
Citation: Rajagopal, M.;

Sivasakthivel, R.; Loganathan, K.;

Sarris, L.E. An Automated

Path-Focused Test Case Generation

with Dynamic Parameterization

Using Adaptive Genetic Algorithm

(AGA) for Structural Program

Testing. Information 2023, 14, 166.

https://doi.org/10.3390/info14030166

Academic Editor: Anirban

Bandyopadhyay

Received: 21 November 2022

Revised: 24 February 2023

Accepted: 26 February 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

An Automated Path-Focused Test Case Generation with
Dynamic Parameterization Using Adaptive Genetic Algorithm
(AGA) for Structural Program Testing
Manikandan Rajagopal 1 , Ramkumar Sivasakthivel 2 , Karuppusamy Loganathan 3,*
and Loannis E. Sarris 4,*

1 Department of Lean Operations and Systems, School of Business and Management, CHRIST (Deemed to be
University), Bengaluru 560029, Karnataka, India

2 Department of Computer Science, School of Sciences, CHRIST (Deemed to be University),
Bengaluru 560029, Karnataka, India

3 Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
4 Department of Mechanical Engineering, University of West Attica, 250 Thivon & P. Ralli Str,

12244 Athens, Greece
* Correspondence: loganathankaruppusamy304@gmail.com (K.L.); sarris@uniwa.gr (L.E.S.)

Abstract: Various software engineering paradigms and real-time projects have proved that software
testing is the most critical and highly important phase in the SDLC. In general, software testing takes
approximately 40–60% of the total effort and time involved in project development. Generating test
cases is the most important process in software testing. There are many techniques involved in the
automatic generation of these test cases which aim to find a smaller group of cases that could allow
for an adequacy level to be achieved which will hence reduce the effort and cost involved in software
testing. In the structural testing of a product, the auto-generation of test cases that are path focused in
an efficient manner is a challenging process. These are often considered optimization problems and
hence search-based methods such as genetic algorithm (GA) and swarm optimizations have been
proposed to handle this issue. The significance of the study is to address the optimization problem of
automatic test case generation in search-based software engineering. The proposed methodology aims
to close the gap of genetic algorithms acquiring local minimum due to poor diversity. Here, dynamic
adjustment of cross-over and mutation rate is achieved by calculating the individual measure of
similarity and fitness and searching for the more global optimum. The proposed method is applied
and experimented on a benchmark of five industrial projects. The results of the experiments have
confirmed the efficiency of generating test cases that have optimum path coverage.

Keywords: SDLC; software testing; genetic algorithm; test cases; mutation and cross-over

1. Introduction

Software systems have been expanded in many sections of our life such as transporta-
tion, health, and media. Software reliability is very important and software testing is a way
for verifying the right to work of a software system. Software testing is the most expensive
process and also time-consuming in the entire SDLC. The users accept a software product
only after the same has undergone all levels of testing [1–3]. The effectiveness of software
testing is mainly the verification and validation of the product and is dependent on the
maximum errors found and rectified before the release of a product. This activity in turn
is dependent on the test case’s quality. Test case generation is an important thing to be
completed in a testing life cycle. As a measure to cut down costs, many methods have
been attempted for automating the process of test case generation which has produced
good results in dynamic testing. Automatic software testing is a widely studied area in
search-based software engineering (SBSE). Search-based methods have been the focus of

Information 2023, 14, 166. https://doi.org/10.3390/info14030166 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14030166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-7915-0180
https://orcid.org/0000-0002-6224-6167
https://orcid.org/0000-0002-6435-2916
https://orcid.org/0000-0002-6542-0490
https://doi.org/10.3390/info14030166
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14030166?type=check_update&version=1

Information 2023, 14, 166 2 of 18

research in automating the process of test case generations for achieving control flow over
the structure. Automated test data generation is a persistent problem in achieving adequate
control flow dependencies in a program [4]. An important goal of auto-test generation
includes the creation of multi-level test data which would ensure a robust product with
quality through proper checking of code paths [5]. One of the key tasks in testing is the
generation of data for testing which satisfies a given adequate criteria and the best example
is white box testing [6]. In search-based techniques, the coordination between the parameter
setting and the performance of optimization is complicated and has less understanding [7].
With certain coverage conditions given, the challenge of test case generation lies in search-
ing for a dataset that leads to maximum coverage when it is given as input to the program
under testing. Although automated testing gives more efficiency in the SD, there are more
complicated problems associated with it. There is no generalization of the testing scripts
across multiple applications and can easily create many challenges for the application [8].
Many model-based testing has been developed where the test cases are handwritten by
humans and only the execution has been automated in the entire process. Further, the
auto-test script generation is found to be capable of identifying defects based on the paths,
and often the assertions are coded explicitly over the script.

As a consequence, the present approaches do not provide a complete automatic
test case generation and there is a substantial manual process needed. Metaheuristic
algorithms such as genetic algorithms are more used in the optimization problems of
software engineering. These use a global searching phenomenon and are easily applicable
to many optimization issues. The generation of software test cases is also an optimization
problem where the objective is that the effort should be in a minimum order and the number
of errors identified should be maximum [9]. The difficulty in identifying the controlled
path has a consequence of stagnation during experiments. This stagnation in turn causes a
delay in the overall process. Hence, additional data have to be made used for generating
auto test cases and hence increases the data cost [10]. The search-based techniques are
found to have an issue in achieving global optimum [11]. This manuscript proposes an
adaptive genetic algorithm for the auto test case generation where the population is diverse.
The aim of the study is to bring in a technical contribution to address the issue of path
generation in structural program testing. The work proposes an adaptive genetic algorithm
for automatic test case generation that maintains population diversity. The significant
contribution of the study is that the proposed method addresses the issue of cross-over
and mutation by dynamically adjusting them based on the variations among individual
and fitness value similarities. This enhances the search exploration to achieve more global
optimum. The proposed methodology addresses structural path testing, and future research
is aimed to extend the model for non-structural path testing. A dynamic adjustment on the
cross-over and mutation rate is completed in line with the variations in the similarity of
individuals and the fitness functions that increase the searching options of obtaining the
global optimum.

The rest of the manuscript is structured as: Section 2 gives the gist of the related works
carried out on the genetic algorithm-based methods for automatic test case generation.
Section 3 describes the problem considered and Section 4 deals with the proposed method-
ology in detail. Section 5 elaborates on the experimental analysis and results discussion.
Section 6 gives the conclusion with future research directions.

2. Related Works

A range of methods have been proposed in the literature for addressing the issue
of auto-test case generations and the most effective method was found to be the use
of metaheuristic algorithms [12–14]. When this technique is applied for the automatic
generation of test cases, the information on the feedback that concerns the tested program
is used for determining whether the data included for the test meets the requirements. The
mechanism of feedback gradually makes adjustments to the test data till the requirements
are met. These methods have led to substantial research growth in the recent past. A

Information 2023, 14, 166 3 of 18

FU_B method [15,16] was proposed where the software cases are generated based on an
annealing GA that is simulated. A technique for an optimized test case generation by
making use of the tabula and clustering methods was introduced in [17–19]. Among many
of the methods proposed, genetic algorithms are widely adopted. The process of auto-test
case generation was looked at as an NP problem [20]. The primary focus here was to
make a choice on the appropriate test cases in an automated manner. In order for the test
cases to be generated, there are many algorithms proposed based on the inspiration from
nature [21,22]. These algorithms help in generating appropriate test cases. The automatic
test cases were generated using the GA and analysis of mutation was performed in [23–26].

The US-RDG [27,28] was proposed where the focus was on the grey box testing. The
proposed method combines the session information of the user and obtains a request
dependence graph(RDG) of the application being tested. Genetic algorithms are then used
for the auto-generation of test cases. The proposed method was simulated, and the results
prove that it has better impacts than the conventional session-based testing approaches. The
coverage of the path and the rate at which the faults were detected were high within a small
suite of test beds. An EGA (evolutionary genetic algorithm) [29] was proposed which made
use of the simulated and annealing-motivated approach for the auto-generation of test
cases is introduced. The fitness function of the target is brought by the instrumentation of
the program with the aid of the branch distance method and GA is used for the generation
of test cases. Experiments were conducted and comparisons with other state-of-the-art
methods are carried out in terms of the total count of generations that were needed for
reaching the target and the time consumed for generating the test cases.

A novel method using GA and mutation optimization was proposed in [30]. The
proposed method intends to generate test cases automatically by the combination of random
search and conscious refinement. All of the test cases are generated in a random manner
initially and then the set of required cases is filtered using the GA. In order to measure
the sufficiency of the number of test cases to be generated, the scores were assigned to
mutation based on the analysis. The experiment was carried out in a C program module
and the results obtained achieved 100% coverage in both branches and boundaries. An
evolutionary structure-based GA was proposed in [31,32] for test case generation such that
there is a high level of coverage in code is completed by a minimum number of test cases.

In the literature, it has been seen that many parameters are involved in determining
the performance of a genetic algorithm which include cross-over and mutation. These
parameters are vital for determining how the search space is exploited. Improper parame-
terization stops the algorithm to discover solutions of high quality as these parameters have
a large influence on performance. An unfortunate fact here is in general, the algorithms are
configured by the practitioner who is not likely to be an expert in search-based solutions.
The major gap in the literature is that only very few studies have been carried out to address
the issue of genetic algorithms falling in local optimum due to less diversity. This hinders
the performance of automatic test case generation which uses genetic algorithms.

Problem Definition

In the modern era of software engineering, many research works have acknowledged
the effective performance of genetic algorithms in test case generation. The performance of
GAs in most of the cases directly depends on the parameters which include cross-over rate
PC and mutation rate Pm [33,34]. These parameters decide how the given space of search is
exploited and when the parameters are defined poorly, solution discovery becomes more
complicated as the parameter values are directly responsible for the performance of an
algorithm [35,36]. Practically, the choice of an algorithm is left to the practitioner who often
does not have expertise in search-based methods. In addition, the GA’s population might
come to local optimum owing to the substantial decline in the diversity in a later part which
stops the auto-test case generations using genetic methods. In order to overcome this issue,
this work introduces an adaptive genetic algorithm that can adjust the rate of cross-over

Information 2023, 14, 166 4 of 18

and mutation in a dynamic manner in the course of optimization through the effective
maintenance of a diverse population.

3. Proposed Methodology

The proposed framework takes the genetic algorithm as a base. These are widely used
metaheuristic algorithms in search-based software engineering (SBSE) [37]. The core issue
in these cases is how the collaborative performance of the GA is ensured in the process of
testing. The proposed framework is shown in Figure 1.

Information 2023, 14, x FOR PEER REVIEW 4 of 18

the performance of an algorithm [35,36]. Practically, the choice of an algorithm is left to
the practitioner who often does not have expertise in search-based methods. In addition,
the GA’s population might come to local optimum owing to the substantial decline in the
diversity in a later part which stops the auto-test case generations using genetic methods.
In order to overcome this issue, this work introduces an adaptive genetic algorithm that
can adjust the rate of cross-over and mutation in a dynamic manner in the course of op-
timization through the effective maintenance of a diverse population.

3. Proposed Methodology
The proposed framework takes the genetic algorithm as a base. These are widely

used metaheuristic algorithms in search-based software engineering (SBSE) [37]. The core
issue in these cases is how the collaborative performance of the GA is ensured in the
process of testing. The proposed framework is shown in Figure 1.

Figure 1.Proposed AGA framework.

The proposed framework as seen in the figure is seen from two perspectives. The
first is in terms of PUT (program under test) analysis and the second is in terms of pop-
ulation initialization. The following section explains the proposed framework.

3.1. PUT Analysis
The PUT analysis compartment in the proposed method has different components

which are summarized here.

3.1.1. Fitness Function
Path-oriented methods are largely used in automatic test case generation as it is

cost-effective. Here, the model converts the global objectives into small local objectives
which can traverse through one target path across multiple branches of the program. As
it is an optimization problem, the design of the fitness function is required which is
completed by this block.

3.1.2. Instrument PUT
In order for the proposed model to understand what is being completed in a pro-

gram, the instrumentation block collects the coverage of data without affecting the un-

Figure 1. Proposed AGA framework.

The proposed framework as seen in the figure is seen from two perspectives. The first
is in terms of PUT (program under test) analysis and the second is in terms of population
initialization. The following section explains the proposed framework.

3.1. PUT Analysis

The PUT analysis compartment in the proposed method has different components
which are summarized here.

3.1.1. Fitness Function

Path-oriented methods are largely used in automatic test case generation as it is cost-
effective. Here, the model converts the global objectives into small local objectives which
can traverse through one target path across multiple branches of the program. As it is an
optimization problem, the design of the fitness function is required which is completed by
this block.

3.1.2. Instrument PUT

In order for the proposed model to understand what is being completed in a program,
the instrumentation block collects the coverage of data without affecting the underlying
logic of the program. The instrumentation is performed here using the beta version of the
real-time application.

Information 2023, 14, 166 5 of 18

3.1.3. UI Extraction

This block is used to exhibit possible test cases of the program under test. The results from
UI extraction are the success and failure scenarios of the GUI test. In the proposed method, UI
extraction is performed for all the programs under tests taken from different industries.

Perform PUT: The outcomes of instrumentation and UI extraction are modeled and
fed as input to the actual performer, i.e., using the parser.

3.1.4. Coverage

The individual paths that are decoded then enter as input to the drive and collect back
the appropriate information on coverage. The test cases that are generated then realize
when the coverage is complete for a scenario and in that GA component, it records the
complete information on the coverage of individual path testing nodes. For example, if
a particular path is set as a target, the optimal solution will be obtained at the end of
the program.

The working explanation for the block B of the architecture proposed is explained in
the following Section 3.3.

In general, from the testing perspective, the process has a couple of important com-
ponents, a parser, and a test driver. The former is responsible for performing analysis
on the lexical and syntax of the code for the adaptive function. The proposed method
addresses both of them. The latter is used to input the parameters to the application that is
under testing. From the GA’s perspective, feedback is used based on the value of fitness for
guiding the update of a population which focuses on genetic operations such asselection,
mutations, and cross-over for decoding the formal into original parameters. It enables us to
learn about the superiority of solution vectors with the help of the driver. The following
section provides more information.

The fundamental flow of the algorithm is as shown: The following actions are to be
performed at the initial level based on the program to be tested in terms of statistical analysis.

1. The information from the interface is to be extracted.
2. The instrumentation formulation corresponds to the structural components of the

program with pre-determined test adequacy condition C.
3. Formulation of the fitness function as per condition C.

The parameters chosen as the input are then to be coded inside the unique vector
genes. In parallel, the population denoted by P(t) which is the rth generation inside
the population P, is then initialized in association with the cross-over rate denoted by PC
and the rate of mutation given as Pm and time t is initialized as 0. Then, the individuals
thatare decoded are entered as the input parameter for driving the program under tests
and for collecting the concerned information of the coverage. The value of fitness for every
individual is then calculated for obtaining the P(t) by making use of the input parameters
that are associated with the information on the coverage. Last, the P(t) is modified by
making use of pre-defined operators such as selection, mutation, and cross-over till the
point of termination is satisfied. In the framework proposed, the stopping criteria are set
based on acouple of situations that are expected in general.

1. When the evolution reaches a maximum, i.e., MAXGEN.
2. When the test case generated realizes the throughout coverage on the target that covers

all the elements.

From the testing point of view, the proposed process has a couple of important
components namely the parser which is static, and the test driver.The former takes up the
responsibility of program analysis based on the semantics and lexically. This is performedto
design the instrument and the adaptive fitness function. The latter is mainly supposed to
do the job of entering the parameters inside the application that is subjected to test and
collect all the information on the coverage and thereafter calculate the fitness. Fromthe GA
point of view, feedback is used as per the fitness for guiding the updated population. The
formal description of the parameters is decoded into actual ones by keeping the focus on

Information 2023, 14, 166 6 of 18

general operators of GA such as the selection, cross-over, and mutation. The test drivers
hencehelp in learning the superiority of the solution’s vector.

3.2. Computing Fitness Function

The path-focused techniques are largely adopted in testing the program structures as
these are proven cost-effective [38]. These methods require the execution of a given path
based on the control flow. The test data generator module in the proposed method helps in
breaking down the global minimum into different partial minimums that consist of dealing
with a single target path with numerous branches in a program. The problem of generating
test cases with genetic methods can be considered a problem of optimization [39] where
the test data generation has to cover the complete path and designing the fitness function is
very important to solve the same. In order to cover separate branches. The fitness function
is formulated as a function F(x, t) R which takes up a target “t” as a path with an input “x”
where x takes the values as in {x1, x2, x3, xlength} represented as vectors belonging
to the input of the function, which is under test with the domain Dmn of the inputs xn
denoting the set of all possible values which xn is capable of holding.

As a fact, the fitness function computation gets involved with couple of components
called the Applevel and the Branchdist [40]. The level of approach is made used for the
assessment of the path followed by the given in put in line with the targeted branch for
calculating the control dependencies which are not executed through the path. Figure 2
shows the control graph generated of the program under study. Consider that ith individual
of xi over the P(xi) and the path of the target is denoted by P(TARGET).

Information 2023, 14, x FOR PEER REVIEW 8 of 18

Figure 2. Control flow graph of the proposed model. Numbers denote the node numbers, Source
(S) and End node (E).

Figure 2 depicts the sample control flow graph of a program that classifies the four
times of a triangle.

Initial Parameter Setting
The parameter configuration is completed in various methods in software engi-

neering either by fine-tuning before the optimization or dynamically adjusting during the
run time. The latter method is adopted here as it has more effect than fine-tuning as the
adaptive theory does not have a predefined schedule and also does not extend those so-
lutions. The proposed method used the population diversity method for designing the
AGA operators by dynamic adjustments. In order to address the issue of pre-mature
convergence, the Hamming method is used to define the parameters.

3.3. Adjustment of the Parameters
There exists two different ways in which the parameters can be adjusted in the

software engineering paradigm. The first is to tune the parameter values ahead of opti-
mization and the second is by adjusting the parameters dynamically during the run time.
Runtime adjustments are called controlled parameter settings and are more effective than
the former as the schedule is not predefined in the case of adaptive control and here, the
size of the solution is not extended [41]. In the proposed model, first, a divertive metric
for the population is introduced and the same is used for the design of adaptive GA op-
erations for the dynamical adjustment of parameters.

3.3.1. Diverse Metric of Population
The important issue in most metaheuristic algorithms is premature convergence.

Various studies have shown that there is an intact relation between premature conver-
gence and the lack of sufficient diversity in the population. A reasonable description of
population diversity is seen as a critical problem for most search-based algorithms. The
Hamming distance is one of the common ways to define the same, but it does not take on
individual fitness-related information into consideration [42]. A diverse metric for the
population is introduced in this paper which deals with both issues.

3.3.2. GA Parameter Design
Genetic-oriented operators are often essential for acquiring the second generation in

a given set of populations and are very crucial in the evolutionary incremental iterations.
The conventional GA that has constant values for crossover and mutation rates faces the

Figure 2. Control flow graph of the proposed model. Numbers denote the node numbers, Source (S)
and End node (E).

The level of approach for calculating the fitness function is given in the Equation (1).

Applevel(xi) =
∝
(
xj
)

| P(Objective)| (1)

In the above equation, ∝ (xj) denotes the count of the nodes that are untraversed
in the path P(xi) in line to the target P(TARGET) and the modulus function gives the nu-
merical value of the count of nodes for the structural path which is set as target when
the given input is xi for executing the program to be tested. For instance, suppose
that P(TARGET) = “S→1,2,3,4,5,6,8,16→E” and P(xi)→1,2,3,4,5,7,9,10,11,12,13,14,15,16→E,
then the level of approach can be computed as in Equation (2).

Applevel(xi) =
∝ (xj)

| (target)| =
3
9

(2)

Information 2023, 14, 166 7 of 18

As far as the Branchdist is considered for the calculation of fitness, the Korel and Tray’s
method [41] are used. Consider a scenario where the teat case execution gets diverged
from the branch, which is set as the target, the Branchdist expresses as how far the input
satisfies the predicate’s constraint set at which the test case flow went “wrong”. In other
words, it defines as how close the given input was climbing down to the next level of
approach. Some of the basic Branchdist functions are shown in Table 1. Here, Q represents a
positive integer in such a way that an objective function is always returning a value that is
smaller than 0 if at all the predicate computation is false. The maximum Branchdist is not
pre-determined and hence the conventional approach for normalization is not applicable.
Instead, a normalized Branchdist as in the Equation (3) is used.

NORM(Branchdist) = 1− 0.001−Branchdist (3)

Table 1. BDF for branch predicates.

S.No Predicate of Branch BDF f(branch)i

1 m = n If |m − n| = 0 then 0 else |a − b| + Q

2 m! = n If |m − n| 6. 0 then 0 else Q

3 m < n If m − n < 0 then 0 else (a − b) + Q

4 m ≤ n If m − n_ 0 then 0 else (a − b) + Q

5 m > n If n − m < 0 then 0 else (b − a) + Q

6 m ≥ n If m − n_ 0 then 0 else (b − a) + Q

7 mηn i(a) + i(b)

8 mUn MIN (i(m), i(n))

9 !m NEGATION of A

10 BOOL 0 if true else Q

The fitness F(y, t) can be computed as in Equation (4) for the complete program under
testing and are calculated by the Applevel and by applying normalization as per Table 1.

Table 1 describes some of the branch distant functions. Here, the K represent the
positive integer in a way that the objective function shall return a non-zero value when
the predicate is not true. As the maximum distance of the branch is not usually known,
the normalization cannot be applied in a standard way and hence it is completed through
Equation (2).

Fitness(y, t) =
1

∆ + Applevel(y, t) + ∑ w(i).Norm(f (branch)i)
(4)

The fitness function F (y, t) is then assigned for each of the chromosome x on the
path “t”. Here, s denotes the total branch count in the path which is set as the target. w(i)
gives the weight on each branch and ∆ is the constant which takes the value of 0.01 in the
proposed experiment. In general, the difficulty lies in reaching every individual and varies
among different branches which need the weights to be initialized differently on them. As
a thumb rule, the degree of nesting (Dn) is greater. The difficulty in arriving at the branch is
also great. For this, the weights of the branches need to be increased. The degree of nesting
of a particular branch Dbchi {1− i− s} can be calculated using the statistical analysis of
the program.

The fitness function is then assigned to every chromosome, i.e., the individual input (x)
of the path which is taken as the target. Here, S denotes the total count of the branches in the
target and W denotes the branch weight. The level of difficulty in reaching the individual
varies between branches. Hence, the weights are to be set differently. Normally, the larger
degree of nesting of a branch tends to a greater degree of difficulty to reach the branch
which results in a condition to increase the weight. The degree of nesting is calculated

Information 2023, 14, 166 8 of 18

through static program analysis. The maximum degree of nesting is denoted as ndMAX and
the minimum as ndMIN. The nesting weight is then calculated using Equation (4).

zi =
ndi − ndlm + 1

ndMAX − ndlm + 1
(5)

Figure 2 depicts the sample control flow graph of a program that classifies the four
times of a triangle.

Initial Parameter Setting

The parameter configuration is completed in various methods in software engineering
either by fine-tuning before the optimization or dynamically adjusting during the run time.
The latter method is adopted here as it has more effect than fine-tuning as the adaptive
theory does not have a predefined schedule and also does not extend those solutions. The
proposed method used the population diversity method for designing the AGA operators
by dynamic adjustments. In order to address the issue of pre-mature convergence, the
Hamming method is used to define the parameters.

3.3. Adjustment of the Parameters

There exists two different ways in which the parameters can be adjusted in the software
engineering paradigm. The first is to tune the parameter values ahead of optimization
and the second is by adjusting the parameters dynamically during the run time. Runtime
adjustments are called controlled parameter settings and are more effective than the former
as the schedule is not predefined in the case of adaptive control and here, the size of
the solution is not extended [41]. In the proposed model, first, a divertive metric for the
population is introduced and the same is used for the design of adaptive GA operations for
the dynamical adjustment of parameters.

3.3.1. Diverse Metric of Population

The important issue in most metaheuristic algorithms is premature convergence.
Various studies have shown that there is an intact relation between premature convergence
and the lack of sufficient diversity in the population. A reasonable description of population
diversity is seen as a critical problem for most search-based algorithms. The Hamming
distance is one of the common ways to define the same, but it does not take on individual
fitness-related information into consideration [42]. A diverse metric for the population is
introduced in this paper which deals with both issues.

3.3.2. GA Parameter Design

Genetic-oriented operators are often essential for acquiring the second generation in
a given set of populations and are very crucial in the evolutionary incremental iterations.
The conventional GA that has constant values for crossover and mutation rates faces the
search stop hindrance phenomenon in a later part owing to the lack of proper diversity
over the entire population.

The conventional operators such as selection, crossover, and mutation are dynamically
adjusted for improvement in the efficiency of the algorithm. Selection operators are used
for the determination of chromosomes which are to be used as the parent in the offspring
creation which again populates the consequent generation. The choice of methods includes
the probability-based techniques and the roulette method, which are the best to use in
generic GAs. However, these suffer from drawbacks such as maintaining a constant level
of pressure inside the search space which is required to select the best individual. In the
initial iterations, the variance of the fitness is found to be usually of a high order. As the
most-fit individuals will have a higher probability of being granted greater opportunities
to become a parent owing to the high pressure in the search space. This again will lead to
the issue of premature convergence and also as in the later part of the generations as when

Information 2023, 14, 166 9 of 18

the fitness between the individuals seems similar, the variance of fitness also will become
low which leads to stagnation in the searching process.

The linear method of ranking for all individuals is the method that is proposed to
handle the issue. The individuals here are ranked based on fitness and a temporary fitness
value is assigned based on the rank, instead of using the fitness value directly. A ranking
methodology with a given value Y where 1 < Y2, allows a certain value to Y for the best
individual (1.0) for the intermediate individual. The worst will be assigned the value of
2-Z. The proposed framework uses a linear method of ranking for the selection operator
where the Y is assigned a value of 1.8. The entire operation is then regulated using the
probability function of the crossover PC. The rate of crossover is defined as the guarantee
of the population being diverged. If this has a large value, the better individual’s gene that
has a high fitness value will be destroyed easily. On the other hand, if it is too small, the
search process will be slowed down. It is assumed that the parent is denoted by xi and
xj and owing to the selection, crossover, and mutation parameters the PC can be obtained
through Equation (6).

PC =

{
P (1− NORM(DPD)), f ≥ fAVG

1, f < fAVG
(6)

In order to avoid PC becoming greater than 1, the degree in which the population is
to be diverged (DPD) must be normalized. Although there are many ways to normalize,
NORMALIZEDPD = DPD

DPD+∆ where ∆ is a constant and ∆ > 0 is the method which is
adopted in the proposed method. The PC calculation brings out the fact that when the
DPD is kept low, the rate of crossover is to be increased and in parallel, the diversity in the
population is also improved. When the “f ” is lower than the fAVG, it prevents premature
convergence. The PC is set to 1 for avoiding over-optimization of the parameters in a given
solution space.

The primary purpose of the mutation is for increasing the local searching capability
of the genetic algorithms and to maintain population diversity. The same is achieved by
the bit flipping of the binary set of strings at a certain probability PM. On the one side, it is
very difficult for producing fresh individuals and the diversity of the population cannot
be assured if the rate of mutation is very small. On the other, it may also cause notable
damage to the genes leading to the degradation of search methods. Hence, an adaptive
probability for the mutation is used here based on the DPD. The same is obtained through
Equation (7).

PM =

{
P(i)(1− NORM(DPD)), f (i) ≥ fAVG
P(0), f (i) < fAVG

(7)

Here, the PM is set to a smaller value and the rate of mutation shall be changed in
an adaptive manner for maintaining the diverse population inline with the diversity of
individual’s while

f (i) < fAVG

4. Implementation

For the sake of descriptive convenience, the proposed method is abbreviated as AGA
and the pseudo-code of the same is depicted in Figure 3. The population is made to evolve
as per the AGA criteria till an optimum solution is arrived at. The stopping criteria of the
proposed method are as follows:

1. The information on the coverage is recorded on individual traversal of test paths.
When a specific path is completely covered, the optimum solution is found, and the
search is stopped.

2. As some of the test paths may be difficult for covering or left uncovered, the search
stops after reaching a given number of iterations.

Information 2023, 14, 166 10 of 18

Information 2023, 14, x FOR PEER REVIEW 10 of 18

𝑓(𝑖) < 𝑓
4. Implementation

For the sake of descriptive convenience, the proposed method is abbreviated as
AGA and the pseudo-code of the same is depicted in Figure 3. The population is made to
evolve as per the AGA criteria till an optimum solution is arrived at. The stopping criteria
of the proposed method are as follows:
1. The information on the coverage is recorded on individual traversal of test paths.

When a specific path is completely covered, the optimum solution is found, and the
search is stopped.

2. As some of the test paths may be difficult for covering or left uncovered, the search
stops after reaching a given number of iterations.

Figure 3. Algorithm for test case generation.

5.Results and Discussion
This section deals with the experimental analysis of the proposed AGA model when

applied for the automatic test case generation for path coverage on a benchmark and on
five industrial project codes. In order to prove the effectiveness of the proposed AGA,
conventional methods such as GA, IGA, and random search methods are taken for
comparison. A basic system configuration was used. The experiments were conducted to
test the efficiency of the proposed AGA. The efficiency is mapped in terms of the mean
execution (ME) for a given range of input and different sizes of POP, the execution time,
the maximum number of evaluations completed for complete traversal, and the average
execution time. The success rate is defined and calculated for the proposed method and
compared with that of other methods. It is seen that the proposed method outperforms
the other methods and also seen that the proposed method shows consistency in terms of
success rate even when the range is increased while other methods degrade in perfor-
mance as the range of POP is increased. Tables 1 and 2 depicts the same.

Criteria for Evaluation and Parameter Adjustments
The criteria for termination are when at least a single datum is found for traversing

the path under test or if the number of total iterations in the evolution has reached the
current value. Some of the criteria for evaluations for testing the effectiveness are as un-
der

EVAL: It is the total evaluations for an individual on every method.

INPUT: Program for Test
OUTPUT: Set of evolved Solutions
1. START
2. Set Partial Objective(PO), Population(P),Fitness function(FF) and Stop criteria(SC), Mutation (M),
Mutation operator (Mi) and Cross over operator (𝐶)
3. Generate random Solutions 𝑆
4. T=0; WHILE SC NOT EQUAL TO =0
DO
5. EVAL (𝑓 , 𝑆)
6. Compute DPD and Update 𝑃 as in (10)
7. Construct new population 𝑆 as in (11)
8. Update population 𝑃𝑚
9. Mutate (S(i), 𝑃)
10. 𝑆 ← 𝑆1 ; t+= 1
11. End While; RETURN. 𝑆
12. END

12. END

Figure 3. Algorithm for test case generation.

5. Results and Discussion

This section deals with the experimental analysis of the proposed AGA model when
applied for the automatic test case generation for path coverage on a benchmark and on
five industrial project codes. In order to prove the effectiveness of the proposed AGA,
conventional methods such as GA, IGA, and random search methods are taken for compar-
ison. A basic system configuration was used. The experiments were conducted to test the
efficiency of the proposed AGA. The efficiency is mapped in terms of the mean execution
(ME) for a given range of input and different sizes of POP, the execution time, the maximum
number of evaluations completed for complete traversal, and the average execution time.
The success rate is defined and calculated for the proposed method and compared with
that of other methods. It is seen that the proposed method outperforms the other methods
and also seen that the proposed method shows consistency in terms of success rate even
when the range is increased while other methods degrade in performance as the range of
POP is increased. Tables 1 and 2 depicts the same.

Table 2. Comparative analysis of performance metrics.

Experimental Setup AGA IGA GA

Range of Input Size of POP Max (gen) Mean (E) AvgTs SR% Mean (E) AvgTs SR% Mean (E) AvgTs SR%

1250 50 5000 6012.5 0.007 100 51423.0 0.051 100 101,234 0.12 100

1500 50 10,000 9254.0 0.001 100 132,445.0 0.091 100 202,456 0.26 95

11,000 200 20,000 25,940.0 0.003 100 512,378.6 0.124 90 1,041,256 0.37 80

12,500 200 40,000 83,964.5 0.012 100 195,000.5 0.254 75 1,520,045 0.41 65

110,000 300 70,000 259,084.1 0.021 95 6,151,240.6 0.354 40 4,578,945 0.68 30

Criteria for Evaluation and Parameter Adjustments

The criteria for termination are when at least a single datum is found for traversing the
path under test or if the number of total iterations in the evolution has reached the current
value. Some of the criteria for evaluations for testing the effectiveness are as under

EVAL: It is the total evaluations for an individual on every method.
T: It is the search time taken for generating the test data for every method.
SR: It is the rate of success, and it is defined as the success percentage in the generation

of test data for traversing the path to the total count of experiments carried out.

Information 2023, 14, 166 11 of 18

To ensure a very small difference in the sampling of individuals, the proposed method
adopts a similar population size and the same initial level of population. The conventional
parameters such as the individual code are handled by binary codes, the selection operator
will be handled by the linear ranking method, and the single point mutation handles the
rate of mutation. The crossover and mutation rates are assigned the initial values of 0.1
and 0.9, respectively. In the proposed method, the parameter for weightage η is used for
the calculation of the degree of diversity in population—DPS is set to 0.5 for making it
convenient to compare with other methods.

1. The AGA proposed in this paper have success in generation of datum for traversing
the path under target with few evaluations on each input. For instance, when the
range of input is (250), the evaluation mean is 6012.5 which is about 12.4 times smaller
than that of the IGA and 29.2times lower than that of the GA. This is the same when
compared to that of the random approach, where the mean (E) is 115,248.6 which is
32.5 times more than the proposed AGA as shown in Table 3. The same is represented
in Figure 4.

2. As far as the searching time is considered, the average T(s) in the case of AGA is 0.0007
whereas, in the case of IGA and GA, these are 0.051 and 0.12, respectively, for the input
range [1250]. By this, we can come to the conclusion that the other methods take more
time to execute than the proposed AGA. It is also seen that the random method has
less time complexity than IGA and GA and it is due to the fact that it does not include
the time taken for the computation of fitness value and the same is given in Figure 5.

3. Although the evaluation process of the proposed AGA is similar to that of other genetic
approaches such as IGA and GA, the total count of the evaluation has substantially
reduced because of the adaptive method of adjusting the parameters which makes the
time required for searching to be minimal. This proves the efficiency of the proposed
method in optimization.

4. The success rate was found to be 100% when the range of input was kept small.
However, as the range of input reached 11,000, the SR in the case of IGA and GA is
reduced to 90% and 80%, respectively. The case is still worse when the range of input
reaches 110,000, where the proposed AGA has still 90% SR, but for the other methods,
it comes down drastically to 40% and 30%, respectively. Figures 6 and 7 represent
the same.

Table 3. Comparison of AGA and random approach.

Experimental Setup AGA Random Method

Range of Input Size of POP Max (gen) Mean (E) AvgTs SR% Mean (E) AvgTs SR%

1250 50 5000 6012.5 0.007 100 115,248.6 0.0712 100

1500 50 10,000 9254.0 0.001 100 483,268.5 0.0917 100

11,000 200 20,000 25,940.0 0.003 100 5,249,142.5 0.1024 80

12,500 200 40,000 83,964.5 0.012 100 2,200,000.0 0.2567 55

110,000 300 70,000 259,084.1 0.021 95 24,000,000.5 0.3689 35

Figures 8 and 9 depict the comparison of mean evaluation and standard deviation of
the same. It is seen that the proposed method has performed better. For further verification
of the efficiency of the proposed method, there were fiveindustrial programs chosen [25].
The traversing path is selected randomly for each of the programs. The setting of the
parameters is shown in Table 4. LOC denotes the line of code. It is arranged that in this set
of experiments, each of the methods runs 100 times. The statistical results are tabulated in
Table 5.

1. The proposed method proves effective once again in terms of the mean (E) for the
generation of path-focused data than the other methods (IGA and GA and also the
random method) for the five programs considered. Table 5 and Figures 8 and 9

Information 2023, 14, 166 12 of 18

describe the same. As is seen in Figure 8, the effectiveness of the proposed AGA is
more obvious as the scale of the input is increased.

2. As the standard deviation is considered on the five industrial programs, the PG-1 has
an SD of 3012.4 which is 21.2% lesser than the 5412.5 of IGA and 25.8% lesser than
that of the 6214.8 in case of GA and 23.4% lesser than the 5064.2 of that of the random
method. This indicates that the performance and the stability of the proposed AGA
are more than the other methods taken for comparative study. The same is depicted in
Figures 10 and 11.

Information 2023, 14, x FOR PEER REVIEW 12 of 18

11,000 200 20,000 25,940.0 0.003 100 5,249,142.5 0.1024 80
12,500 200 40,000 83,964.5 0.012 100 2,200,000.0 0.2567 55

110,000 300 70,000 259,084.1 0.021 95 24,000,000.5 0.3689 35

Figure 4. Comparison of execution time.

Figure 5. Comparison of success rate.

Figure 4. Comparison of execution time.

Information 2023, 14, x FOR PEER REVIEW 12 of 18

11,000 200 20,000 25,940.0 0.003 100 5,249,142.5 0.1024 80
12,500 200 40,000 83,964.5 0.012 100 2,200,000.0 0.2567 55

110,000 300 70,000 259,084.1 0.021 95 24,000,000.5 0.3689 35

Figure 4. Comparison of execution time.

Figure 5. Comparison of success rate. Figure 5. Comparison of success rate.

Information 2023, 14, 166 13 of 18
Information 2023, 14, x FOR PEER REVIEW 13 of 18

Figure 6. Comparison of success rate of AGA and random method.

Figure 7. Comparison of execution time of AGA and random method.

Figures 8 and 9 depict the comparison of mean evaluation and standard deviation of
the same. It is seen that the proposed method has performed better.For further verifica-
tion of the efficiency of the proposed method, there were fiveindustrial programs chosen
[25].The traversing path is selected randomly for each of the programs. The setting of the
parameters is shown in Table 4. LOC denotes the line of code. It is arranged that in this
set of experiments, each of the methods runs 100 times. The statistical results are tabu-
lated in Table 5.

Figure 6. Comparison of success rate of AGA and random method.

Information 2023, 14, x FOR PEER REVIEW 13 of 18

Figure 6. Comparison of success rate of AGA and random method.

Figure 7. Comparison of execution time of AGA and random method.

Figures 8 and 9 depict the comparison of mean evaluation and standard deviation of
the same. It is seen that the proposed method has performed better.For further verifica-
tion of the efficiency of the proposed method, there were fiveindustrial programs chosen
[25].The traversing path is selected randomly for each of the programs. The setting of the
parameters is shown in Table 4. LOC denotes the line of code. It is arranged that in this
set of experiments, each of the methods runs 100 times. The statistical results are tabu-
lated in Table 5.

Figure 7. Comparison of execution time of AGA and random method.

Table 4. Parameter setting for the industrial trial programs.

P_ID LOC No of Target Nodes Population Max (Generations)

PG_1 95 20 100 2000

PG_2 125 20 100 2200

PG_3 445 53 100 20,000

PG_4 595 65 200 30,000

PG_5 8500 520 400 50,000

Information 2023, 14, 166 14 of 18
Information 2023, 14, x FOR PEER REVIEW 14 of 18

Figure 8. Comparison of mean evaluation.

Figure 9. Comparison of standard deviation.

Table 4. Parameter setting for the industrial trial programs.

P_ID LOC No of Target Nodes Population Max (Generations)
PG_1 95 20 100 2000
PG_2 125 20 100 2200
PG_3 445 53 100 20,000
PG_4 595 65 200 30,000
PG_5 8500 520 400 50,000

1. The proposed method proves effective once again in terms of the mean (E) for the
generation of path-focused data than the other methods (IGA and GA and also the
random method) for the five programs considered. Table 5 and Figures 8 and 9 de-

Figure 8. Comparison of mean evaluation.

Information 2023, 14, x FOR PEER REVIEW 14 of 18

Figure 8. Comparison of mean evaluation.

Figure 9. Comparison of standard deviation.

Table 4. Parameter setting for the industrial trial programs.

P_ID LOC No of Target Nodes Population Max (Generations)
PG_1 95 20 100 2000
PG_2 125 20 100 2200
PG_3 445 53 100 20,000
PG_4 595 65 200 30,000
PG_5 8500 520 400 50,000

1. The proposed method proves effective once again in terms of the mean (E) for the
generation of path-focused data than the other methods (IGA and GA and also the
random method) for the five programs considered. Table 5 and Figures 8 and 9 de-

Figure 9. Comparison of standard deviation.

Table 5. Mean search time and success rate comparison of industrial programs.

PG_ID

Evaluation of Various Metrics

AGA IGA GA Random

Mean T(s) SR% Mean T(s) SR% Mean T(s) SR% Mean T(s) SR%

PG_1 0.0254 100 0.0912 100 0.8915 100 0.812 100

PG_2 0.0267 100 1.2543 100 2.4651 100 1.214 74

PG_3 0.7124 100 0.4716 100 0.5412 85 0.4854 48

PG_4 1.5264 100 3.2145 92 6.5412 75 5.231 24

PG_5 2.4120 95 5.2145 84 10.1654 62 8.954 12

Information 2023, 14, 166 15 of 18

Information 2023, 14, x FOR PEER REVIEW 15 of 18

scribe the same. As is seen in Figure 8, the effectiveness of the proposed AGA is
more obvious as the scale of the input is increased.

Table 5. Mean search time and success rate comparison of industrial programs.

PG_ID
Evaluation of Various Metrics

AGA IGA GA Random
Mean T(s) SR% Mean T(s) SR% Mean T(s) SR% Mean T(s) SR%

PG_1 0.0254 100 0.0912 100 0.8915 100 0.812 100
PG_2 0.0267 100 1.2543 100 2.4651 100 1.214 74
PG_3 0.7124 100 0.4716 100 0.5412 85 0.4854 48
PG_4 1.5264 100 3.2145 92 6.5412 75 5.231 24
PG_5 2.4120 95 5.2145 84 10.1654 62 8.954 12

2. As the standard deviation is considered on the five industrial programs, the PG-1
has an SD of 3012.4 which is 21.2% lesser than the 5412.5 of IGA and 25.8% lesser
than that of the 6214.8 in case of GA and 23.4% lesser than the 5064.2 of that of the
random method. This indicates that the performance and the stability of the pro-
posed AGA are more than the other methods taken for comparative study. The
same is depicted in Figures 10 and 11.

Figure 10. Comparison of success rate in industrial program data. Figure 10. Comparison of success rate in industrial program data.

Information 2023, 14, x FOR PEER REVIEW 16 of 18

Figure 11. Comparison of execution time in industrial programs in terms of the T(s) on the 5 in-
dustrial programs considered, the proposed method doesnot bag the best in all the programs con-
sidered. As it is seen that the PG_3 has some deviations. However, it is evident that the average T(s)
is minimum as far as when the proposed method is implemented in the industrial programs. It is
also evident from Table 6 that the SR is maintained as 100% in case of AGA till the input reaches a
large LOC of 8500 whereas, in case of other methods under study, there is a constant decrease in the
SR% as the LOC is increased and it reaches 84%, 62%, and 12% as far as the IGA, GA, and random
are compared with. The graphical representation is given in Figures 10 and 11, respectively.

Table 6. Experimental results on the industrial programs.

PG_ID
Evaluation of Various Metrics

AGA IGA GA Random
Mean SD Mean SD Mean SD Mean SD

PG_1 7425.5 3012.4 9465.2 5412.5 12,126.2 6214.8 10,121.5 5064.2
PG_2 9523.5 4124.1 16,121.8 8612.4 19,246.5 9878.5 16,254.2 8946.7
PG_3 14,652.4 7012.4 26,147.2 13,214.4 35,782.5 17,564.2 29,638.5 19,852.5
PG_4 24,689.7 12,001.2 48,123.6 24,136.7 58,162.5 27,856.3 53,219.6 27,652.2
PG_5 36,214.8 18,220.4 71,231.8 36,547.8 79,168.4 38,965.7 75,264.2 38,952.1

6. Conclusions
This paper presents a model for generating automatic test cases based on the adap-

tive learning of a genetic algorithm (AGA). The proposed method is intended to increase
the efficiency by effective maintenance of the diversity of the population under study by
introducing dynamic adjustment of crossover and mutation parameters. The experiments
prove that the proposed AGA is more efficient than the other variations such as IGA and
GA and alsorandom-based methods when used for path-focused testing. The future di-
rections are planned on the efficient design of adaptive operators and to design method-
ology for identifying the best fitness automatically when the defect identification is con-
sidered. Further enhancements are also planned in enhancing the proposed method of
non-structural testing.

Author Contributions: Conceptualization, M.R. and K.L.; Methodology R.S.; Software, M.R.; Val-
idation, L.E.S.; Formal analysis, K.L.; Investigation, L.E.S.; Writing—original draft, M.R. and K.L.;
Writing—review & editing, K.L. and R.S.; Project administration, K.L.; Funding acquisition, K.L.
and L.E.S. All authors have read and agreed to the published version of the manuscript.

Funding: Not applicable.

Figure 11. Comparison of execution time in industrial programs in terms of the T(s) on the 5 industrial
programs considered, the proposed method doesnot bag the best in all the programs considered. As
it is seen that the PG_3 has some deviations. However, it is evident that the average T(s) is minimum
as far as when the proposed method is implemented in the industrial programs. It is also evident
from Table 6 that the SR is maintained as 100% in case of AGA till the input reaches a large LOC of
8500 whereas, in case of other methods under study, there is a constant decrease in the SR% as the
LOC is increased and it reaches 84%, 62%, and 12% as far as the IGA, GA, and random are compared
with. The graphical representation is given in Figures 10 and 11, respectively.

Information 2023, 14, 166 16 of 18

Table 6. Experimental results on the industrial programs.

PG_ID

Evaluation of Various Metrics

AGA IGA GA Random

Mean SD Mean SD Mean SD Mean SD

PG_1 7425.5 3012.4 9465.2 5412.5 12,126.2 6214.8 10,121.5 5064.2

PG_2 9523.5 4124.1 16,121.8 8612.4 19,246.5 9878.5 16,254.2 8946.7

PG_3 14,652.4 7012.4 26,147.2 13,214.4 35,782.5 17,564.2 29,638.5 19,852.5

PG_4 24,689.7 12,001.2 48,123.6 24,136.7 58,162.5 27,856.3 53,219.6 27,652.2

PG_5 36,214.8 18,220.4 71,231.8 36,547.8 79,168.4 38,965.7 75,264.2 38,952.1

6. Conclusions

This paper presents a model for generating automatic test cases based on the adap-
tive learning of a genetic algorithm (AGA). The proposed method is intended to increase
the efficiency by effective maintenance of the diversity of the population under study
by introducing dynamic adjustment of crossover and mutation parameters. The experi-
ments prove that the proposed AGA is more efficient than the other variations such as
IGA and GA and alsorandom-based methods when used for path-focused testing. The
future directions are planned on the efficient design of adaptive operators and to design
methodology for identifying the best fitness automatically when the defect identification is
considered. Further enhancements are also planned in enhancing the proposed method of
non-structural testing.

Author Contributions: Conceptualization, M.R. and K.L.; Methodology R.S.; Software, M.R.; Val-
idation, L.E.S.; Formal analysis, K.L.; Investigation, L.E.S.; Writing—original draft, M.R. and K.L.;
Writing—review & editing, K.L. and R.S.; Project administration, K.L.; Funding acquisition, K.L. and
L.E.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

SDLC Software development life cycle
GA Genetic algorithm
SOSE Search based software engineering
FU_B Fuzzy union bias
NP Non-deterministic polynomial
US-RDG Unsupervised request dependence graph
EGA Evolutionary genetic algorithm
BDF Branch distance functions
BOOL Boolean
EVAL Evaluation
AGA Adaptive genetic algorithm
IGA Improved genetic algorithm
LOC Lines of code

References
1. Prasanna, M.; Sivanandam, S.N.; Venkatesan, R.; Sundarrajan, R. A Survey on Automatic Test Case Generation. Acad. Open

Internet J. 2015, 15. Available online: http://www.acadjournal.com/ (accessed on 12 November 2022).
2. Mcminn, P. Search-based software test data generation: A survey. Softw. Test. Verif. Reliab. 2004, 14, 105–156. [CrossRef]
3. Ribeiro, J.C.B.; Zenharela, M.A.; Vega, F.F.D. Adaptive Evolutionary Testing: An Adaptive Approach to Search-Based Test Case

Generation for Object-Oriented Software. Stud. Comput. Intell. 2010, 284, 185–197.

http://www.acadjournal.com/
http://doi.org/10.1002/stvr.294

Information 2023, 14, 166 17 of 18

4. Varshney, S.; Mehrotra, M. Search based software test data generation for structural testing: A perspective. ACM SIGSOFT Softw.
Eng. Notes 2013, 38, 1–6. [CrossRef]

5. Fu, B. Automated Software Test Data Generation Based on Simulated Annealing Genetic Algorithms. Comput. Eng. Appl. 2005,
41, 82–84.

6. Eiben, A.E.; Smit, S.K. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 2011, 1,
19–31. [CrossRef]

7. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Trans. Evol. Comput.
2009, 13, 945–958. [CrossRef]

8. Wu, N.; Song, F.; Li, X. Study of a Quantum Framework for Search Based Software Engineering. Int. J. Theor. Phys. 2013, 52,
2181–2186. [CrossRef]

9. Korel, B. Dynamic method for software test data generation. Softw. Test. Verif. Reliab. 1992, 2, 203–213. [CrossRef]
10. Do, H.; Elbaum, S.; Rothermel, G. Supporting Controlled Experimentation with Testing Techniques: An Infrastructure and its

Potential Impact. Empir. Softw. Eng. 2005, 10, 405–435. [CrossRef]
11. Fraser, G. Gamification of software testing. In Proceedings of the 12th International Workshop on Automation of Software Testing

(AST’17), Buenos Aires, Argentina, 20–21 May 2017; IEEE Press: Buenos Aires, Argentina, 2017; pp. 2–7. [CrossRef]
12. de Jesus, G.M.; Ferrari, F.C.; Porto, D.D.P.; Fabbri, S.C.P.F. Gamification in Software Testing: A Characterization Study. In

Proceedings of the III Brazilian Symposium on Systematic and Automated Software Testing (SAST’18), Sao Carlos, Brazil, 17–21
September 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 39–48. [CrossRef]

13. Abdulwareth, A.J.; Al-Shargabi, A.A. Toward a Multi-Criteria Framework for Selecting Software Testing Tools. IEEE Access 2021,
9, 158872–158891. [CrossRef]

14. Bohme, M.; Paul, S. A Probabilistic Analysis of the Efficiency of Automated Software Testing. IEEE Trans. Softw. Eng. 2016, 42,
345–360. [CrossRef]

15. Peng, Z.; Chen, T.-H.; Yang, J. Revisiting Test Impact Analysis in Continuous Testing from the Perspective of Code Dependencies.
IEEE Trans. Softw. Eng. 2022, 48, 1979–1993. [CrossRef]

16. Stadler, C.; Montanari, F.; Baron, W.; Sippl, C.; Djanatliev, A. A Credibility Assessment Approach for Scenario-Based Virtual
Testing of Automated Driving Functions. IEEE Open J. Intell. Transp. Syst. 2022, 3, 45–60. [CrossRef]

17. Xu, D.; Xu, W.; Kent, M.; Thomas, L.; Wang, L. An Automated Test Generation Technique for Software Quality Assurance. IEEE
Trans. Reliab. 2015, 64, 247–268. [CrossRef]

18. Oliveira, C.; Aleti, A.; Grunske, L.; Smith-Miles, K. Mapping the Effectiveness of Automated Test Suite Generation Techniques.
IEEE Trans. Reliab. 2018, 67, 771–785. [CrossRef]

19. Matinnejad, R.; Nejati, S.; Briand, L.C.; Bruckmann, T. Test Generation and Test Prioritization for Simulink Models with Dynamic
Behavior. IEEE Trans. Softw. Eng. 2019, 45, 919–944. [CrossRef]

20. Shahbazi, A.; Miller, J. Black-Box String Test Case Generation through a Multi-Objective Optimization. IEEE Trans. Softw. Eng.
2016, 42, 361–378. [CrossRef]

21. Durelli, V.H.S.; Durelli, R.S.; Borges, S.S.; Endo, A.T.; Eler, M.M.; Dias, D.R.C.; Guimaraes, M.P. Machine Learning Applied to
Software Testing: A Systematic Mapping Study. IEEE Trans. Reliab. 2019, 68, 1189–1212. [CrossRef]

22. Kan, H.-X.; Wang, G.-Q.; Wang, Z.-D.; Ding, S. A method of minimum reusability estimation for automated software testing. J.
Shanghai Jiaotong Univ. (Sci.) 2013, 18, 360–365. [CrossRef]

23. Durán, A.; Benavides, D.; Segura, S.; Trinidad, P.; Ruiz-Cortés, A. FLAME: A formal framework for the automated analysis of
software product lines validated by automated specification testing. Softw. Syst. Model. 2017, 16, 1049–1082. [CrossRef]

24. Denisov, E.Y.; Voloboy, A.G.; Biryukov, E.D.; Kopylov, M.S.; Kalugina, I.A. Automated Software Testing Technologies for Realistic
Computer Graphics. Program. Comput. Softw. 2021, 47, 76–87. [CrossRef]

25. Gupta, M.; Fu, J.; Bastani, F.B.; Khan, L.R.; Yen, I.-L. Rapid goal-oriented automated software testing using MEA-graph planning.
Softw. Qual. J. 2007, 15, 241–263. [CrossRef]

26. Zhao, Z.-L.; Huang, D.; Ma, X.-X. TOAST: Automated Testing of Object Transformers in Dynamic Software Updates. J. Comput.
Sci. Technol. 2022, 37, 50–66. [CrossRef]

27. Suryasarman, V.M.; Biswas, S.; Sahu, A. RSBST: An Accelerated Automated Software-Based Self-Test Synthesis for Processor
Testing. J. Electron. Test. 2019, 35, 695–714. [CrossRef]

28. Godboley, S.; Panda, S.; Dutta, A.; Mohapatra, D.P. An Automated Analysis of the Branch Coverage and Energy Consumption
Using Concolic Testing. Arab. J. Sci. Eng. 2017, 42, 619–637. [CrossRef]

29. Tsai, B.; Stobart, S.; Parrington, N.; Mitchell, I. Automated class testing using threaded multi-way trees to represent the behaviour
of state machines. Ann. Softw. Eng. 1999, 8, 203–221. [CrossRef]

30. Khari, M.; Kumar, P.; Burgos, D.; Crespo, R.G. Optimized test suites for automated testing using different optimization techniques.
Soft Comput. 2018, 22, 8341–8352. [CrossRef]

31. Tramontana, P.; Amalfitano, D.; Amatucci, N.; Fasolino, A.R. Automated functional testing of mobile applications: A systematic
mapping study. Softw. Qual. J. 2019, 27, 149–201. [CrossRef]

32. Qi, X.-F.; Wang, Z.-Y.; Mao, J.-Q.; Wang, P. Automated Testing of Web Applications Using Combinatorial Strategies. J. Comput. Sci.
Technol. 2017, 32, 199–210. [CrossRef]

http://doi.org/10.1145/2492248.2492277
http://doi.org/10.1016/j.swevo.2011.02.001
http://doi.org/10.1109/TEVC.2009.2014613
http://doi.org/10.1007/s10773-013-1544-0
http://doi.org/10.1002/stvr.4370020405
http://doi.org/10.1007/s10664-005-3861-2
http://doi.org/10.1109/AST.2017.20
http://doi.org/10.1145/3266003.3266007
http://doi.org/10.1109/ACCESS.2021.3128071
http://doi.org/10.1109/TSE.2015.2487274
http://doi.org/10.1109/TSE.2020.3045914
http://doi.org/10.1109/OJITS.2022.3140493
http://doi.org/10.1109/TR.2014.2354172
http://doi.org/10.1109/TR.2018.2832072
http://doi.org/10.1109/TSE.2018.2811489
http://doi.org/10.1109/TSE.2015.2487958
http://doi.org/10.1109/TR.2019.2892517
http://doi.org/10.1007/s12204-013-1406-1
http://doi.org/10.1007/s10270-015-0503-z
http://doi.org/10.1134/S0361768820080034
http://doi.org/10.1007/s11219-007-9018-3
http://doi.org/10.1007/s11390-021-1693-1
http://doi.org/10.1007/s10836-019-05825-9
http://doi.org/10.1007/s13369-016-2284-2
http://doi.org/10.1023/A:1018915027830
http://doi.org/10.1007/s00500-017-2780-7
http://doi.org/10.1007/s11219-018-9418-6
http://doi.org/10.1007/s11390-017-1699-x

Information 2023, 14, 166 18 of 18

33. Hofer, F.; Russo, B. IEC 61131-3 Software Testing: A Portable Solution for Native Applications. IEEE Trans. Ind. Inform. 2019, 16,
3942–3951. [CrossRef]

34. Bures, M.; Frajtak, K.; Ahmed, B.S. Tapir: Automation Support of Exploratory Testing Using Model Reconstruction of the System
Under Test. IEEE Trans. Reliab. 2018, 67, 557–580. [CrossRef]

35. Harrison, N.B. Teaching software testing from two viewpoints. J. Comput. Sci. Coll. 2010, 26, 55–62.
36. Whitmire, D.; Alvin, C. A case study in software testing: Verification of a face identification algorithm for planar graphs. J.

Comput. Sci. Coll. 2019, 35, 173–184.
37. Manikumar, T.; Kumar, A.J.S.; Maruthamuthu, R. Automated test data generation for branch testing using incremental genetic

algorithm. Sādhanā 2016, 41, 959–976. [CrossRef]
38. Rubtsov, Y.F. Development of automated systems of scientific research for control and testing of electrical machinery. Russ. Electr.

Eng. 2012, 83, 596–598. [CrossRef]
39. Guo, X.; Okamura, H.; Dohi, T. Automated Software Test Data Generation with Generative Adversarial Networks. IEEE Access

2022, 10, 20690–20700. [CrossRef]
40. de Matos, E.C.B.; Sousa, T.C. From formal requirements to automated web testing and prototyping. Innov. Syst. Softw. Eng. 2010,

6, 163–169. [CrossRef]
41. Banerjee, D.; Yu, K.; Aggarwal, G. Image Rectification Software Test Automation Using a Robotic ARM. IEEE Access 2018, 6,

34075–34085. [CrossRef]
42. Mirza, A.M.; Khan, M.N.A.; Wagan, R.A.; Laghari, M.B.; Ashraf, M.; Akram, M.; Bilal, M. ContextDrive: Towards a Functional

Scenario-Based Testing Framework for Context-Aware Applications. IEEE Access 2021, 9, 80478–80490. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TII.2019.2941584
http://doi.org/10.1109/TR.2018.2799957
http://doi.org/10.1007/s12046-016-0536-1
http://doi.org/10.3103/S1068371212110120
http://doi.org/10.1109/ACCESS.2022.3153347
http://doi.org/10.1007/s11334-009-0112-5
http://doi.org/10.1109/ACCESS.2018.2846761
http://doi.org/10.1109/ACCESS.2021.3084887

	Introduction
	Related Works
	Proposed Methodology
	PUT Analysis
	Fitness Function
	Instrument PUT
	UI Extraction
	Coverage

	Computing Fitness Function
	Adjustment of the Parameters
	Diverse Metric of Population
	GA Parameter Design

	Implementation
	Results and Discussion
	Conclusions
	References

