.2.3, where queries still
need to scan each model clause and therefore their expected running time is proportional
to the model size.

SCENARIO 2. We now want to test whether clauses providing similar queries lead
to lower running times. Here, the model sizes are smaller than the previous example,
so as to demonstrate the potential optimisation from even small examples. The former
contains only a single clause, while the latter consists of seven clauses. The slope between
these models is 3.3× 100 ms per model size, an order of magnitude less than the worst
case scenario. To clarify the results, the reader is encouraged to compare the models q1 vs.
q1 ∧ q2 ∧ q3 ∧ q4 ∧ q5. All atoms in the former are included in the latter, so we can have much
greater data access minimisation, which these results confirm. Of course, a hand-made
model is unlikely to contain such overlapping elements, but these results demonstrate the
potential gains to be made, even for less bespoke scenarios such as data mining, where a
huge amount of overlap might still occur while testing multiple clauses’ combinations.
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(a) Scenario 1 (Table S1a).
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Figure 14. Running times for data-aware conformance checking.

8. Conclusions

By summarizing the contributions of our paper, we showed how to express temporal
logic through ad hoc temporal algebra (xtLTLf) based on the relational model. The latter,
defined both in its logical and physical model, has been suitably extended for log and
operators’ result representation. We showed how it is possible to load data on this model
using suitable algorithms and how it is possible to represent a sequence of operations with
a parallelisable query plan providing super-linear speed-up. As a new contribution to our
previous work, we have also shown different implementations for the xtLTLf operators,
thus showing how there is always a faster non-trivial implementation exploiting both
the properties of the intermediate result representation as well as query rewriting. Our
proposed solution, KnoBAB, leverages all of the aforementioned features, thus providing
higher performance than current conformance checking and mining solutions, be it data or
data-less.

This work encourages future KnoBAB developments and implementations, including
more efficient data model mining algorithms and the use of views to reduce further the cost
of allocating intermediate results. Furthermore, secondary memory representation of the
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log according to the percepts of Near Data Processing is in its infancy. Future developments
will explore the possibility of using KnoBAB to learn temporal models from data and the
ability to fully support trace repair operations in order to make deviant traces compliant
to the given model. For this, we will consider the possibility of integrating our relational
system with the BCDM relational model [54], thus fully supporting operations such as
insertions, updates, and deletions required for trace repairs in conformance checking [25].
Finally, our future work will also consider vectorial data as a specific data representa-
tion [32,55]: this will enable KnoBAB to fully support spatial data representation, thus
aiming for full spatio-temporal representation [56,57]. This, along with more advanced
model mining algorithms, will enable us to efficiently mine spatio-temporal patterns from
logs. Finally, we will also investigate the possibility of transferring the definition of such
algebraic operators when logs are represented as graphs [58,59], thus further improving
the efficiency of graph-based query languages.
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Appendix A

We now show some equivalence and correctness lemmas.

Appendix A.1

First, we want to show the equivalence of some unary operators as generalisations
of some of the base operators. We now show that InitLA/T or EndsLA/T can be subsumed by
appropriate combinations of Init or Ends with ActivityL,τ

A/T . As the former set of operators

cannot express data conditions for the events while the former can by replacing ActivityL,τ
A/T

with an arbitrary sub-expression with AtomL,τ
A/T , we can trivially conclude that the former

are less general than the latter.

Lemma A1.
∀a ∈ Σ. InitLA/T(a) = Init(ActivityL,τ

A/T(a))

https://www.mdpi.com/article/10.3390/info14030173/s1
https://www.mdpi.com/article/10.3390/info14030173/s1
https://dx.doi.org/10.17605/OSF.IO/2CXR7
https://github.com/datagram-db/knobab
https://github.com/datagram-db/knobab
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Proof. We can expand the definition of the left-hand side of the equation for any a ∈ Σ
as follows:

InitLA/T(a) = { 〈i, 1, {A/T(1)}〉 | ∃φ. 〈β(a), i, 1,⊥, φ〉 ∈ ActivityTableL }

The right-hand side of the equation can be rewritten as follows:

Init(ActivityL,τ
A/T(a)) = { 〈i, 1, {A/T(1)}〉 | ∃π, φ. 〈β(a), i, 1, π, φ〉 ∈ ActivityTableL }

The goal is immediately closed by choosing π = ⊥, as any first event will have always an
empty Prev pointer.

Lemma A2.
∀a ∈ Σ. EndsLA/T(a) = Ends(ActivityL,τ

A/T(a))

Proof. We can expand the definition of the left-hand side of the equation for any a ∈ Σ
as follows:

EndsLA/T(a) =
{
〈i, 1, {A/T(|σi|)}〉

∣∣∣ ∃π. 〈β(a), i, 1, π,⊥〉 ∈ ActivityTableL
}

The right-hand side of the equation can be rewritten as follows:

Ends(ActivityL,τ
A/T(a)) =

{
〈i, 1, L〉

∣∣∣ 〈i, |σi|, L〉 ∈ ActivityTableL
}

=
{
〈i, 1, {A/T(|σi|)}〉

∣∣∣ ∃π. 〈β(a), i, |σi|, π,⊥〉 ∈ ActivityTableL
}

The goal is immediately closed by choosing π = ⊥, as any first event will always have
an empty Prev pointer.

On the other hand, as the ExistsLA/T and AbsenceLA/T operators discard the activation
and target marks of the associated events for the purposes of efficiency, we need to relax
their notion of equivalence by ignoring the result being provided by the third component.
Still, we can observe that they compute the same result trace-wise. Even in this scenario, as
the former operators merely access the counting table for the purposes of efficiency, they
cannot be generally exploited when the expression of data conditions is also required.

Lemma A3.

∀a ∈ Σ.∀σi ∈ L.∃L, L′. 〈i, 1, L〉 ∈ ExistsLA/T(a, n)⇔ 〈i, 1, L′〉 ∈ Existsn(ActivityL,τ
A/T(a))

Proof.

〈i, 1, L〉 ∈ ExistsLA/T(a, n)⇔ 〈i, 1, L′〉 ∈ Existsn(ActivityL,τ
A/T(a))

∃m ≥ n. 〈β(a), i, m〉 ∈ CountingTableL ⇔ n ≤ |
{
〈i, j, L′〉 ∈ ActivityL,τ

A/T(a)
}
|∣∣∣{ σi

j ∈ σi
∣∣∣ σi

j = 〈a, p〉
}∣∣∣ ≥ n⇔ n ≤ |{ 〈β(a), i, j, π, φ〉 ∈ ActivityTableL }|

Lemma A4.

∀a ∈ Σ.∀σi ∈ L.∃L, L′. 〈i, 1, L〉 ∈ AbsenceLA/T(a, n)⇔ 〈i, 1, L′〉 ∈ Absencen(ActivityL,τ
A/T(a))
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Proof. By simply replacing the m ≥ n and n ≤ |S| for any set S conditions in the former
lemma to m < n and n > |S|. This boils down to:

〈i, 1, L〉 ∈ AbsenceLA/T(a, n)⇔ 〈i, 1, L′〉 ∈ Absencen(ActivityL,τ
A/T(a))

∃m < n. 〈β(a), i, m〉 ∈ CountingTableL ⇔ n > |
{
〈i, j, L′〉 ∈ ActivityL,τ

A/T(a)
}
|∣∣∣{ σi

j ∈ σi
∣∣∣ σi

j = 〈a, p〉
}∣∣∣ < n⇔ n > |{ 〈β(a), i, j, π, φ〉 ∈ ActivityTableL }|

Appendix A.2

Next, we want to show that xtLTLf is at least as expressive as LTLf. To support this
claim, we need to prove the two following lemmas where, as LTLf does not support explicit
activation and target conditions with Θ correlation conditions over the payload data, we
are always going to assume Θ = True and that the atomic operators are never associated
with an activation/target label, thus always returning an empty third component of the
intermediate result. As we might observe, the following lemma entails that, differently
from standard LTLf semantics applied to each event trace at a time, xtLTLf semantics
returns all of the events for which the given temporal condition holds. This becomes very
relevant for minimising the data access while scanning our relational representation of the
log, as well as allowing better intermediate result reuse for any incoming sub-expression.
The following lemma also entails a correspondence between timed xtLTLf operators and
LTLf formulae.

Lemma A5. For each LTLf formula ϕ, a timed xtLTLf expression ψτ evaluated over an intended
relational model representing a log L of finite and non-empty traces exists for which the latter
returns 〈i, j, L〉 iff. σi

j � ϕ. More formally:

∀σi
j ∈ σi, σi ∈ L. ∀ϕ ∈ LTLf. ∃ψτ : timed xtLTLf.(〈i, j, L〉 ∈ ψτ ⇔ σi

j � ϕ)

Proof. The constructive proof proceeds by structural induction over ψτ . We first need to
consider a rewriting lemma stating that 〈β(a), i, j, π, χ〉 ∈ ActivityTableL iff. a p exists such
that σi

j = 〈a, p〉. Now, we can start the proof by induction.

ϕ = a: By applying the aforementioned rewriting lemma (from now on simply referred to
as by construction of ActivityTable), we can immediately close the goal by choosing
ψτ = Activityτ(a) as the model will only return data associated with the log of
choice:

〈i, j, L〉 ∈ Activityτ(a)⇔ ∃p.σi
j = 〈a, p〉 ⇔ σi

j � a

ϕ = a∧ q: If the compound condition is also atomic for which q can be expressed as an
interval query low ≤ κ ≤ up for some payload key κ, we can follow a similar
proof from the former case and choose the atom ψτ = Compoundτ(a, κ, low, up), thus
closing the goal as follows:

〈i, j, L〉 ∈ Compoundτ(a, κ, [low, up])⇔ ∃p.σi
j = 〈a, p〉 ∧ low ≤ p(κ) ≤ up

⇔ σi
j � a∧ (low ≤ κ ∧ κ ≤ up)

ϕ = ©, ϕ′: by inductive hypothesis, we know the ρ xtLTLf expression returning ρ, which
contains 〈i, j + 1, L〉 when σi

j+1 � ϕ′. For this, we choose as ψτ = Nextτ(ρ), which
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also guarantees that j never exceeds the trace’s length (j ≤ |σi|). We can therefore
expand the definition of our proposed operator by obtaining:

〈i, j, L〉 ∈ Nextτ(ρ)⇔ 〈i, j + 1, L〉 ∈ ρ ∧ 1 < j + 1 ≤ |σi|
IH⇔ σi

j+1 � ϕ ∧ 0 < j < |σi|

⇔ ϕi
j � ©, ϕ

ϕ = �ϕ′: The application of the induction is similar to the former and, similarly to the
former case, we also proceed by expanding the definition of the relational operator.
We can hereby choose ψτ = Globallyτ(ρ) where the induction is applied over ρ and
ϕ′. We can close the goal as follows:

〈i, j, L〉 ∈ Globallyτ(ρ)⇔ 〈i, j, Lj〉 ∈ ρ ∧ |σi| − j + 1 = |{〈i, k, Lk〉 ∈ ρ|j ≤ k ≤ |σi|}|
⇔ ∀j ≤ k ≤ |σi|. 〈i, k, Lk〉 ∈ ρ

IH⇔ ∀j ≤ k ≤ |σi|.σi
k � ϕ′

⇔ σi
j � �ϕ′

ϕ = 3ϕ′: Similarly to globally, we obtain ψτ = Futureτ(ρ) for a ρ corresponding to ϕ′ by
inductive hypothesis.

ϕ = ¬ϕ′: Similarly to the previous unary operators, we choose as xtLTLf operator
ψτ = Notτ(ρ) where the inductive hypothesis links ρ to ϕ′. We can therefore
close the goal as follows:

〈i, j, L〉 ∈ Notτ(ρ)⇔ σi
j ∈ σi ∧ σi ∈ L ∧ 〈i, j, L〉 6∈ ρ

IH⇔ σi
j ∈ σi ∧ σi ∈ L ∧ σi

j � ¬ϕ

⇔σi
j � ¬ϕ

This is doable as stating 〈i, j, L〉 ∈ ψτ ⇔ σi
j � ϕ is equivalent to 〈i, j, L〉 6∈ ψτ ⇔

σi
j 6� ϕ where the latter can be rewritten as σi

j � ¬ϕ.

ϕ = ϕ′ ∧ ϕ′′: As we have that two inductive hypotheses associate ρ′ and ρ′′ respectively
to ϕ′ and ϕ′′, we choose the xtLTLf formula ψτ = Andτ

True(ρ
′, ρ′′) to be associated

with ϕ′ ∧ ϕ′′ . For this xtLTLf operator, we can state that a result 〈i, j, `〉 is returned
by such an operator if and only if 〈i, j, ∅〉 ∈ ρ′ and 〈i, j, ∅〉 ∈ ρ′′ per definition of
operators never returning explicit activation or target condition. We close the goal
as follows:

〈i, j, L〉 ∈ Andτ
True(ρ, ρ′)⇔ 〈i, j, ∅〉 ∈ ρ ∧ 〈i, j, ∅〉 ∈ ρ′

IH⇔ σi
j � ϕ ∧ σi

j � ϕ′

⇔σi
j � ϕ ∧ ϕ′

ϕ = ϕ′ ∨ ϕ′′: We can firstly observe that (A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧ B) in the classical
semantics is equivalent to A ∨ B for any possible proposition A and B (OrRwLem).
After observing that the current operator is defined by extension of the previously
proved one, we can exploit the previous one as a rewriting lemma. As we have
that two inductive hypothesis associating ρ′ and ρ′′ respectively to ϕ′ and ϕ′′, we
choose the xtLTLf formula ψτ = Orτ

True(ρ
′, ρ′′) to be associated with ϕ′ ∨ ϕ′′. We

close the goal as follows:
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〈i, j, L〉 ∈ Orτ
True(ρ, ρ′)

IH⇔ 〈i, j, L〉 ∈ Andτ(ρ, ρ′) ∨ (σi
j � ϕ ∧ σi

j 6� ϕ′) ∨ (σi
j � ϕ′ ∧ σi

j 6� ϕ)

⇔σi
j � ϕ ∧ ϕ′ ∨ (σi

j � ϕ ∧ σi
j 6� ϕ′) ∨ (σi

j � ϕ′ ∧ σi
j 6� ϕ)

OrRwLem⇔ σi
j � ϕ ∨ ϕ′

ϕ = ϕ′ U ϕ′′: as both the results from the third element of the intermediate results are
always empty by construction and preliminary assumption, and we have inductive
hypothesis associating ρ and ρ′ respectively to ϕ and ϕ′, we can immediately close
the goal after choosing the xtLTLf formula ψτ = UntilτTrue(ρ

′, ρ′′) to be associated
with ϕ = ϕ′ U ϕ′′.

The next lemma is required for closing the generic lemma stated at the beginning of
this sub-section, as LTLf starts assessing the formulae from the beginning of each trace.
We need to show that the former lemma applies to xtLTLf operators in a stricter version,
which is the following one:

Lemma A6. For each LTLf formula ϕ satisfied from the beginning of the trace, it exists an xtLTLf
expression ψ returning a 〈i, 1, L〉, thus highlighting that the condition holds from the beginning of
the trace. More formally:

∀σi ∈ L.∀ϕ : LTLf.∃ψ ∈ xtLTLf.(σ
i � ϕ⇒ ∃L. 〈i, 1, L〉 ∈ ψ)

Proof. Similarly to the previous lemma, as LTLf cannot express activation and target
conditions to be tested in Θ correlation conditions, we always choose Θ = True, and we
decide to use base xtLTLf operators where none of these conditions is returned. Differently
from the previous lemma, we now have to go by inductive structure over the LTLf formulae
rather than on the xtLTLf ones. We can therefore consider the following inductive cases:

ϕ = a: By definition of the Init operator, it is sufficient to consider ψ = Init(a);

ϕ = a∧ p: Under the assumption that the compound condition corresponds to an atomic
query with p := low ≤ κ ≤ up, we can formulate the former as follows: ψ =
Init(CompoundL,τ(a, κ, low, up));

ϕ = ©, ϕ′: By rewriting this definition, this implies to prove that ϕi
2 � ϕ′. As the Nextτ

operator is a timed one and we cannot assess ϕ′ from the beginning of the trace, we
cannot exploit the inductive hypothesis for ϕ′, but we need to apply the previously
proven lemma for the conditions happening at any point in the trace. From the
application of the previous lemma, we have that ϕi

2 � ϕ ⇔ 〈i, 2, L〉 ∈ ρ for some
xtLTLf expression returning ρ. From this, it follows that 〈i, 1, L〉 ∈ Nextτ(ρ). By its
definition, Nextτ returns all events preceding the ones stated in ρ, while, for σi � ©, ϕ,
we are only interested in restricting all of the possible results of Nextτ to the ones also
corresponding to the beginning of the trace. For this reason, we need to consider ψ as
Andτ(Firstτ , Nextτ(ρ));

ϕ = �ϕ′: Similarly to the previous operator, ϕ′ is timed and should be checked for all
events σi

j of interest within the trace σi. Even in this case, we need to apply the previ-
ous lemma for ϕ′, thus guaranteeing that an xtLTLf expression ρ exists containing
〈i, j, L〉 whenever σi

j � ϕ′. As globally requires that all of the events satisfy ϕ′, we
have that Globally(ρ) responds by the intended semantics, and therefore we choose
this as our ψ;

ϕ = 3ϕ′: Similarly to the previous operator, we choose Future(ρ) when ρ is linked to the
evaluation of ϕ′ for any possible trace event by the previous lemma;
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ϕ = ¬ϕ′: In this other scenario, we can directly apply the previous lemma, as the eval-
uation of ϕ′ will always start from the beginning of the trace. After recalling that
@x.P(x)⇔ ∀x.¬P(x), we rewrite the definition of ϕ while applying the inductive
hypothesis for the present lemma over some ρ semantically linked to ϕ′ as follows:

σi � ¬ϕ⇔ σi
1 6� ϕ′

IH⇔ ∀L. 〈i, 1, L〉 /∈ ρ

Per inductive hypothesis, ρ contains all of the records 〈i, 1, L〉 for which σi
1 � ϕ′; as

the untimed negation will return a record 〈ι, 1, ∅〉 if and only if there is no event
associated with the trace ι in the provided operand, we can choose ψ = Not(ρ) and
close the goal as follows:

〈i, 1, ∅〉 ∈ Not(ρ)⇔ ∀j, L. 〈i, j, L〉 /∈ ρ⇔ ∀L. 〈i, 1, L〉 /∈ ρ

ϕ = ϕ′ U ϕ′′: Similarly to the former operators, both ϕ′ and ϕ′′ required a timed evalua-
tion of the events along the trace of interest, for which we need to exploit the former
lemma, thus obtaining timed xtLTLf expressions ρ′ and ρ′′. We can immediately close
the lemma by choosing ψ = UntilTrue(ρ

′, ρ′′);

ϕ = ϕ′ ∧ ϕ′′: Similarly to the negation operator, we can directly apply the inductive hy-
pothesis on ϕ′ and ϕ′′, as these sub-operators will also be assessed from the beginning
of a trace; these will be associated respectively to the xtLTLf expressions ρ′ and ρ′′

having 〈i, 1, ∅〉 ∈ ρ′ and 〈i, 1, ∅〉 ∈ ρ′′ as we exploit neither activation nor target
conditions. As per construction ρ′ and ρ′′ will contain no record 〈i, j + 2, L〉 for some
natural number j ≥ 0, we chose ψ = AndTrue(ρ

′, ρ′′);

ϕ = ϕ′ ∨ ϕ′′: By exploiting similar consideration from the former operator, we chose
ψ = OrTrue(ρ

′, ρ′′) for some ρ′ and ρ′′ respectively associated by inductive hypothesis
to ϕ′ and ϕ′′.

As a corollary of the two given lemmas, we have that xtLTLf is at least as expressive
as LTLf, as any LTLf formula can always be computed through an equivalent xtLTLf
formula. This validates the decision from our previous work [4] where we expressed the
semantics of each template in Declare through a correspondent xtLTLf expression. These
were also checked through automated testing Appendix A.2. At this stage, we also want
to ascertain that the untimed and timed operators work as expected, that is, that we can
mimic the outcome of the timed operators over the timed ones if, for each event 〈i, j, L〉,
we evaluate the corresponding untimed operator over the suffix σi

j , . . . , σi
|σi |. This can be

proven as follows:

Lemma A7. For each timed xtLTLf operator ψτ containing a result 〈i, j, L〉 over a relational
representation ofL, generate a log of suffixesL′ = {σi⊕j}, where σi⊕j := σi

j , . . . , σi
|σi | of σi, and each

event is defined as σ
i⊕j
k := σi

j+k−1 for each 1 ≤ k ≤ |σi| − j + 1. For this, an xtLTLf expression
ψ evaluated over the relational representation of L′ always exists such that 〈i⊕ j, 1, L〉 ∈ ψ.

Proof. We prove the lemma by induction over ψτ by considering all of the timed operators
having an untimed counterpart. Please observe that we discard the negation Not from our
considerations, as we have previously mentioned that the timed and untimed versions of
this serve different purposes. We also provide an implementation (https://github.com/dat
agram-db/knobab/blob/main/tests/ltlf_operators_test.cpp, 5 March 2023) of such proofs
via automated testing.

ψτ = ActivityL,τ
A/T(a) : This can be trivially closed by choosing InitL

′
A/T(a);

https://github.com/datagram-db/knobab/blob/main/tests/ltlf_operators_test.cpp
https://github.com/datagram-db/knobab/blob/main/tests/ltlf_operators_test.cpp
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ψτ = CompoundL,τ
A/T(a, k, low, up) : This can be trivially closed by choosing

Init(CompoundL
′

A/T(a, k, [low, up]));

ψτ = Globallyτ(ρ): After observing that |σi⊕j| = |σi| − j + 1, we obtain the following
condition by operator’s expansion, where ρ′ is evaluated over L′ as per inductive
hypothesis:

〈i, j, L〉 ∈ Globallyτ(ρ)⇔ L := ∪ j≤k≤|σi |,
〈i,k,Lk〉∈ρ

Lk ∧ |σi| − j + 1 =
∣∣∣{〈i, k, Lk〉 ∈ ρ|j ≤ k ≤ |σi|}

∣∣∣
⇔ L := ∪1≤k≤|σi⊕j |,

〈i⊕j,k,Lk〉∈ρ

Lk ∧ |σi⊕j| =
∣∣∣{〈i⊕ j, k, Lk〉 ∈ ρ|1 ≤ k ≤ |σi⊕j|}

∣∣∣
⇔ L := ∪〈i⊕j,k,Lk〉∈ρLk ∧ |σi⊕j| =

∣∣∣{〈i⊕ j, k, Lk〉 ∈ ρ}
∣∣∣

⇔ 〈i⊕ j, 1, L〉 ∈ Globally(ρ′);

ψτ = Futureτ(ρ): By following similar consideration as per the former operator, we have:

〈i, j, L〉 ∈ Futureτ(ρ)⇔ L := ∪ j≤k≤|σi |
〈i,k,Lk〉∈ρ

Lk ∧ ∃h ≥ j, L. 〈i, h, Lh〉 ∈ ρ

⇔ L := ∪ 1≤k≤|σi⊕j |
〈i⊕j,k,Lk〉∈ρ

Lk ∧ ∃h ≥ 1, L. 〈i, h, Lh〉 ∈ ρ

⇔ L := ∪〈i⊕j,k,Lk〉∈ρLk ∧ ∃h, L. 〈i, h, Lh〉 ∈ ρ

⇔ 〈i⊕ j, 1, L〉 ∈ Future(ρ′);

ψτ = Andτ
Θ(ρ1, ρ2): By rewriting the definition of the timed And operator, we obtain

the following:

〈i, j, L〉 ∈ Andτ
Θ(ρ1, ρ2)⇔ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1 ∧ 〈i, j, L2〉 ∈ ρ2∧

L := T E,i
Θ ([j 7→ L1], [j 7→ L2]) ∧ L 6= False

If And contains for both of its operands an event σi
j , it follows that there should be at

least one match σ
i⊕j
1 over the corresponding untimed operator AndΘ(ρ

′, ρ′′) evaluated
over L′. For the latter operator, we can therefore ensure that a j exists and a j′ being
j = j′ = 1 and L as well as L′ for which the following condition holds:

〈i, j, L〉 ∈ Andτ
Θ(ρ1, ρ2)⇒ ∃L1, L2. 〈i⊕ j, 1, L1〉 ∈ ρ′ ∧ 〈i⊕ j, 1, L2〉 ∈ ρ′′∧

L := T E,i
Θ ([1 7→ {Lj| 〈i, j, Lj〉 ∈ ρ′}], [1 7→ {Lj| 〈i, j, Lj〉 ∈ ρ′′}])∧

L 6= False

⇔ 〈i⊕ j, 1, L〉 ∈ AndΘ(ρ
′, ρ′′);

ψτ = Orτ
Θ(ρ1, ρ2): As this operator is derived from the definition of Andτ

Θ, we can directly
close the goal by the previous inductive step if the result represents a match between
the elements of the first and second operand. If there were no events that might have
been matched, the data come either from the first or from the second operand. As the
two cases are symmetric, we just provide proof for the former case. In this situation,
we have a 〈i, j, L〉 ∈ Orτ

Θ(ρ1, ρ2) corresponding to a 〈i, j, L〉 ∈ ρ1 for which there is no
L′ such that 〈i, j, L′〉 ∈ ρ2. If there still exists a j′ and L′ such that 〈i, j′, L′〉 ∈ ρ2 for
which there might be a match between L and L′, then this case falls under the untimed
AndΘ over L′, and we still have some τ for which the latter returns 〈i⊕ j, 1, τ〉; if
match is never possible or no of such j′ exists, then the untimed OrΘ operator will
return a 〈i⊕ j, 1,∪{L|∃k. 〈i⊕ j, k, L〉 ∈ ρ2}〉 by definition;
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ψτ = Untilτ(ρ1, ρ2): This is a mere rewriting exercise, as the untimed version of Until is a
mere instantiation of the latter where only the case k = 1 is considered.

Appendix A.3

At this stage, we provide some rewriting lemmas motivating the introduction of
derived operators. First, we want to show that the untimed AndΘ(ρ, ρ′) operator can also be
exploited to compute AndΘ(Future(ρ), Future(ρ′)), thus motivating the peculiar definition
of such operator with an existential interpretation over all of the possible matches in the
future. We can formally prove this as follows:

Lemma A8.
∀ρ, ρ′.AndΘ(Future(ρ), Future(ρ′)) = AndΘ(ρ, ρ′)

Proof. By expanding the definition of the operators, we obtain:

〈i, 1, L′′〉 ∈ AndΘ(Future(ρ), Future(ρ′))⇔ ∃L, L′. 〈i, 1, L〉 ∈ Future(ρ) ∧ 〈i, 1, L′〉 ∈ Future(ρ′)

L′′ := T E,i
Θ ([1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ1}], [1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ2}]),

L′′ 6= False

⇔ ∃j, j′, L, L′. 〈i, j, L〉 ∈ ρ ∧ 〈i, j′, L′〉 ∈ ρ′

L′′ := T E,i
Θ ([1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ1}], [1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ2}]),

L′′ 6= False

⇔ 〈i, 1, L′′〉 ∈ AndΘ(ρ, ρ′)

Please remember that the untimed And operator is also compliant with the LTLf seman-
tics as per our previous lemmas. We can therefore exploit the versatile definition of such
operation to reduce the computational overhead provided by the additional and unrequired
aggregation provided by Future. Given the previous lemma, we have as a Corollary that
the semantics associated with the Choice Declare clause, i.e., OrΘ(Future(ρ), Future(ρ′)),
can equivalently be computed by OrΘ(ρ, ρ′). The following proof motivates the choice of
exploiting Ei

Θ as a correlation matching semantics for both AndΘ and OrΘ.

Corollary A1.
∀ρ, ρ′.OrΘ(Future(ρ), Future(ρ′)) = OrΘ(ρ, ρ′)

Proof. By expanding the definition of the untimed OrΘ, we obtain:

OrΘ(Future(ρ), Future(ρ′)) = AndΘ(Future(ρ), Future(ρ′)) ∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ Future(ρ)}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ Future(ρ′)
}

∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ Future(ρ′)}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ Future(ρ)
}

For the previous lemma, this becomes:

OrΘ(Future(ρ), Future(ρ′)) = AndΘ(ρ, ρ′) ∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ Future(ρ)}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ Future(ρ′)
}

∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ Future(ρ′)}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ Future(ρ)
}

At this stage, we only need to test the contribution of the second component of the
union, as the third one is symmetrical (ρ and ρ′ are just inverted). As the elements of the
second component of the union come from Future operators, we can rewrite such as follows:{

〈i, 1,∪{L| 〈i, 1, L〉 ∈ Future(ρ)}〉
∣∣ @L′. 〈i, 1, L′〉 ∈ Future(ρ′)

}
We can also observe that 〈i, 1, L〉 ∈ Future(ρ) for a given L if there exist a j and

L′′ for which 〈i, j, L′′〉 ∈ ρ. Similar considerations come from the negated counterpart
(〈i, 1, L〉 /∈ Future(ρ)). For this expansion, we can therefore close our goal.
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The remaining lemmas show the correctness of the logical formulation of the derived
operators, thus motivating their adoption when possible. These lemmas were also tested in
our implementation (See the end of https://github.com/datagram-db/knobab/blob/m
ain/tests/until_test.cpp, 5 March 2023). The supplementary materials (Section II) show
that it is possible to implement such derived operators so that they are faster than their
corresponding LTLf rewriting counterpart.

Lemma A9.
∀ρ, ρ′.Andτ

Θ(ρ1, Futureτ(ρ2)) = AndFutureτ
Θ(ρ1, ρ2)

Proof.

〈i, j, L〉 ∈ Andτ
Θ(ρ1, Futureτ(ρ2))⇔ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1 ∧ 〈i, j, L2〉 ∈ Futureτ(ρ2)∧

L := T E,i
Θ ([j 7→ L1], [j 7→ L2]) ∧ L 6= False

⇔ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1 ∧ ∃h ≥ j, L. 〈i, h, L〉 ∈ ρ2∧

L := T E,i
Θ ([j 7→ L1], [j 7→ ∪ j≤k≤|σi |

〈i,k,Lk〉∈ρ

Lk]) ∧ L 6= False

⇔ 〈i, j, L〉 ∈ AndFutureτ
Θ(ρ1, ρ2)

Lemma A10.
∀ρ, ρ′.Andτ

Θ(ρ1, Globallyτ(ρ2)) = AndGloballyτ
Θ(ρ1, ρ2)

Proof.

〈i, j, L〉 ∈ Andτ
Θ(ρ1, Globallyτ(ρ2))⇔ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1 ∧ 〈i, j, L2〉 ∈ Globallyτ(ρ2)∧

L := T E,i
Θ ([j 7→ L1], [j 7→ L2]) ∧ L 6= False

⇔ ∃L1. 〈i, j, L1〉 ∈ ρ1 ∧ 〈i, j, Lj〉 ∈ ρ2∧

|σi| − j + 1 =
∣∣∣{〈i, k, Lk〉 ∈ ρ|j ≤ k ≤ |σi|}∧

L := T E,i
Θ ([j 7→ L1], [j 7→ ∪ j≤k≤|σi |

〈i,k,Lk〉∈ρ

Lk]) ∧ L 6= False

⇔ ∃L1. 〈i, j, L1〉 ∈ ρ1 ∧ ∀j ≤ k ≤ |σi|.∃L′. 〈i, k, Lk〉 ∈ ρ2∧

L := T E,i
Θ ([j 7→ L1], [j 7→ ∪ j≤k≤|σi |

〈i,k,Lk〉∈ρ

Lk]) ∧ L 6= False

⇔ 〈i, j, L〉 ∈ AndGloballyτ
Θ(ρ1, ρ2)
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