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Abstract: Malware is becoming an effective support tool not only for professional hackers but also
for amateur ones. Due to the support of free malware generators, anyone can easily create various
types of malicious code. The increasing amount of novel malware is a daily global problem. Current
machine learning-based methods, especially image-based malware classification approaches, are at-
tracting significant attention because of their accuracy and computational cost. Convolutional Neural
Networks are widely applied in malware classification; however, CNN needs a deep architecture
and GPUs for parallel processing to achieve high performance. By contrast, a simple model merely
contained a Multilayer Perceptron called MLP-mixer with fewer hyperparameters that can run in
various environments without GPUs and is not too far behind CNN in terms of performance. In
this study, we try applying an Autoencoder (AE) to improve the performance of the MLP-mixer.
AE is widely used in several applications as dimensionality reduction to filter out the noise and
identify crucial elements of the input data. Taking this advantage from AE, we propose a lightweight
ensemble architecture by combining a customizer MLP-mixer and Autoencoder to refine features
extracted from the MLP-mixer with the encoder-decoder architecture of the autoencoder. We achieve
overperformance through various experiments compared to other cutting-edge techniques using
Malimg and Malheur datasets which contain 9939 (25 malware families) and 3133 variant samples
(24 malware families).

Keywords: Malware classification; MLP-mixer; autoencoder; information security

1. Introduction

In recent years, malware has become a significant threat to security in cyberspace.
New variants of malware are constantly appearing to challenge antivirus companies.
More dangerous, several attackers and organizations have abused malware to attack
businesses, governments, financial institutes, health providers, etc. [1]. According to the
AV-TEST Institute [2], more than 450,000 new malicious programs and potentially unwanted
applications are registered daily, and over 1356 million malware were discovered in May of
2022. This number is seven times higher than ten years ago.

Traditional malware classification works are based on signature and behavior ap-
proaches [3]. This approach is fragile in address with polymorphic and metamorphic mal-
ware. Moreover, because of the rapid growth of the development of several automatic mal-
ware creation tools [4], these methods cannot catch up to the speed of malware generation.

Machine learning has become more potent because its highly developed algorithms
can solve most problems encountered in almost every field. There are two main approaches:
Natural Language Processing (NLP) and Computer Vision. Several studies use NLP to
classify malicious files by extracting features from malicious software, such as API Calls,
Windows Registry, and Strings [5–7]. However, malware writers often use packing or
obfuscation to make their files more difficult to classify or analyze. In addition, this
malware contains very few strings, tokens, and other information that is not readable. As a
result, NLP-based approaches face difficulty in collecting features of malware.
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Another alternative to the machine learning-based method for malware classification
is to employ computer vision approaches on file binaries [8–23]. Although attackers use
obfuscation techniques (such as encryption, packing, metamorphism, and polymorphism)
to achieve spoofing, malware variants from the same family still maintain similar code
and data order, which may not appear in the exact location. On the other hand, after
packing with the same packer, the images of malware variants belonging to different
families were different [24], and the unpacked variants of different families were utterly
different from their packed variants [13]. Conti et al. [8] have proposed a method to
visualize malware binaries into a grayscale image and noticed that visual analyses of
malware binary help distinguish various data regions from the image. The advantage of
the malware visualization analysis is that it does not require using any decompiles or a
dynamic running environment and does not need to pick out particular statistical features
for classification intentionally.

Several studies that apply Convolutional Neural Networks (CNN) to classify mal-
ware have achieved high accuracy in standard datasets, such as Malimg and Malheur.
Some take advantage of a pre-trained model to enhance the performance of the proposed
model [25,26]. The growth of high-performance computing, coupled with the enormous
CNNs architectures, made it possible to process images at a higher level of complexity. How-
ever, recent studies indicate that fewer parameters with a simple network structure give
relatively satisfactory results and can be applied to low-profile devices like IoT [13,27,28],
or smartphones [29]. On the other hand, to improve the performance of CNN, optimizing a
large number of the hyper-parameters, such as kernel (filter size), padding, stride, and the
number of channels, is also a problem with CNN [30]. Although several studies [26,31–33]
attempt to apply state-of-the-art CNN models, the performance is still not outstanding.

Recently, Multilayer Perceptron (MLP) has been paid attention again to by the scientific
community in the Computer Vision field by modifying traditional MLP. Tolstikhin et al. [34]
introduce MLP-mixer with simple architecture based entirely on MLPs. MLP-mixer merely
achieves strong performance; however, it still needs to beat some specialized CNN architectures.

Autoencoders are unsupervised deep learning algorithms with a unique neural net-
work structure. An autoencoder (AE) transforms the input into an output with minimal
reconstruction errors. They have several applications, such as dimensionality reduction,
preprocessing for classification, and identifying only the essential elements of input data.

That has motivated us to empower MLP-mixer by concatenating with AE to gain
more prosperous and more selective features of malware samples. While the global averag-
ing layer of MLP-mixer is used to minimize overfitting by reducing the total number of
parameters in the model and aggregating all local space in each channel across patches,
Autoencoder creates latent dimension space, ensuring only the main structured part of the
information can be reconstructed. In our proposed method, Autoencoder plays a role in
refining the logical space of each sample after processing through MLP-Mixer.

The main contribution of this paper is providing a lightweight image-based malware
classification system through feature synthesis from MLP-mixer and AE. Because the pro-
cessing is merely dependent on images, the system does not require in-depth knowledge of
the malware and the environment to determine its behavior. Moreover, some classifiers can
give the result in under a second, so our model can be applied in real-time countermeasures
against malware.

The rest of the paper is organized as follows: Section 2 discusses the related work
concerning some popular and recent malware classification techniques. Section 3 illustrates
the proposed model in detail. Section 4 evaluates the performance of the proposed approach.
Finally, we summarize our work in Section 5.

2. Related Work

This session investigates various new studies on image-based malware classification
with CNN and CNN-free models. In terms of the former, recent studies focus on deep and
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complex architecture and combining it with others to enhance performance. In the latter,
some alternative candidate is used to replace CNN.

For the first time, Nataraj et al. [10] proposed a novel approach for visualizing and
classifying malware using image processing techniques. They visualized malware as a
gray-scale image based on the observation that images of the same class were very similar
in layout and texture. They utilize the GIST descriptor, based on the wavelet decomposition
of an image, as a feature extractor and k-nearest neighbor (kNN) as a classifier. The paper
achieved an accuracy of 97.18% on their introduced dataset: Malimg, which contains
9339 malware samples related to 25 different malware families.

2.1. CNN-Based Models

Hammad et al. [17] used both hand-engineering Tamura and CNN models of Google-
LeNet techniques to extract the feature from 2D malware images. The authors employed k-
Nearest Neighbor (KNN), Support Vector Machine (SVM), and Extreme Learning Machine
(ELM). The authors’ proposed method outperformed both existing Malware classifications
on the Malimg dataset with an accuracy of 95.42% for Tamura feature extraction, followed
by the ELM classifier, and GoogleNet with 96.84%, followed by the KNN classifier.

Lin et al. [18] proposed byte-level one-dimensional CNNs to explore informative fea-
tures from the one-dimensional structure of binary executables. They achieved comparable
results with less computational cost than 2D CNNs regarding the amount of multiply-add
operations. They achieved a high performance even with small image sizes, such as 32 × 32
and 64 × 64, with 96.95% and 98.37%, respectively.

Falana et al. [23] utilized an ensemble technique consisting of a Deep Convolutional
Neural Network and a Deep Generative Adversarial Neural Network that can generate
novel malware from the train malware data- sets to prevent the adversarial attack. Through
experiments on the Malimg dataset, the authors achieved an overall classification accuracy
of 95.63%, a precision of 95.34%, a recall of 95.30%, and an F1 score of 94.98%.

Wang et al. [20] proposed a novel design of Multiscale Attention Adaptive Module
(MSAAM) and CliqueNet that can combine local and global multiscale information in
the spatial domain of malware images. The authors adjust the gray-scale image size of
the model input to 256 × 256. Experiment results showed that Attention mechanisms
improved accuracy slightly by 0.6% from 98.6% to 99.2% on the Malimg dataset.

Rezende et al. [11] transferred the first 49 layers of ResNet-50 on ImageNet to the
malware classification task. Frozen layers can be seen as learned feature extraction layers.
The author replaced the last layer with 1000 fully connected softmax with 25 fully connected
ones according to the number of classes on the Malimg dataset. After 750 epochs, the
paper reached an average accuracy of 98.62% with 10-fold cross-validation. They also
compare features extracted from Deep CNN (DCNN) with GIST features using the same
kNN classifier. The experimental result showed that ResNet-50 performed better than
handcrafted GIST by 0.52% with 98.00% and 97.48%, respectively.

Kumar et al. [28] applied deeper transfer learning with the knowledge from the already
trained ImageNet (which contains 1.2 million images with 1000 classes) for the malware
classification task; they improved the ResNet50 model by altering the last layer with a fully
connected dense layer. They achieved high accuracy of 99.12% with the Adam optimizer
and 99.23% with the NAdam optimizer.

Silva et al. [35] inject a sequence of random bytes into non-executable sections such
as “.data” into the files. The authors faced challenges when applying this method to some
specific instances, usually packed or obfuscated, ensuring that keeping its functionality
intact is a challenging task. The usage of CNNs for the image-based approach is increasing,
and their work shows how adding small perturbations to a malware file can reduce the
accuracy of these CNNs by almost 50%. The authors also declare that not only relying on a
fixed preprocessing method more dynamic approach, such as the Attention-based method,
can be helpful.
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Awan et al. [9] applied spatial convolutional attention called dynamic spatial con-
volution on VGG19 Network. This attention utilized a global average pooling (GAP)
mechanism, rescaled the output of GAP by lambda layer, and fed into dropout of rate 0.25
before fully connected layer, and the author utilized Softmax as a traditional classifier of
CNNs. The performance was evaluated on the Malimg dataset and achieved an accuracy
of 97.68%.

2.2. CNN-Free Models

Barros et al. [19] developed a novel method that captures pairwise information from
data pairs based on a new similarity measure designed for the context of malware identifi-
cation. The authors generate the Siamese Networks input by pairing up the new image
with every image of the training dataset. This method overperforms traditional image
feature extraction such as Garbor, HOC, and GIST but is lower than SoTa CNN models.

Naeem et al. [13] extracted malware features from the grayscale image through SIFT-
GIST Malware (CSGM) description that could reduce computational time and improve
classification accuracy. Note that CSGM features consisted of local and global features of the
malware image, making authors more informative than the traditional method, as well as
simple CNN models extracting local features of the image. They achieved high performance
in both Malimg and Malheur datasets with an accuracy of 98.40% and 97.50%, respectively.

Son et al. [22] found that the main texture of the malware image is spread in the
vertical orientation so that the horizontal size of the malware image can be reduced without
too much computation complexity and training time. The authors’ proposed method,
which decreases the dimension of the normalized input images, is higher than the GIST-
based malware classification model, reducing the computational complexity and saving
significant training time. The authors achieved the highest accuracy of 98.49% and 95.79%
in Malimg and Malheur datasets with the SVM classifier, respectively.

Ly et al. [36] propose a novel approach to encoding and arranging bytes from binary
files into images. The authors take semantic information into account and represent it as
color images. They constrain the size of generated images to 256 × 1024, 8-bit RGB color,
and use XGBoost as a classifier. As a result, the accuracy improves by 2.16% from 84.20% to
86.36% with Grayscale, the proposed color encoding method, respectively.

Lee et al. [16] illustrate the effectiveness of autoencoder by applying multiple AEs.
Each AE model classifies only one type of malware and is trained using only samples from
the corresponding family. As a result, the author achieves an accuracy of 94.03% for a system
with the same AE network structure and 97.75% for various AEs. Moreover, the model
achieves a 0.46% improvement from 97.75% to 98.21% when combining similar classes.

3. Proposed Method
3.1. Image Representation for Malware

To visualize a malware sample as an image, we must interpret every byte as one
pixel in an image. Notice that binary files are the hexadecimal representation of the PE of
malware in Figure 1. The first row is the offset of the memory address. The second one
represents the pair of hexadecimal. Each hexadecimal pair is treated as a single decimal
number that serves as the image’s pixel value, so this conversion is no loss of information.
The resulting array must be organized as a 2-D array, and values must be in the range
[0, 255] (0: black, 255: white). The size of the image depends on the binary file’s size. Table 1
presents different heights for malware images due to the different sizes of malware files
while fixing the width of images. Table 1 also illustrates that converting malware into
grayscale images does not require a long time; standard malicious codes less than 1 Mb in
size only take no more than 0.01 s to convert.
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Figure 1. The structure of a binary file.

For preprocessing, we utilize Keras’s ImageDataGenerator library to read images from
the dataset. Before inputting to the neural network, it is necessary to align different-sized
malware to the same size (e.g., 32 × 32) so the whole loss occurs by discarding the extra
part or compressing. We accept this loss for training and evaluating Neural Networks like
in previous studies.

On the other hand, new variants are often created by changing a small part of the code.
Therefore, if the predecessor is reused, the result would be very similar. Furthermore, it is
possible to detect small changes by converting malware into an image while keeping the
comprehensive structure of samples belonging to the same family [37].

Table 1. Image height for different malware file sizes.

File Size Image Height Time Convert (ms)

<10 kB 32 0.105
10 kB–30 kB 64 0.312
30 kB–60 kB 128 0.428

60 kB–100 kB 256 0.571
100 kB–200 kB 384 0.748
200 kB–500 kB 512 0.665
500 kB–1 Mb 768 0.814

>1 Mb 1024 2.85

3.2. MLP-Mixer

Tolstikhin et al. [34] proposed MLP-mixer, a conventional MLP inspired. The authors
divided the input image into small mini patches. Unlike in CNNs, the MLP-mixer processes
input data on these mini patches through the network. Like in the transformer, each patch
fed to the MLP architecture is unrolled to a vector with C channels, and each of these
vectors is then stacked upon each other and can be seen as a table. There are two types of
MLP-mixer layers: token-mixing MLPs and channel-mixing MLPs. In the former, the table
is transposed, and each row is fed into the same MLP layer. All the weights are shared
across the same channel of different patches. In the latter, the table is reversed trick again
and flipped back into patches, then does the same shared computation for all the patches.
Individual rows are processed independently. MLP-mixer learns image features by mixing
spatial and channel information obtained by image segmentation for each patch. MLP
mixer merely leverages MLP to operate all patches. Skip-connections are used in both
token-mixing blocks and channel-mixing blocks to avoid gradient vanishing phenomena,
a common problem in Deep Learning during training. The activation function is GELU.
MLP-mixer block is repeated n times and then reduced dimension using Global Average
Pooling (GAP), followed by a fully connected layer before the classification task.
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3.3. Autoencoder

The basic structure of an AE consists of three components: the encoder, latent space,
and decoder. The encode compresses the input and produces a latent space, preventing the
neural network from memorizing and overfitting the data. The encoding output represents
the original data’s feature while reducing the dimensions by setting the number of neurons
in the encoder layer to less than the number in the input layer. Conversely, the decoder
reconstructs the input only using this latent space. The autoencoder is trained to make
the input and decoding data as similar as possible while never becoming precisely the
same. Notice that the autoencoder is a data-specific feature extractor. It can only extract
meaningful features from data identical to what it has been trained. We take advantage of
these characteristics of the AE to refine features extracted from the MLP-mixer.

3.4. MLP-Mixer-AE

Although MLP-mixer has optimized the structure of the Neural network through
token mixing and channel mixing blocks, the necessary features to identify malicious code
have not been purified; Ref. [34] only uses GAP to summarize the channel through all
patches, then fed into a fully-connected layer. It was discovered in [38] that adding a small
amount of attention makes the model more efficient. The reason for using attention here
is to reselect important features from inputs. Here, instead of using complex attention,
we choose autoencoder, an artificial neural network familiar with machine learning in
unsupervised learning to refine features after going through the MLP-mixer. The encoder-
decoder structure helps us extract the most crucial features from images in the form of data
and establish valuable correlations between various inputs within the network.

Our proposed method is illustrated in Figure 2. After resizing the malware image in
pre-processing, it is divided into S patches (we set the patch size as 8 × 8). Then patches
are normalized in Layer Norm, and the malware image is turned into a table of patches
and channels (S, C). The table is then transposed (C, S) to feed into token-mixing MLPs,
with hidden node Ds along with GELU activation. Afterward, the table is transposed to
return to the initial form and aggregate with the initial table before feeding into Channel-
mixing MLPs. In these blocks, the hidden node of channel-mixing is Dc, and the activation
is GELU. Same with token-mixing blocks, skip-connections are used to avoid gradient
vanishing. MLP-mixer blocks are repeated n times, followed by the GAP layer. In our
implementation, we utilize a lightweight MLP-mixer with C = 128, Ds = 64, and Dc = 512
to reduce computation cost compared to C = 256, Ds = 256, and Dc = 2048 of the smallest
model scale of the original paper [34]. The number of epochs is 50.
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Our proposed approach continuously brings the feature vector after the GAP layer
from the MLP-mixer model into a simple autoencoder model with two layers of the encoder
and two layers of the decoder. The node of the first layer of the encoder is 2 * C channel,
followed by C channel and C/2 in latent space. We train the AE with mean squared error
(MSE) loss function and 50 epochs; we use the latent space for classifying with typical
classifiers algorithm of machine learning such as Decision Tree, k-Nearest Neighbors, Naïve
Bayes, Nearest Centroid, Random Forest, and SVM to evaluate our system.

To evaluate our method, we utilize 10-fold Cross-Validation. One of the ten subsamples
is held as validation data, and the remaining nine subsamples are used as training data.
This process is repeated ten times with each of the ten subsamples used as validation. The
average of ten results is the quality of the method.

4. Experiments
4.1. Dataset

This study evaluates our model adopts the Malimg Dataset [10], consisting of 9339 mal-
ware image samples of 25 different families, and Malheur Dataset [39], consisting of
3133 malware binaries of 24 different families; in this study, they are converted into im-
ages by following the rule described in Table 1. The number of malware in each class is
illustrated in Tables 2 and 3.

Table 2. Malimg Dataset.

Class Family Name No. of Samples Percentage (%)

0 Adialer.C 122 1.31
1 Agent.FYI 116 2.12
2 Allaple.A 2949 31.58
3 Appaple.L 1591 17.04
4 Alueron.gen!J 198 2.12
5 Autorun.K 106 1.14
6 C2LOP.gen!g 200 2.14
7 C2LOP.P 146 1.56
8 Dialplatform.B 177 1.89
9 Dontovo.A 162 1.73
10 Fakerean 381 4.08
11 Instantaccess 431 4.62
12 Lolyda.AA1 213 2.28
13 Lolyda.AA2 184 1.97
14 Lolyda.AA3 123 1.32
15 Lolyda.AT 159 1.70
16 Malex.gen!J 136 1.46
17 Obfuscator.AD 142 1.52
18 Rbot!gen 158 1.69
19 Skintrim.N 80 0.86
20 Swizzor.gen!E 128 1.37
21 Swizzor.gen!I 132 1.41
22 VB.AT 408 4.58
23 Wintrim.BX 97 1.04
24 Yuner.A 800 8.57

Total 9339

4.2. Evaluation Metrics

To evaluate the performance of the proposed CNN-based model, four standard per-
formance metrics that are widely used in the existing research community were applied:
accuracy, precision, recall, and F1-score. The four indicators are explained with the aid
of the four parameters in Table 4, where the class being evaluated is positive, and the
remaining classes are negative.
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Table 3. Malheur Dataset.

Class Family Name No. of Samples Percentage (%)

0 Adultbrowser 262 8.36
1 Allaple 300 9.58
2 Bancos 48 1.53
3 Casino 140 4.47
4 Dorfdo 65 2.07
5 Ejik 168 5.36
6 Flystudio 33 1.05
7 Ldpinch 43 1.37
8 Looper 209 6.67
9 Magiccasino 174 5.55
10 Podnuha 300 9.58
11 Posion 26 0.83
12 Porndialer 98 3.13
13 Rbot 101 3.22
14 Rotator 300 9.58
15 Sality 85 2.71
16 Spygames 139 4.44
17 Swizzor 78 2.49
18 Vapsup 45 1.44
19 Vikingdll 158 5.04
20 Vikingdz 68 2.17
21 Virut 202 6.45
22 Woikoiner 50 1.59
23 Zhelatin 41 1.31

Total 3133

Table 4. Performance metric parameters.

Parameter Description

True positive (TP) The number of positive class samples that are correctly classified
True Negative (TN) The negative class is correctly classified into the negative class
False Positive (FP) The number of negative class samples misclassified into the positive class
False Negative (FN) The number of positive class samples misclassified into the negative class

Accuracy is defined as the ratio between the number of correctly classified samples to
the total in the test dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is defined as the ratios of true positive among the samples classified as positive.

Precision =
TP

TP + FP
(2)

Recall is defined as the ratio of samples classified as positive among true positives.

Recall =
TP

TP + FN
(3)

F1-score is used to evaluate the quality of the model.

F1-score = 2 ∗ Precision × Recall
Precision + Recall

(4)



Information 2023, 14, 167 9 of 14

4.3. Evaluation Results and Discussion

The model is assessed using a 10-fold Cross-Validation process to produce standard
performance metrics. By randomly dividing the data into 70% training and 30% testing, the
training and testing sets can be created. We utilized common classifiers such as Decision
Tree, k-NN, Naive Bayes, Nearest Centroid, Random Forest, and SVM for both datasets.

Table 5 shows the performance of both datasets according to the various image sizes.
It can be seen that the image size is a significant impact on the performance. Even with the
smallest image size of 32 × 32, our proposed model gives better accuracy with the original
MLP-mixer and ResNet50 to almost 10%. Compared to other classifiers, SVM overperform
in almost evaluation metrics, with the same result as the paper [22]. Furthermore, this result
shows that compressing the image does not adversely affect the classification performance.

From the results in Table 5, we have received the same results as the original paper [34]
that MLP-mixer itself is not overperforming the CNN model of ResNet. In most cases, the
accuracy of the MLP-mixer is lower than ResNet50, from 0.5% to a maximum of 1.93% in
the Malimg dataset and 4.04% in the Malheur dataset. CNN takes advantage of positional
invariance capability to get object information even in other places of images. It makes
CNN models superior and perform better than traditional MLPs. However, binary files,
as well as malicious codes, have fixed architecture, merely different between the ratio of
sections [40]. As a result, CNN cannot exploit its strengths in processing images generated
from malware. As shown in Table 6, CNN ties numerous parameters to learn attributes
from input images. At the same time, MLP-mixer only needs less than 20 times (compared
with the typical ResNet50 model) but still gives the same high performance as CNNs.

To evaluate the objective performance of the proposed method, the classification
accuracy, precision, recall, and F1-score were compared with the results of other studies
performed on the Malimg dataset (Table 6) and Malheur dataset (Table 7).

In our proposed method, we refine representation space created from a lightweight
MLP-mixer model with a simple and effective Autoencoder model. Our parameter method
is comparable to the lightweight CNN model in [14] with merely 0.83 M parameters. Still,
the performance does not change significantly since the first-time dataset was published by
Nataraj et al. [10] by only 0.31%. On the other hand, typical CNN models like ResNet [11,12],
VGG19 [9,19], and DensNet [26] utilize enormous parameters and improved performance
slightly; however, they require more computational power. Nevertheless, using signifi-
cantly fewer and sufficient parameters, our proposed achieves higher performance than
previous studies.

A series of previous studies show that more than pure CNN is needed for the malware
image-based approach. Combining CNN with other methods, such as VAE and Attention
mechanism as in [37] improves performance but makes the model more complex. Ref. [37]
is only higher than 0.06% accuracy but requires more parameters by 1.57 M than this paper.

Regarding the Malheur dataset, Kim et al. [41] achieved a percentage of recall higher
than us by 2.16%, but precision is noticeably lower at 8.08%. As a result, overall performance
calculated by F1-score ours’ is higher by 0.23%.
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Table 5. Performance comparison according to input image changes.

Input Size Methods Classifiers
Malimg Dataset Malheur Dataset

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
(%) (%) (%) (%) (%) (%) (%) (%)

32 × 32
MLP-Mixer-AE

Decision Tree 76.88 69.79 72.10 70.96 89.08 83.71 83.20 82.96
k-Nearest Neighbors 89.75 91.14 85.36 86.92 98.15 97.46 95.96 96.43

Naïve Bayes 79.53 79.70 75.79 77.09 97.32 95.24 95.89 95.33
Nearest Centroid 89.72 91.58 93.31 92.09 98.18 96.92 96.28 96.40
Random Forest 88.67 90.36 79.88 81.67 97.83 97.56 95.36 96.22

SVM 94.67 95.19 93.42 94.12 98.37 97.78 96.44 96.71
MLP-Mixer Softmax 84.62 - - - 94.47 - - -
ResNet50 Softmax 84.94 - - - 91.38 - - -

64 × 64
MLP-Mixer-AE

Decision Tree 91.61 82.33 82.29 81.50 85.37 76.24 75.46 74.72
k-Nearest Neighbors 97.27 95.22 93.06 93.72 96.74 94.03 94.03 94.61

Naïve Bayes 96.04 91.38 91.45 91.24 95.82 94.35 94.35 93.32
Nearest Centroid 98.27 95.79 96.17 95.91 97.35 95.88 95.88 95.55
Random Forest 97.45 95.48 93.51 94.17 96.52 93.37 93.37 94.14

SVM 98.66 97.06 96.61 96.77 97.89 96.70 96.70 96.75
MLP-Mixer Softmax 95.82 - - - 93.09 - - -
ResNet50 Softmax 98.11 - - - 96.06 - - -

96 × 96
MLP-Mixer-AE

Decision Tree 92.98 84.99 85.76 85.24 87.61 80.38 80.29 79.73
k-Nearest Neighbors 98.52 96.79 96.26 96.45 97.64 96.92 95.13 95.62

Naïve Bayes 96.41 72.74 93.23 92.85 96.36 93.65 95.02 94.02
Nearest Centroid 98.49 96.59 96.83 96.66 97.92 96.64 96.23 96.18
Random Forest 98.31 96.45 95.67 95.97 97.51 96.74 94.48 95.36

SVM 99.05 97.82 97.58 97.66 98.02 97.05 96.05 96.31
MLP-Mixer Softmax 97.25 - - - 93.30 - - -
ResNet50 Softmax 98.43 - - - 97.34 - - -

224 × 224
MLP-Mixer-AE

Decision Tree 95.41 90.19 90.34 89.78 88.50 84.10 82.63 81.98
k-Nearest Neighbors 99.06 97.85 97.73 95.75 97.92 97.44 95.71 96.13

Naïve Bayes 98.21 96.18 96.19 96.09 97.03 94.89 95.37 94.90
Nearest Centroid 98.68 97.15 97.29 97.16 98.05 97.03 96.43 96.42
Random Forest 99.12 97.95 97.84 97.91 97.70 97.22 95.17 95.98

SVM 99.34 98.38 98.26 98.29 98.15 97.24 96.38 96.50
MLP-Mixer Softmax 97.75 - - - 94.79 - - -
ResNet50 Softmax 99.14 - - - 97.87 - - -
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Table 6. Comparison with the latest malware classification models on the Malimg dataset.

Studies Year Techniques Accuracy Precision Recall F1-Score # Parameters
(%) (%) (%) (%) (M)

Nataraj et al. [10] 2011 GIST feature + kNN 97.18 - - - -
Rezende et al. [11] 2017 ResNet-50 + Softmax 98.62 - - - 25.56

Burks et al. [12] 2019 ResNet-18 + VAE 85.00 83.0 83.0 83.0 12.46
Naeem et al. [13] 2019 Combined SIFT-GIST 98.40 - - - -

Roseline et al. [14] 2020 Lightweight CNNs 97.49 97.0 97.0 97.0 0.83
Awan et al. [9] 2021 VGG19 + Attention 97.62 97.68 97.50 97.20 143.67

Hemalatha et al. [26] 2021 DensNet + Reweighted Loss 98.23 97.78 97.92 97.85 ~7.98
Sudhakar [28] 2021 ResNet50 + Transfer Learning 99.23 98.3 97.88 98.08 ~25.56
Nisa et al. [15] 2021 SFTA + Cosine kNN 98.70 - 97.0 - 88.26
Lee et al. [16] 2021 Multiple Autoencoders 97.75 95.0 94.0 93.0 23.81

Hammad et al. [17] 2022 Feature Extraction Tamura 95.42 - - - -
Feature Extraction GoogleNet 96.48 - - - 4.00

Lin et al. [18] 2022 Bit-level sequences + CNNs 98.70 - - - -Byte-level sequences + CNNs 98.91 - - -
Barros et al. [19] 2022 VGG19 + Zero-shot Learning 97.76 97.84 97.76 97.69 143.67

Wang et al. [20] 2022 CliqueNet + Multiscale
Attention 99.2 98.0 97.9 97.9 -

Zhong et al. [21] 2022 CNN + gray 96.0 95.3 96.0 95.2 -
Son et al. [22] 2022 Dimension Reduction + SVM 98.51 - - - -

Falana et al. [23] 2022 DNN + DGAN 95.63 95.34 95.30 94.98 -
Tuan et al. [37] 2022 CNN + AVAE 99.40 - - - 3.62

This paper 2023 MLP-mixer Autoencoder 99.34 98.38 98.26 98.29 2.05

Table 7. Comparison with the latest malware classification models on the Malheur dataset.

Studies Year Techniques Accuracy Precision Recall F1-Score # Parameters
(%) (%) (%) (%) (M)

Hurier et al. [42] 2017 Euphony - 90.06 83.86 86.85 -
Naeem et al. [13] 2019 Combined SIFT-GIST 97.50 - - - -

Sebastian et al. [43] 2020 AV labels - 90.81 88.45 89.61 -
Kim et al. [41] 2022 Multiple AV - 89.70 98.60 93.94 -
Son et al. [22] 2022 Dimension Reduction + SVM 95.79 - - - -
This paper 2023 MLP-mixer Autoencoder 98.37 97.78 96.44 96.71 1.39

5. Conclusions

Currently, malware classification through image processing has attracted the attention
of researchers because it does not need statics and dynamic analysis but still achieves
high efficiency. Although CNN has become a popular tool, recent studies have made
new changes to replace it with MLP or other CNN-free models, such as single or multi
descriptors, the attention mechanism in Vision Transformer. However, it has not yet
achieved the expected results like state-of-the-art CNN models.

The birth of the MLP-mixer has confirmed the strength of the neural network model
again compared to CNNs in computer vision today. In the problem of processing images
made from malicious code, due to the structural characteristics of the malicious code, CNN
cannot take advantage of positional invariance capability. However, with a neural network
that shares parameters via patch and channel, the performance gap between MLP and CNN
has decreased significantly. The problem of feature vector re-purification has been solved
by a simple but highly effective Autoencoder network. Experimental results show that
our ensemble method is superior to the CNN-free models and has improved performance
compared to various typical models of pure CNN such as VGG19, ResNet50, GoogleNet,
DensNet, CliqueNet, and DGAN. Furthermore, our lightweight ensemble architecture
utilizes fewer and sufficient parameters compared to the original MLP-mixer model and
the complex combination architecture of CNN, and VAE with the Attention mechanism.
However, it still achieves high performance through various experiments. This study does
not use grid search hyperparameter tuning as in [44] to save computational time.

CNN models almost leverage pre-trained weight from previous work to improve
performance. In our image-based malware task, there is still a need to be an optimal pre-
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trained model to apply transfer learning to CNN. When training the model from scratch,
our method still works better even though the amount of data is not as large as in [11]. As
a result, this study shows the potential of MLP for specific data, such as images created
from binary files.

In future work, we will continue to experiment with data from different sources in the
upcoming work, especially for IoT malware. Unlike CNN, which uses GPUs to accelerate
processing through parallel data processing, MLP can run flexibly in many environments,
which is highly practical. Besides, we will further strengthen our framework to distinguish
between malware families by adding more information into the representation space, such
as Static Characteristics, and investigate other machine learning methods, such as semi-
supervised learning approaches. Recent research showed CNN’s limitation method for
injection attacks and adversarial attacks. In the upcoming work, we will measure the
robustness of our method with these attacks.
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