
Citation: Di Pierro, D.; Ferilli, S.;

Redavid, D. LPG-Based Knowledge

Graphs: A Survey, a Proposal and

Current Trends. Information 2023, 14,

154. https://doi.org/10.3390/

info14030154

Academic Editor: Ryutaro Ichise

Received: 17 December 2022

Revised: 15 February 2023

Accepted: 20 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

LPG-Based Knowledge Graphs: A Survey, a Proposal and
Current Trends
Davide Di Pierro 1,† , Stefano Ferilli 1,*,† and Domenico Redavid 2,†

1 Department of Computer Science, University of Bari Aldo Moro, 70125 Bari, Italy
2 Department of Economic and Finance, University of Bari Aldo Moro, 70124 Bari, Italy
* Correspondence: stefano.ferilli@uniba.it; Tel.: +39-080-544-2293
† These authors contributed equally to this work.

Abstract: A significant part of the current research in the field of Artificial Intelligence is devoted
to knowledge bases. New techniques and methodologies are emerging every day for the storage,
maintenance and reasoning over knowledge bases. Recently, the most common way of representing
knowledge bases is by means of graph structures. More specifically, according to the Semantic Web
perspective, many knowledge sources are in the form of a graph adopting the Resource Description
Framework model. At the same time, graphs have also started to gain momentum as a model for
databases. Graph DBMSs, such as Neo4j, adopt the Labeled Property Graph model. Many works
tried to merge these two perspectives. In this paper, we will overview different proposals aimed at
combining these two aspects, especially focusing on possibility for them to add reasoning capabilities.
In doing this, we will show current trends, issues and possible solutions. In this context, we will
describe our proposal and its novelties with respect to the current state of the art, highlighting its
current status, potential, the methodology, and our prospect.

Keywords: knowledge graphs; labeled property graphs; ontologies; graph db; automated reasoning

1. Introduction

In 1956 at Dartmouth College, Hanover, four researchers (John McCarthy, Marvin L.
Minsky, Nathaniel Rochester, and Claude Shannon) conducted the Dartmouth Summer
Research Project on Artificial Intelligence (AI). It was the first time the term “Artificial
Intelligence” was used. It denotes a behavior of a machine that, should a human behave in
the same way, would be considered intelligent [1]. It is difficult to extend this definition
because the factors describing human intelligence are still unclear and undefined. One
alternate definition does exist that captures the nature of the work being carried out in the
field. This was proposed by Rich, and reads as follows: “Artificial Intelligence is the study
of making computers do things which, at the moment, humans do better” [2].

Decades have passed but today’s definitions do not depart significantly from that
perspective. According to Dick, the aim of research on AI is “to proceed on the basis
of the conjecture that every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to simulate it” [3]. Artificial
Intelligence is a general term that implies the use of a computer to model intelligent
behavior with minimal human intervention [4]. Since, according to Newell and Simon [5],
a software agent is “intelligent” if and only if it is knowledge-based, the representation and
handling of knowledge are one of the most studied problems in AI. Inspired by human
problem solving, this gave rise to the branch of Knowledge Representation and Reasoning
(KRR), aimed at representing knowledge for intelligent systems so as to endow them with
the ability to solve complex tasks [5,6].

Structured repositories of knowledge are called knowledge bases (KBs). A KB is a
centralized repository of information. A library, an archive or a database about a particular
subject are all examples of KBs. In the field of AI, they are used as a source for the
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distribution and retrieval of information in a human-like format, amenable to manipulation
by symbolic AI approaches. They are also a component of knowledge management systems.
One of their possible applications is for Question Answering (QA). The purpose of a QA
system is to find the correct answers to arbitrary user questions in both non-structured and
structured collections of data [7]. In order to make it more applicable to real-world scenarios,
researchers have shifted their attention from simple questions to complex questions, which
require constraint inference [8].

Specifically, when KBs are organized according to a graph structure, they are also
referred to as knowledgegraphs(KGs). I.e., a KG can be viewed as a graph when considering
its graph structure [9]. When it involves formal semantics, it can be taken as a KB for
interpretation and inference over facts [10]. KGs that represent structural relations between
entities have become an increasingly popular research direction toward cognition and
human-level intelligence [11].

KGs are used to store large amounts of knowledge. Hence, they need a “conceptualiza-
tion” that delimits and defines what they can express and how. The problem of formalizing
what is present in the world (or in a domain) has its roots in philosophy but has many
uses in the AI field, where the conceptualization of what exists in a particular domain or
scenario of interest is called an ontology. Ontology as a branch of philosophy is the science
of what exists, of the kinds and structures of objects, properties, events, processes, and
relations in every subset of reality. In AI, an ontology is a formal, explicit specification of a
shared conceptualization [12].

More recently, graphs have also been exploited as a model for building databases
(DBs). In graph databases, data manipulation is expressed by graph-oriented operations
and type constructors [13]. Compared to traditional DBs, graph DBs are more suitable
to support applications, in which instance-based processing is needed, as opposed to
batch processing. This is a typical need of AI, as opposed to traditional software, (e.g.,
for accounting). This is why we are interested in the possibility of combining graph
DB technologies, ensuring efficiency in data handling, with KRR technologies, allowing
advanced knowledge manipulation and exploitation (e.g., reasoning). Unfortunately, the
graph models traditionally adopted in the literature for these two perspectives are different
and partly incompatible, which raised the need for an investigation into how they can
be combined.

In the next sections, we will provide some background notions on these topics, and
then we will discuss state-of-the-art approaches and their limitations, before delving into
a proposal for overcoming some of the issues related to the problem of merging the two,
different perspectives of graph DBs and KRR.

2. Preliminaries

A graph is defined as a set of “vertexes”, some of which are connected by “edges” [14].
The vertexes may represent concepts or instances. Concepts refer to general categories of
objects, such as “person”, “place”, or “organization”. Instances are specific objects belong-
ing to concepts, such as a specific person (e.g., Micheal Jordan), a specific location (e.g.,
New York) or a specific organization (e.g., IBM). The edges represent binary relationships
between concepts or instances.

Two main approaches to graphs are of interest for the purposes of this paper: those
based on the Resource Description Framework (RDF) [15] model, adopted in KRR research,
and those based on the Labeled Property Graph (LPG) [16] model, adopted in DB practice.

• The former model provides for graphs made up of “atomic” nodes and arcs only.
Usually, their structure is represented as a set of triples (also called “statements”) of
the form (subject, predicate, object) where the subject is a node identifier, the predicate
is an arc label and the object can be either another node identifier or a literal. In many
cases, it may be necessary to express additional information on a triple as a whole.
RDF provides a pre-defined vocabulary for describing RDF statements. A description
of a statement using this vocabulary is called a “reification” of the statement. The RDF



Information 2023, 14, 154 3 of 32

reification vocabulary consists of the type rdf:Statement, and the properties rdf:subject,
rdf:predicate, and rdf:object [15].

• LPG graphs still comprise nodes and arcs, but both have their own identifiers and can
be provided with labels expressing their type and with properties that describe their
features in the form of (key, value) pairs.

The LPG model looks promising for supporting general graph data processing, but
its performance has not yet been studied enough [17]. However, it is adopted by Neo4j,
the most used graph DB, which also owes its success to the high performances it ensures.
Automatic sharding, built-in cache and replication are just some of the main benefits [18].
The spreading of Neo4j increased also the popularity of the LPG model. The adoption of
RDF, on the other hand, has been boosted by current emerging technologies. The adoption
of Linked Data technologies has shifted the Web from a space for connecting documents to
a global space where pieces of data from different domains are semantically linked and
integrated to create a global Web of Data [19]. The versatility of the graph models has been
massively used in other technologies such as the Semantic Web.

2.1. Graphs and Databases

Since their conception, graphs have been extensively used to represent complex rela-
tions among entities [20]. Graphs are strongly supported by modern DataBase Management
Systems (DBMSs). The transition from traditional (relational) DBs to NoSQL ones [21]
set a milestone in the history of DBs, since it introduced many advantages, better perfor-
mance and scalability above all. Graph DBs are an example of NoSQL databases. Using a
graph-based abstraction of knowledge has a number of additional benefits compared to a
relational model or to other NoSQL alternatives [22]. Many companies have developed
in-house implementations in order to cope with the need for graph DB systems. Neo4j
is the most outstanding graph DB currently available. We will now describe the main
characteristics and some relevant uses of graph DBs in different fields.

Graph DBs are outstanding for application in areas where information about data
interconnectivity or topology is more important, or at least as important as, the data
itself [13]. In their first computer applications, they have mostly been used to represent
social networks and interactions among people. Nowadays, the importance of graph data
is not limited to social networks but spans biology (e.g., to model gene regulation) and
other types of networks in different domains. Graph DBs have seen extensive application
in the field of bioinformatics. Bioinformatics uses graph DBs to relate a complex web of
information that includes genes, proteins and enzymes. A prime example is the Bio4j
project [23], a framework powered by Neo4j that performs protein-related querying and
management [24]. Another major application of graph DBs is for Recommender Systems,
aimed at advising users about relevant products and information by predicting their
interests based on various types of information [25]. Graph DBs have also been used for
transactions OLTP systems [26]: these are designed for transaction integrity and operational
availability. Promising techniques are now emerging for applying Machine Learning
over graphs.

The term ‘data model’ has been widely used in the information management commu-
nity, where it covers various meanings [13]. In the most general sense, a data(base) model
is a collection of conceptual tools used to model representations of real-world entities and
the relationships among them [27]. A DB model consists of three components:

• a collection of data structure types (the building blocks of any DB that conforms to the
model);

• a collection of operators or inference rules, which can be applied to any valid instance
of the data types, to retrieve or derive data from any part of those structures in any
combination desired;

• a collection of general integrity rules, which implicitly or explicitly define the set
of consistent DB states, or changes of state, or both—these rules may sometimes be
expressed as insert-update-delete rules [28].
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An efficient graph DB model is necessary for better management of graphs. ‘Industrial’
graph DBs implement the Property Graph (PG) data model [26] but other models are
available when moving to other technologies such as those of the Semantic Web. In the
property graph data model, the graph structure’s elements can have some user-defined
attributes. With the rise of big data, there has been a huge demand to design data models
and tools. These data models should be capable of handling a variety of data structures.
Analysis of graph properties is deeply studied by the Data Mining community [29]. Graphs
have an important advantage: they can keep all the information about an entity at a single
node and show related information by arcs connected to that node [30].

Even though Graph DBs are very flexible, their main drawback is that they are usually
not consistent, since they have very limited tools to ensure consistency [31]. Actually,
for the purposes of browsing the data, in many cases, it may be convenient to ignore
the schema [32] since graph DBs may provide implementations of special graph storage
structures, and efficient graph algorithms for realizing specific operations [33]. Graph DB
systems follow CRUD (create, read, update, delete) methods that are used in a graph data
model [34]. Graph DBs store the data in nodes and arcs, not in tables. Hence, no join
operations are allowed.

DBs in general are queried by means of a Query Language, i.e., a collection of operators
or inference rules that can be applied to any valid instance of the types of data structures
provided by the model, with the aim of manipulating and querying the data in those
structures in any combination desired [35]. Associated with graphs are specific graph
operations in the query language algebra, such as finding shortest paths, determining
certain subgraphs, and so forth [33]. Queries can refer directly to the graph structure. Full
knowledge of the structure is not necessary to express meaningful queries [36]. Based on the
technology, graphs can be represented according to different formalisms and the modelling
phase must follow the structure accordingly. Relational DBMS systems use Structured
Query Language (SQL) for inserting, updating and deleting data and/or schemes. Cypher,
a well-established language for querying and updating property graph DBs, born with
the Neo4j product, is a declarative query language for property graphs. Cypher provides
capabilities for both querying and modifying the data, as well as for specifying schema
definitions [37].

2.2. Knowledge Graphs

Recently, knowledge graphs, as a form of structured representation of human knowl-
edge, have attracted a great deal of attention from academia and industry [22,38–40]. KGs
use a graph-based data model to capture knowledge in application scenarios that involve
integrating, managing, and extracting value from, diverse sources of data on a large scale.
The essential elements involved in the notion of a KG can be traced to ancient history in the
core idea of representing knowledge in diagrammatic form. Examples include Aristotle
and visual forms of reasoning, around 350 BC; Lull and his tree of knowledge; Linnaeus
and taxonomies of the natural world; and in the XIX century, the works on formal and
diagrammatic reasoning of scientists such as J.J. Sylvester, C. Peirce and G. Frege. These
ideas also involve several disciplines such as mathematics, philosophy, linguistics, library
sciences, and psychology, among others [41].

The interest in KGs is due to their human-understandable structures that facilitate
comprehension and understanding in many AI applications. In particular, the KG depicts
an integrated collection of real-world entities which are connected by semantic relations. In
this respect, data are provided in a formal language via data annotation and manipulation
in a machine-readable format, thereby reducing ambiguity and deriving meaningful infor-
mation that is specific to an application domain [42]. In this perspective, in order to deal
with this extraordinary growth in the available data, data analytics and mining tools for
KGs emerged.
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Leveraging KGs, fragmented or partially observed entities and concepts can be con-
nected to form a complete and structured knowledge repository, facilitating the manage-
ment, retrieval, usage and understanding of the information it contains [43].

Many AI fields took advantage of the expressiveness of KGs. Among them, Semantic
Web (SW), KRR, Natural Language Processing (NLP) and Machine Learning (ML). In turn,
this gave KGs the opportunity to borrow ideas also from other domains.

KGs are crucial to many enterprises today: they provide the structured data and factual
knowledge that drive many products and make them more intelligent and “magical” [44].

In many critical applications, KGs are empowered with schemes or ontologies so as to
infer new knowledge and provide a shared vocabulary with respect to what already exists
in other domains.

Recent years have witnessed a rapid growth in KG construction and application [40].
A large number of KGs, such as Freebase [45], DBpedia [46], YAGO [47], and NELL [48]
have been created and successfully applied to many real-world applications, from semantic
parsing [49,50], to named entity disambiguation [51,52], information extraction [53,54], and
question answering [55].

Automated reasoning is a form of simulated thinking, and a process of inferring new
knowledge (conclusions) from existing one (premises). Many forms of reasoning leverage
KGs. New relations among entities can be derived through reasoning and can be fed back
to enrich the KGs, and then support the advanced applications [56]. Reasoning over graphs
may also be exploited for error detection.

Initially, studies were carried out in the fields of logic and knowledge engineering.
The logic experts used to formalise the complexity of a domain (or application area) in
languages based on First-Order Logic (i.e., predicate logic). The goal was to infer correct
conclusions starting from a knowledge base consisting of facts and rules. To make up
for the rigidity of this approach, which was a limitation in many contexts, techniques
such as non-monotonic and fuzzy reasoning [57] were adopted, capable of grasping the
uncertainty and the fuzziness intrinsically present in the real world. Differently from the
first researchers, knowledge engineers came up with new formalisms based on semantic
networks, able to represent richer concepts, relationships and constraints among entities
and attributes. These nets also provide a visual representation, particularly appreciated
for the interpretability of the knowledge they aimed to describe. Yet, they turned out to
be limited by the massive increase in available knowledge. Before the development of
automatic knowledge acquisition methods, knowledge (in the form of entities, relationships
and attributes) was entirely handcrafted by experts in the fields. With the massive growth
of information, traditional methods based on artificially built knowledge bases have been
overcome by data-driven approaches.

2.3. Semantic Web

Thanks to their versatility, effectiveness and performance, KGs have been embraced
by the Semantic Web initiative. The Semantic Web is usually envisioned as an enhancement
of the current World Wide Web with machine-understandable information as described
in [58], which arguably marks the birth of the field. The traditional architecture is enriched
with logic-based semantics that admits reasoning over the meaning of the data [59]. In
Tim-Berners Lee’s vision of the WWW, pieces of information are not only to be read by
humans, but also by machines, so as to enable automatic information processing.

The SW leverages ontologies as a way of performing reasoning tasks such as instance
checking, consistency checking and so on. Ontological knowledge bases enable formal
querying and reasoning and, consequently, a main research focus has been the investigation
of how deductive reasoning can be exploited in ontological representations to support
more advanced applications [60].
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2.3.1. Ontologies

An ontology seeks to provide a definitive and exhaustive classification of entities
in any sphere of being. The classification should be definitive in the sense that it can
serve as an answer to such questions as what classes of entities are needed for a complete
description and explanation of all the goings-on in the universe? It should be exhaustive
in the sense that all types of entities should be included in the classification, including
also the types of relations by which entities are tied together to form larger wholes [61].
The term “ontology” has gained prominence in recent years in the field of computer and
information science [62]. Designing ontologies has the goal to solve the so-called “Tower
of Babel” problem [63]. Each ontology, database and source of knowledge has its own
definition, terms and concepts and it is expected to find the same exact meaning expressed
by different words in different sources. Historically, this problem used to be tackled by
specific name mappings. However, the need for a shared conceptualization and namings
quickly arose leading to the huge development of ontologies for many varieties of domains.
The Semantic Web embraced this perspective and defined a language to describe what
exists in the WWW through the Web Ontology Language (OWL).

2.3.2. Web Ontology Language

The Web Ontology Language is an ontology language for the Semantic Web with a
formally defined meaning. OWL ontologies provide classes, properties, individuals, and
data values, and are stored as Semantic Web documents. OWL ontologies can be used along
with information written in RDF, and OWL ontologies themselves are primarily exchanged
as RDF documents [64]. A key feature of OWL, and thus of SW in general, is the possibility
of implementing inference engines. Several approaches for the implementation of inference
engines were proposed in the early years after the publication of the OWL specification.
In particular, in [65] the features that an inference engine for OWL must fulfill ontological
consistency checking, entailment computation, query processing, reasoning with rules, and
handling of XML data types-were formulated. Apart from reasoning with rules, for which
research is ongoing, these features have been implemented in reasoners for SW based on
Description Logics [66].

2.3.3. Technologies for the Semantic Web

A fundamental objective for the SW development was interoperability. Notable among
W3C standardization efforts are XML (eXtensible Markup Language)/XML schema and
RDF/RDF schema, which facilitates semantic interoperability [67].

XML is a standard for structuring documents, notably for the World Wide Web. An
XML document is made up of a tree of (possibly nested) tags with different attributes [68].
In XML, Document Type Definitions (DTDs) [69] allow adding constraints about how tags
can be combined and the possible attributes at the different levels. They specify a grammar
that limits all possible combinations when writing tags, attributes and so on.

Just as XML schema provides a vocabulary-definition facility, RDF schema lets de-
velopers define a particular vocabulary for RDF data (such as authorOf) and specify the
kinds of objects to which these attributes can be applied. In other words, the RDF schema
mechanism provides a basic type system for RDF models. This type of system uses some
predefined terms, such as Class, subPropertyOf, and subClassOf, for the application-specific
schema. RDF schema expressions are also valid RDF expressions [67].

The RDF data model [70] uses Uniform Resource Identifiers (URIs) to unambiguously
identify different resources. One could make single statements about each element of a
collection; however, if the aim is to make a statement about all the different instances of
a concept (where the individual members might change), a container must be used [71].
Remind that RDF is a graph and, as for LPG, the fetching is provided by navigation. RDF
graphs can be queried using the SparQL [72] language. SparQL is a language that lets
users query RDF graphs by specifying “templates” against which to compare the graph
components. Data which matches (“satisfies”) a template is returned from the query. The
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SparQL query engine will return an exhaustive list of the subject component of triples that
satisfies the query through value substitution [73].

SparQL is also implemented in frameworks for the management of SW resources,
such as Apache Jena. It provides an interface for specifying queries and getting the result
streams in a more readable form for manipulation. Recently, SPARQL has been extended
for querying real-time data coming from RDF data streams. Generally, the SPARQL query
is performed over the streams using a sliding temporal window and static knowledge data.
Performance analysis was conducted using data in the field of smart cities, and Virtuoso
RDF [74] turned out to be the best platform for query execution both in static and dynamic
context [75].

2.4. Comparison and Differences between LPG and RDF

Even though the two models are used in completely different scenarios, a comparison
for underlying some characteristics is necessary to understand the reasons why they have
become state-of-the-art in modern AI approaches. In this work by Baken et al. [76], a
comparison among many graph models was performed, mostly focusing on comparing
query performances.

In Table 1, we summarized the main characteristics of the two graph models.

Table 1. A comparison between the two graph models.

Graph
Model

Directed
Edges (i) Labels (ii) Attributes

(iii) URI (iv) Reasoning
(v)

LPG X X X
RDF X X X X

As we can see from the table, the labels and directions of relationships are allowed in
both models. When describing relationships, the concept of direction is fundamental to
understanding what is the subject of the relationship and the object (or literal). Directed
edges (i) [77] are always represented as arrows and queries in Cypher/SPARQL take
directions into account. In general, labels (ii) are human-readable properties of a node.
Even if the concept has the same name, some distinctions must be specified when talking
about the two graph models. Standard RDF Primer [15] defines rdfs:label as an instance of
rdf:Property that may be used to provide a human-readable version of a name of a resource.
In LPG, each node or relationship has an ID tag and one or more “labels” describing its
type or class [78]. The difference between the use of labels in the two models is that labels
in RDF are URIs that identify resources, while LPG labels provide freedom in their choice
and are no different than any other property. Attributes (iii) in LPG are in the form of
key-value pairs. Values are literals (string, integer, float, . . .). Attributes are not present
in RDF graphs. Attributes in RDF are so reified. With reification, we mean to create a
node having as a label the type of the value and create a relationship (probably named as
the name of the attribute) from the node to the literal. Many classification works rely on
graph attributes [79]. In the LPG model, they are allowed in relationships as well. RDF
lacks attributes and that is the main structural difference. URI (iv) [80] is the mechanism
SW uses to uniquely identify resources on the Web. No similar approach exists in graph
databases where the DBMS identifies resources by means of internal ids. This means that
we have no guarantees at all that resources are not duplicated. Finally, reasoning (v) is
the objective we aim for. RDF is structurally suitable to be treated with SW reasoners for
inferencing knowledge. Differently from RDF, LPG is inherently unsuitable for reasoning
purposes, even though some standard ML algorithms such as Page Rank are implemented
in some queries.
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The mechanism of reification in RDF easily scales when dealing with a higher order
of abstraction. Imagine representing the sentence “Mark says that John passed the exam”.
The triple ‘John’-‘passes’-‘exam’ is not enough. There is no way to link this triple to the
other part of the sentence. With reification, we can create a unique resource for the triple
itself, which is actually just assigning it a URI. Given that, the triple ‘Mark’-‘says’-[‘John’-
‘passes’-‘exam’] is now possible. The impossibility of assigning URIs is one of the main
downsides of the LPG model. Basically, LPG graphs were not thought to store public (web)
data, so there was no need of providing unique identifiers. On the other hand, if you think
about the above-mentioned example, it can be solved by creating a node and by putting
properties representing the subject of the internal statement (‘John’), the predicate (‘passes’)
and the object (‘exam’). You could simply imagine how cumbersome this process becomes
when the levels of abstraction increase. Regarding weights, there are many applications
which need them on arcs, or even on nodes. We can list just some of the most common
algorithms used on the Web such as Page Rank [81] or HITS [82].

There is also plenty of recent works in which weights represent an estimation of the
real case scenario [83–85]. Weights are not supported by any of the two models. Thanks to
attributes, we are able to weight links by adding a specific “weight” attribute to which a
numeric value is added. This property has been largely exploited [86,87]. Yet this approach
is strongly application-dependent. You may also consider that handling weights in RDF
becomes much heavier from a computational point of view because each triple should be
reified and a relationship must be created to store the weight. Navigation will involve a
much greater number of nodes. Finally, LPG graphs are just a different way to store data.
They are thought in order to perform the CRUD operations on data. RDF, on the other
hand, goes far beyond. Invented in the context of the Semantic Web, it is developed to be
exploited by an SW reasoner in order to infer new knowledge. On the other hand, graph
DBMS, such as Neo4j, provides higher performances for navigating data. The best we can
perform is to create a bridge between the two models to have the highest efficiency and the
capability of reasoning, combining the benefits of both.

Hence, we can state that RDF, differently from LPG, and in combination with OWL, is
suitable for the creation of Knowledge Graphs.

3. Knowledge Graphs Applications

Many works make use of the OWL formalism to express and reason with knowledge
graphs. Yet depending on the context, some personalization is applied by academics or
companies so as to fit their need. The main problem is that any personalization goes far
away from the standard and the lack of interoperability among different solutions becomes
evident. In this section, we are going to list different relevant applications in which KGs
have been adopted. We are going to list works that have a very relevant application from
the social point of view or the ones that realised a relevant novel approach.

Asamoah et al. [88] examined using KG as the basis in the design of a knowledge repre-
sentation system that drives the filtration process of a company’s cyber security ecosystem
in cloud computing. They defined the entity relations of the cyber security threat entity
hierarchy. According to them, OWL/XML format has no extension for supporting custom
relations but rather emulates custom relations with complex object and data properties.
The algorithm scans the different rules in order to detect possible threats.

Recent developments of KGs have been employed in the field of education for the
design of Intelligent Tutoring Systems (ITSs) [89]. Graphs allow the possibility of rapidly
moving along different objects, subjects and disciplines thanks to the insight (perhaps
unexpected) connections among different concepts.

Among the most common scenarios, we can find the management of cultural heritage.
Carriero et al. [90] worked on ArCO, the Italian Cultural Heritage knowledge graph.
It collects and validates the catalogue records of (ideally) all Italian Cultural Heritage
properties (excluding libraries and archives). ArCO is made up of:
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• A knowledge graph consisting of:

– a network of ontologies modeling the Cultural Heritage domain;
– a Linked Open Dataset of nearly 169M triples.

• a software for automatically converting catalogue records;
• a detailed documentation reporting;
• a set of running examples that potential consumers can use as training material. They

consist of natural language CQs and their corresponding SPARQL queries, which can
be directly tested against ArCo’s SPARQL endpoint;

• a test suite, implemented as OWL files and SPARQL queries, used for validating
ArCo knowledge graph. It provides a real-case implementation of an ontology testing
methodology, useful to both students, teachers, researchers, and practitioners;

• a SPARQL endpoint to explore the resource, run tests, etc.

Farazi et al. [91] demonstrated through examples how the concept of a Semantic
Web-based knowledge graph can be used to integrate combustion modeling into cross-
disciplinary applications and in particular how inconsistency issues in chemical mecha-
nisms can be addressed.

When trying to assemble a mechanism by combining collections of species and re-
actions from multiple sources, one encounters two well-known classes of consistency
problems. The first one relates to a unique identification. Additionally, vice versa, species
that ought to be distinct may have been given identical labels in different mechanisms. The
second problem relates to data inconsistency: the same species or reaction from different
sources may have been assigned different thermodynamic or kinetic parameter values,
with variations at times well beyond the reported uncertainties. For these reasons, they
provided ontologies to be used to solve conflicts.

The healthcare system is recently experiencing a strong increase in the form of data
expressed through Textual Medical Knowledge (TMK). Shi et al. [92] explored a model to
organize and integrate the TMK into conceptual graphs. They then employed a framework
to automatically retrieve knowledge in knowledge graphs with high precision. Their model
consists of three parts: Medical Knowledge Model, Health Data Model (HDM), and Termi-
nology Glossary. Medical Knowledge Model is used to organize the TMK into conceptual
graphs. Health Data Model is used to define the detailed structures and relationships of the
unstructured health data. Terminology Glossary provides a metathesaurus to express the
instances of both TMK and HDM and provides semantic mappings to achieve integration.
After the construction procedure, they were able to utilize the interconnections among
medical terms to perform chain inference rules to explore the complex semantics between
entities. First-order predicate logic is used to perform reasoning. Inferences are proceeded
by forward chaining and back chaining over the knowledge graph.

Fathalla et al. [93] had the vision that ultimately researchers will work on a common
knowledge base comprising comprehensive descriptions of their research, thus making
research contributions transparent and comparable. Due to the representation of review ar-
ticles as unstructured text, it is impossible to automatically extract and analyze information
from them. In the paper, they introduced the concepts, terms and vocabularies that they
defined for representing the content of review articles. The overall workflow of the study
comprises four steps: article selection, formalization, ontology development, and querying
the ontology to demonstrate its potential usage.

Tomic et al. [94] presented their experience with using the representation and query
standards and tools of the Semantic Web to encode and manipulate the dairy farming
domain knowledge in a form of the Dairy Farming Ontology (DFO).

Rossetto et al. [95] presented the first iteration of LifeGraph, a knowledge graph for
lifelogging data. With the increase in both capability and availability of mobile computa-
tion and sensing technologies, the means for capturing a growing fraction of the human
experience become increasingly available. The data produced by efforts such as life logging
is commonly multi modal and can have manifold interrelations with external information.
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Bader et al. [96] proposed a structured dataset in the form of a semantically annotated
knowledge graph for Industry 4.0-related standards, norms and reference frameworks.
The graph provides a Linked Data-conform collection of annotated, classified reference
guidelines supporting newcomers and experts alike in understanding how to implement
Industry 4.0 systems.

The objective of the work by Szekely et al. [97] is to create generic technology to enable
the rapid construction of knowledge graphs for specific domains together with query,
visualization and analysis capabilities that enable end-users to solve complex problems.
The challenge is to exploit all available sources, including web pages, document collections,
databases, delimited text files, structured data such as XML or JSON, images, and videos.
This paper describes the technologies and their application to build a large knowledge
graph for the human trafficking domain.

Energy and sustainability are hot topics today and the amount of related research
is increasing every day. An eco-industrial park (EIP) aims for industrial symbiosis that
promises improved energy and resource efficiency as well as reduced environmental impact.
Numerous studies have been carried out focusing on resource networks within a single
domain such as water [98–100], energy [101–103], and material [104–106]. Zhou et al. [107]
implemented the J-Park Simulator (JPS), a cross-domain knowledge graph for the process
industry, which includes ontologies in domains such as chemical process engineering,
chemical kinetics, internal combustion engines, etc. Ontologies play pivotal roles in the
JPS project. Ontologies from different domains offer a formal definition of classes and
relations in a certain field; the JPS project has been developing and integrating ontologies
systematically. The JPS graph could be distributed across the Web.

After this short overview of the main domains of application, we are going to list in
Table 2 the number of works to which KGs have been applied, displaying the number of
works between 2019 and 2022 and the number of works between 2015 to 2018 so that a small
naive comparison can be carried out. Papers indexed by Google are taken into account.

Table 2. Number of KG applications per domain from 2019 to 2022, and from 2015 to 2018.

Domain Number of Papers
(2019–2022)

Number of Papers
(2015–2018)

Cybersecurity ~4400 ~900
Culture Heritage ~3600 ~2000

Biology ~17,600 ~15,300
Healthcare ~17,500 ~17,400
Industry ~17,500 ~18,000

Smart City ~9000 ~3000
Medicine ~18,000 ~16,800

As you can easily spot, there has been a relevant increase in the Smart City and Cyber-
security demands. In the Smart City domain, the interrelation among services naturally
fosters the use of graphs, given the heterogeneity of available data. In a broader sense,
citizens and tourists, as well as service providers, build the knowledge base. Heterogeneity
includes also diversity, that is the possibility of linking several resources for a wider social
objective. On the other hand, in the Cybersecurity field, recent developments [108–110]
exploit graph models for interpretability reasons as well as to capture long-distance re-
lationships among features, promoting the development of interpretable solutions that
are considerably more preferred in contexts such as law and in decision processing tasks.
However, the number of works for other domains is also noteworthy.

4. LPG Graph

Graph databases provide better support for highly interconnected datasets than rela-
tional databases. However, labeled property graph databases are schema optional, making
them prone to data corruption, especially when new users switch from relational databases
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to graph databases [111]. In this section, we are going to briefly describe the multitude of
domains of application and some of the main Machine Learning tasks associated with their
application. Graph databases have become increasingly popular as they provide better
support for highly interconnected datasets [112,113]. Highly interconnected datasets are
found in most big data applications [114,115] including social networks, bioinformatics
and astronomy. Such data can be more easily expressed using the nodes and edges of a
graph database than the table-based structure offered by relational databases [111].

Many Artificial Intelligence tasks rely on graphs, and clustering analysis is one of them.
It is a crucial component of unsupervised learning tasks with applications ranging from
pattern recognition to biology, suitable for images and gene technologies. Wang et al. [116]
proposed a new clustering algorithm based on the properties of data.

Kalva et al. [117] provided the entire idea of how to retrieve the user’s hidden interests
and what is a semantic network. The hidden interests of an individual can be inferred
by keenly observing their social profile data and blending this data with a semantic net-
work. Getting user interests without the user’s manual intervention is very beneficial for
companies feeding on users’ regular behavior.

From the first decade of this century, the problem of learning from data given by
labeled graphs attracted much attention in Machine Learning and Data Mining communi-
ties [118–126]. Kuznetsov et al. [127] used an approach based on the generation of closed
sets of labeled graphs and their approximations. An important application for learning
with labeled graphs is the analysis of the properties of chemical substances.

Life sciences and mathematics are usually considered quite distant areas of research.
Yet there are close relationships among them, especially with the increase in computational
power. Formanowicz et al. [128] provided a short review of selected applications of labeled
graphs in biology and chemistry. Graph theory problems concerning molecules of chemical
compounds and DNA sequencing are examples of applications in which graph theory
plays an especially important role.

5. Merging LPG and RDF

In the literature, although in completely heterogeneous application domains, there
have been several works that have tried to use the SW and graph databases simultaneously
or that have created an intermediate layer to make one converge with the other.

5.1. Merging Sources

Historically, this need has existed for some time. There are several works, even not
too distant, that would have liked a method for connecting graph databases with RDF,
including [129]. In this work, the huge amount of data available in traditional databases
is mentioned, but mainly, the authors had to work with the integration of data already
present in RDF format. The approach described, however, for integrating URIs coming
from different sources is relevant and provides interesting insights in cases where similar
techniques can be reused.

Interest also spread the NLP area. In [130], they proposed a method to build a
knowledge graph from a well-known lexical database: WordNet [131]. In particular, their
aim was to build a new KB that could be used for reasoning operations of various natures,
in their case for Text Entailment Recognition. In particular, the graph construction followed
different steps: synsets sample selection, automatic pre-processing, data curation, classifier
training, database classification, data post-processing, and RDF conversion [130].

In the field of microbiology, Pency et al. [132] present OpenBiodiv: an infrastructure
that combines semantic publishing workflows, text and data mining, common standards,
ontology modelling and graph database technologies for managing biodiversity knowledge.
It is presented as a Linked Open Dataset generated from the scientific literature. It is a good
example of an overall infrastructure dedicated to the integration.
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5.2. Structure Mapping

In [133], a framework for the projection and validation of a portion of a graph in RDF
using the graph database formalism is described. Specifically, the framework allows a
SparQL query to be written, translated into JSON and parsed as to be interpreted by the
LPG model. In the end, the initial query is displayed in the new formalism. It is a useful
tool for information verification and consistency checking with reference ontologies.

There are also attempts [134,135] to integrate SW techniques into relational databases
using the fixed properties of the relations. Entities are seen as classes, keys as relationships
and properties as attributes.

In [136], Angles et al. studied the RDF model from a database perspective. A lot of
effort has been put into understanding the efficiency of languages for querying graphs.
For instance, in [137], a variant of SparQL, G-SPARQL, was proposed, which has its
own grammar and uses relational databases as a source base for finding data. Some
improvements have been developed such as combining different types of queries into one
and the separation of concerns between model and instances storage.

5.3. Language Mappings

In [138], even a new language is proposed. The goal is to introduce languages that
work directly over triples and are closed, without using graph models. They also extend
their language with recursion with good results when compared with other languages.
In [139], a new language is proposed, Gremlinator, which extends Gremlin [140] and is
able to navigate graph databases from SparQL queries. On this side, there are numerous
attempts to enrich languages to increase the functionality and power of queries.

5.4. New Graph Models

Some approaches take one perspective and bring it to the other part. These approaches
are more sophisticated since the translation from one technology into the other one is very
complex and an open issue.

The most frequent is the translation of RDF data into graph databases. By adding an
intermediate layer, SparQL queries are translated into Cypher and data can be retrieved as
they are written directly in RDF. A proposal is described here [141], where the mapping
translation follows an algorithm based on the structure of the nodes and an ontology, which
acts as a reference for creating labels on each node.

In [142], is proposed the system Yet Another RDF Serialization (YARS), which allows
preparing RDF data to exchange on the property graph data stores. Their serialization is
textual. It has three different parts:

• prefix directives: a part where prefixes are defined.
• vertex declarations: parts where vertices are created.
• relationship declarations: parts where edges and properties are created.

Iordanov [143] even proposes a different graph database model, named Hyper-
GraphDB, based on generalized hypergraphs where hyperedges can contain other hy-
peredges. This generalization automatically reifies every entity expressed in the database
thus removing many of the usual difficulties in dealing with higher-order relationships. For
our purposes, we can reuse some general ideas of how to treat higher levels of relationships
with reification, even if the final purpose is to build a general system able to collect huge
sources of (heterogeneous) graphs, in order to construct a common structure.

In [144], the authors consider the problem of supporting PGs as RDF in the Oracle
Database. They introduce a PG to RDF transformation scheme. They propose three models:

• Namedgraph based. This proposal involves the use of quads (as opposed to triples)
to create a unique named graph IRI for each edge. Then the label and the key/value
properties of the edge are associated with the graph IRI.

• Subproperty based. Id, label, and key/values for an edge can be modelled by creating
a unique RDF property for each edge to represent the edge id, creating an RDF triple
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with that property as the predicate, associating the key/value pair with that property,
and then making the property a subproperty of another property created based on the
edge label.

• Reification based. In order to accommodate the id, label, and key/value pairs for an
edge, reification in RDF can create a new resource to represent every reified RDF
statement.

5.5. Interoperability

In [145], RDF triples are integrated into PGs in order to be exploited by some graph
engines. There is an intermediate layer: G2GML, which follows an algorithm for bringing
triples into the database. The drawbacks are the same as the similar approaches described
above. There exist more sophisticated algorithms based on G2GML, such as [146], who
implement a better algorithm for the management of URIs, and [147], who implement
mapping rules for schemes and instances. Tomaszuk et al. [148] present an ontology-
based approach to transform (automatically) PGs into RDF graphs. The ontology, called
PGO, defines a set of terms that allows describing the elements of a PG. The algorithm
corresponding to the transformation method is described, and some properties of the
method are discussed (complexity, data preservation, and monotonicity). The strength of
this solution lies in the fact that it is not domain-dependent, and that the solution is generic
and applicable in different contexts with acceptable performance.

Schatzle et al. [149] propose a mapping that is native to GraphX (a parallel processing
system implemented on Apache Spark). The proposed graph model is an extension of the
regular graph but lacks the concept of attributes. The mapping uses a special attribute
label to store the node and edge identifiers, i.e., each triple t = (s, p, o) is represented using
two vertices.

It should also be pointed out that one almost always ends up with data that are not
complete. There are robust works that are well suited to these issues and have translation
algorithms that are effective even in the most critical circumstances. An example of this
is [150], in which some issues such as empty labels are handled.

There are also attempts to carry neither formalism to the other side but to use an
intermediate storage medium. This is the case of [151], which presents an effective unified
relational storage scheme, that can seamlessly accommodate both RDF and PGs. Further-
more, it has been implemented the storage schema on an open-source graph database to
verify its effectiveness.

It is evident that RDF and graph database systems are tightly connected as they
are based on graph-oriented database models. On one hand, RDF database systems (or
triplestores) are based on the RDF data model, their standard query language is SparQL,
and there are languages to describe structure, restrictions and semantics on RDF data (e.g.,
RDF Schema, OWL, SHACL, and ShEx). On the other hand, most graph database systems
are based on the PG data model, there is no standard query language and the notions of
graph schema and integrity constraints are limited [152].

Given these differences both in terms of structures and uses, it is relevant and necessary
to cope with the interoperability of the two. For instance, how data can be moved, how
information can be shared and merged, and so on. Studying syntactic interoperability is
not enough but it would represent a good start for this process.

RDF data can be encoded in different formats such as Turtle, NTRIPLE, RDF/XML,
RDF/JSON and JSON-LD. In contrast, there is no data format to encode PGs. Yet none of
them is able to cover all the features presented by the PG data model.

A recent extension of RDF that aims to bridge the gap between the two data models is
called RDF* which is already supported by several RDF systems. Indeed, as a foundation
of such conversions, several authors have introduced direct mappings from LPGs to
RDF* [153].

Hartig et al. [154] propose two transformations from RDF* to PGs:
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• Mapping any RDF triple as an edge in the resulting PG. Each node has the “kind”
attribute to describe the type of a node (e.g., IRI).

• Distinguishing data and object properties. The former is transformed into node
properties and the latter into edges of a PG.

A common approach to support semantic interoperability is the definition of data and
schema transformation methods. The schema transformation method takes as input the
schema of the source database and generates a schema for the target database. Similarly,
the data transformation method allows moving the data from the source database to the
target database but taking care of the target schema. The transformation methods can be
implemented by using data formats or data definition languages [152].

In [155], there is a proposal to combine the benefits into a single graph abstraction
layer called Semantic Property Graph (SPG). The SPG layer sits on top of the RDF and
simulates the property graph model. They describe the SPG model and its queries, which
are SW-compliant, to be executed inside property graph databases. This middle layer is
able to interpret SparQL queries. This work consists of the developing of a graph model as
an abstraction graph layer on top of the RDF singleton property that can simulate the two
distinct characteristics of the PG model and a graph query pattern that can express the PG
traversals to the key-value properties of the nodes and edges.

In [156], there is a big survey of the different techniques for storing RDF data and the
peculiarities we can exploit from each of them. As you can imagine, triple stores fit better
with NoSQL models and are inherently thought to be used as graphs. Hence, we want to
stress the fact that we are just proposing the most common idea of integrating RDF with
graph databases but future ongoings of this work can also spread to other models.

Other works, such as [157], describes how to move data from OpenAPI Specification
to RDF. Structures of OpenAPI Specifications fit very well for this task since tabular forms
are much easier to be translated in forms of triples. This is seen as a very natural and
standard approach. As usual, URI generation is relevant also in this case.

Different mappings have been proposed. Nguyen et al. [155] introduce an approach to
convert arbitrary LPGs into a specific class of LPGs that, then, can be mapped directly into
RDF. The idea of this approach is to transform every edge into a vertex which gets connected
to the two vertices incident to the transformed edge by adding two new edges, labeled “in”
and “out”. Notice that these new edges are the only types of edges after this transformation
step, and there are no more edge properties (they have become vertex properties). The first
phase covers the vertices and is equivalent to the first phase of the algorithm described
before. The second phase starts by mapping each edge into its corresponding RDF triple;
then, for each property defined for the edge, the algorithm adds a nested triple containing
the triple representing the edge as a quoted triple in the subject, and the property and value
mappings in the predicate and object positions.

The work that best matches our needs and that we can work on to achieve our goal is
GraphBRAIN [158], an existing system that manages ontologies, arranges data in a graph
database and has minimal cues for integrating tools from SW. This work will be our starting
point, and everything we will design and develop will be integrated into this platform. We
will devote Section 6 to the description of our proposal.

5.6. Open Issues

We are going to mention here the main limitations of the above-mentioned state-of-
the-art approaches. Some of them may be mitigated but, in general, they are open issues.

In [129], the way data is integrated is probably too tied with the biological field, in
the sense that it does not provide general strategies to integrate data but exploits biologi-
cal insights.

Penev et al. [132] lack in the process of integrating (and disambiguating) knowledge
coming from many sources and, differently from them, we do not want to take the huge
amount of knowledge expressed in RDF and bring them into a graph database.
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Purohit et al. [133] provide an interesting approach for data validation but it is not
really usable for connecting the two perspectives of the graphs.

In [141] the authors used graph database technology and developed support to make
this technology suitable also for RDF triples. The overall result is not satisfactory for our
purposes for different reasons:

• there is a loss of data at the end of the process, since, in a graph database, we do not
have a link among other objects in the Web.

• for large KBs, there is a need for strong computational and memory power.
• after having translated RDF triples into the graph, we cannot perform any other

operations but visualizing data.
• there is no way to capture potential inconsistencies after the data is inside the graph.
• transferring a huge amount of RDF triples into LPG graphs requires a lot of computa-

tional time. This is one of the most underrated problems.

The main limitation of [143] is that this approach does not use the tools of the SW at
all. Hence, also the queries and operations possible with HyperGraphDB are not the same.

Das et al. [144] lacks in the reasoning part. The resulting graph can only be queried
in SparQL.

In [148] what, from our point of view, can be improved is the possibility of perform-
ing translations from one model to another also taking ontologies into account in the
translation process.

The shortcoming of [152] is that RDF* is not supported by the majority of RDF triple-
stores and requires changes from RDF data beforehand. Interoperability between sources
happens when both are able to understand the meaning of the data to be exchanged. For
this purpose, both data and instances must be appropriately treated and transformed.

In [155], the authors have not analyzed the problems related to control over the infor-
mation that you can store in the graph database and the management of the corresponding
semantic descriptions.

To the best of our knowledge, there is no method that supports data and schema
(i.e., class and property axioms) transformations between RDF and PGs preserving all the
advantages of both. Based on our literature review about RDF and PGs interoperability, we
identified the most relevant issues and challenges:

• There is no single graph model. LPG is just one of the most used models.
• RDF is based on triples while PG contains attributes and there are different ways to

move from one structure to another, none of them prevailed among the others.
• Refication cannot be fully automatized. The SW provides some mechanism to repre-

sent attributes on triples (e.g., reified statements) but different contexts can privilege
other solutions.

• RDF reification leads to a considerable increase in the size of the resulting graph.

In [159], the authors propose a novel approach called Singleton Property for repre-
senting statements about statements and providing formal semantics for it. They also
demonstrate the use of singleton property in the representation and querying of meta
knowledge giving a satisfying performance in terms of the number of triples, query length
and query execution time compared to existing approaches.

6. Proposal

Due to unsatisfactory results (in terms of generality), research is going on into this
topic and we would also like to contribute with a proposal for the unification of the two
perspectives, proposing also mechanisms for enriching the types of reasoning available
with graphs. Our proposal, named GraphBRAIN, uses Neo4j as Graph DB, thanks to the
many features described above. Graph DB technologies are not inherently purposed for
representing schemes. In our mind, schemes are also intended as ontologies. This is the
reason why we leverage GraphBRAIN, which is prone to provide intelligent reasoning
operations as well as traditional CRUD database operations.
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It is compliant with SW formalism, since it embodies mechanisms to import SW data
and map data into the SW-compliant formalism (OWL).

6.1. General Concept and Applications

To the best of our knowledge, state-of-the-art approaches do not have the possibility
of exploiting the two main characteristics of the two graph models: the effectiveness of
RDF and the efficiency of LPG. This is due to the fact that whenever we move from one
perspective to another we lose advantages. For this reason, we apply the separation of
concerns. In our methodology, we are going to use LPG as a graph model for storing
instances while schemes are kept separated in order to be used as traditional database
schemes for managing CRUD operations. Additionally, we can exploit SW reasoning by
mapping data from LPG to RDF, and enrich the knowledge base with ontologies. Ontologies
are expressed through XML, and we will explain later the motivations of this choice. While
instances are mapped into the RDF formalism, ontologies are mapped into OWL. This
allows merging schemes and instances, and reasoning becomes achievable. Apart from
SW reasoning, other reasoning approaches can be considered when dealing with KBs.
For this reason, we aim to translate schemes (in XML) and instances (in the graph) into
a first-order logic language, e.g., Prolog. Consequently, a plethora of techniques can be
applied, covered in what we call “multistrategy reasoning”. We will discuss this part in
Section 7. The overall platform is GraphBRAIN, which provides an interface for the creation
and management of ontologies. This general system aims to move in different contexts.
As an example, schemes can be moved in the logic programming field following some
rule-mapping criteria. Furthermore, the GraphBRAIN application can apply consistency-
checking mechanisms to verify the integrity of schemes with instances. Further details
of GraphBRAIN are available in [158]. Our proposal is meant to be used in every context
in which intelligent information retrieval and/or reasoning are considered relevant. This
proposal is not intended for those interested in the mere storage of data. GraphBRAIN
will allow importing of resources and reasoning capabilities on them. At this moment, we
cannot provide substantial numerical results or metrics of our proposal since it is under
development. However, a preliminary analysis of possible limitations has been discussed
in Section 9. Thanks to its generality, our proposal can be used in almost every domain in
which historically KGs spread. We have already different data coming from the different
domains (retrocomputing, food, tourism, . . .) and we are now employed in gathering data
coming from the education domain. Each domain has its proper ontology formalization.
Given the possibility of using intelligent information retrieval tasks, and logical (and SW)
reasoning, many applications come to mind such as recommender systems, ITS devices and
so on. The range of the applications is strongly related to the domains of data available.

6.2. Schemes

For the above-mentioned reasons, we decided to provide common schemes for data
which can, possibly, be used as ontologies for reasoning. For this reason, we do not
represent schemes in the data itself. We have already mentioned that LPG is not able to
conceptually separate schemes from instances. We store different (partial) models of the
data in external (XML) documents.

Schemes determine the concepts we can describe and can also be used as a way to
check integrity constraints. This will be better examined in Section 8.3. Additionally,
schemes provide an abstraction of data. Schemes are modelled regardless of the specific
representation of instances. The storage process is fully transparent to the end user. When
external data is to be imported, OWL schemes will be mapped as well and data will refer
to them too.

Our scheme, at the state of the art, provides the following concepts to be represented:
classes and subclasses, relationships and sub-relationships, and attributes on classes and
relationships, which may have as types not only literals (string, integer, float, . . .) but also
other classes as well. Schemes are built (or imported) in order to stay in OWL-DL, which
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is decidable. This property would not be assured if we entered in the OWL-Full that is
undecidable [160,161]. A first overview of our DTD has been described in [158]. In that
version, sub-relationships and user types were not available. The structure has been slightly
modified in order to implement new features.

For the implementation of our schema, we chose XML as a formal language to de-
scribe concepts.

The choice of XML is two-fold. First of all, it is a standard, general and machine-
readable format to express concepts and relationships through tags; secondly, XML is at a
higher level of abstraction than a graph. This means that we can use it to move to different
contexts. As the first aftermath, XML documents can be edited by (non-lay) users and this
encourages students, researchers or other people concerning the topic to create and/or
update their own schemes for returning them to the community. Moreover, XML can
function as an intermediate layer for many kinds of reasoning. For example, XML schemes
can be rendered into OWL, which is on another level of the Semantic Web pyramid. This
does not mean the two languages are equivalent, although we can map XML schemes
into equivalent ones expressed in OWL. Additionally, XML schemes can be translated
into formal logic languages, making us prone to use Logic Programming (LP) as well.
Logics contribute to many kinds of reasoning frameworks and we will briefly introduce
them later on in Section 7. Finally, XML guarantees semantic interoperability, which is the
reason why it is so popular for data exchange on the Web. The first step was to define the
DTD, which is the formal rigorous structure of any scheme document into GraphBRAIN.
The DTD not only specifies the format and the syntax, but it also expresses the power of
the language, given all the possible elements (tags) we can represent. It mostly describes
how we represent the first (most obvious) features of an ontology such as (sub-)classes,
(sub-)relationships, attributes of classes (or relationships) and so on. Tables 3 and 4 show a
portion of ontology in our format with the main components present.

6.3. Import/Export with Semantic Web

A fundamental part of our work is devoted to the possibility of allowing GraphBRAIN
and the SW to communicate with each other. From one side, researchers may find it
advantageous to bring OWL/RDF resources into GraphBRAIN to explore the information-
retrieving functionalities provided. On the other side, we are interested in enriching the
SW community with data gathered from several resources. Moreover, one of the main
advantages of the proposal is exactly the possibility of exhibiting reasoning capabilities by
means of different mapping into (logical) formalisms.

In literature, there is a plethora of works which mapped two different data models,
starting from mapping relational tables and RDF [162] until modern ones, some already
mentioned in Section 5. For the mapping between the two formalisms, we are considering
a mixed strategy between a fully automated mapping and a manually defined one. All in
all, we would rather have a default strategy which can be slightly modified by specific user
requests. For instance, a user may want to specify how to map a specific data property,
object property and node, even changing the type of the concept.

The default mapping strategy is reported in Section 6.4.
Dealing with the opposite direction, the mapping goes vice versa always taking

into account possible user preferences. In this direction, the ontological SW reasoning
becomes feasible.

6.4. Mapping RDF and LPG

As described above, nevertheless RDF and LPG both use the graph data structure,
they are partly incompatible and need a process of integration, or an intermediate layer
in between. Since one goal of our proposal is to be able to perform SW reasoning, we are
now focusing on moving from LPG to RDF, mapping data and schemes into a (formal)
SW-compliant language. Yet the inverse process is a priority for us since we also aim to
import already-available resources in the SW to enrich our database. First of all, when



Information 2023, 14, 154 18 of 32

moving to the SW field, URIs are imperative. For our purposes, we are using the following
namespace: “https://gbnamespace” whose given abbreviation is “gb”. Indeed, every
concept (class/relationship) must have that namespace in its URI.

The first step is to define how to translate schemes expressed in XML into OWL,
the language for describing schemes in the SW. In this case, the mapping becomes quite
intuitive given the analogy among concepts. For example, there is a natural connection
between entities in ontologies and classes in OWL, or between attributes and datatype
properties or relationships and object properties. We easily report the translation from XML
to OWL in Table 5, already presented in our previous work.

Additionally, we need a methodology to express resource data from the DB perspective
in LPG into the SW perspective in the form of RDF triples, with the subject-predicate-object
structure. Before going on to describe the methodology, several relevant issues emerge.
First of all, one essential decision regards how much and what information to map. At a
first glance, it seems natural to translate everything you find, but it may lead to a substantial
collapse in performance, as well as security and privacy issues. Should you decide to move
just part of the data, you will also need an approach to establish what to translate and
reason with. Another relevant factor is that consistency cannot be guaranteed for free.
Traditionally, databases change constantly. There is no denying that translating data once is
not enough. Whenever something changes, you need a new version of the KB expressed in
RDF; otherwise, wrong or inconsistent (with the respect to the external world) conclusions
can emerge.

We also provide a graphical representation of how concepts are mapped in the two
different graphs. We provide the JSON code associated with a relationship between two
nodes. Each concept also has properties as shown in Table 6. For the sake of simplicity, but
without losing generality, we just have a student, an exam, and a relationship stating that
the student passed that exam. In Figure 1, the LPG representation is shown. The mapped
RDF graph is shown in Figure 2 after applying all the mappings described in the table.

Figure 1. LPG representation of two nodes and a relationship with attributes.

Finally, when integrating the schema into OWL and the triples in RDF, SW rea-
soner [163] can execute several interesting tasks, among them the most common is consis-
tency checking. In [164] you can also find an example of an application of this mechanism
with other considerations related to the specific use case.

Even though the advantages of enriching KBs with ontological reasoning are evident,
we are also going to explore alternative approaches, leveraging logic again. Being able to
export data into a logical formalism opens new scenarios. With logic formulas, we would
be able to apply many state-of-the approaches and even combine them, possibly. We will
refer to these approaches with the umbrella term of “multistrategy reasoning”.

https://gbnamespace
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Table 3. Sample fragment of ontology in GraphBRAIN format (part 1).

<!-- <!DOCTYPE domain SYSTEM "graphbrain.dtd"> -->
<domain name="retrocomputing" author="stefano" version="1">

<entities>
<entity name="Component">

<attributes>
<attribute name="name" mandatory="true" datatype="string"/>
<attribute name="description" mandatory="false" datatype="text"/>
<attribute name="originalPrice" mandatory="false" datatype="real"/>
<attribute name="announcementDate" mandatory="false" datatype="date"/>

</attributes>
<taxonomy>

<value name="Chip">
<values>

<value name="Logic">
<taxonomy>

<value name="FlipFlop">
<attributes>

<attribute name="type"
mandatory="false" datatype="select">

<values>
<value name="D"/>
<value name="FK"/>
<value name="JK"/>
<value name="T"/>

</values>
</attribute>

</attributes>
</value>
<value name="Memory">

<attributes>
<attribute name="capacity"

mandatory="false" datatype="string"/>
<attribute name="speed"

mandatory="false" datatype="string"/>
</attributes>
<taxonomy>

<value name="EPROM"/>
<value name="PROM"/>
<value name="RAM"/>
<value name="ROM">

<attributes>
<attribute name="content"

mandatory="false" datatype="string"/>
</attributes>

</value>
</taxonomy>

</value>
</taxonomy>

</value>
<value name="MicroProcessor">

<attributes>
<attribute name="speed" mandatory="false" datatype="string"/>
<attribute name="bits" mandatory="false" datatype="integer"/>

</attributes>
</value>
<value name="PLA"/>
<value name="RRIOT"/>

</taxonomy>
</taxonomy>
[...]

</taxonomy>
</entity>
[...]

</entities>
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Table 4. Sample fragment of ontology in GraphBRAIN format (part 2).

<relationships>
<relationship name="wasIn" inverse="hosted">

<references>
<reference subject="Company" object="Event"/>
[...]

</references>
<attributes>

<attribute name="reason" mandatory="false" datatype="string"/>
<attribute name="position" mandatory="false" datatype="string"/>

</attributes>
<taxonomy>

<value name="workedIn"/>
</taxonomy>

</relationship>
[...]

</relationships>
</domain>

Table 5. Translations from concepts in the ontology to concepts in the SW [164].

XML Scheme Semantic Web

Entity owl:Class
Entity Attribute owl:DatatypeProperty

Relationship owl:ObjectProperty
Subject of Relationship owl:ObjectPropertyDomain
Object of Relationship owl:ObjectPropertyRange

With the assumption that attributes are always literal, which is not guaranteed in
principle by Neo4j, some mapping rules can be applied. Again, we show the rules through
Table 7.

Table 6. JSON fragment of the graph.

{ { {
"identity": 371278, "identity": 1070551, "identity": 371298,
"labels": [ "start": 371278, "labels": [

"Student" "end": 371298, "Course"
], "type": "passed", ],
"properties": { "properties": { "properties": {

"name": "Davide", "date": "17/07/2020" "name": "AI",
"idStudent": "661292" } "year": 2,

} } }
} }

Table 7. Translations from data in the LPG graph to data in the SW [164].

LPG RDF

Node rdf:subject
Arc rdf:predicate

Attribute on node rdf:predicate between the rdf:subject (node)
and the literal (Attribute value)

Attribute on relationship
rdf:predicate between the rdf:statement

representing the triple (relationship) and the
literal (Attribute value)
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Figure 2. RDF representation after mapping. As you can see, the “passed” relationship is now reified
as a statement.

7. Multistrategy Reasoning

“Multistrategy reasoning” [165] is concerned with extracting information from a KB
by following one (or more) strategies. The different strategies follow human reasoning
methods that are feasible in any real-world context. We will briefly explain which inference
mechanisms we consider part of multistrategy reasoning. Once a KB is expressed through
a logic language (e.g., Prolog), all these approaches can be adopted to enrich the overall
knowledge. This approach must be considered in specific application domains such as
GraphBRAIN, in which the Closed World Assumption [166] holds. This is not true in
general, and in particular for the Semantic Web where the Open World Assumption [167]
is adopted.

GraphBRAIN provides a mechanism to map XML schemes into Prolog, while the
translation of graph instances is a work in progress.

7.1. Abstraction

Conceptual abstraction and analogy-making are key abilities underlying humans’ abili-
ties to learn, reason, and robustly adapt their knowledge to new domains [168]. Abstraction
is the type of reasoning aimed at removing unimportant details during the modelling of
the solution. It solves different problems:

• The complexity of the problem is reduced.
• The problem becomes goal-dependent.
• Problems previously considered impossible become possible.

In general terms, we can define the abstraction process as a mapping at the level of the
perceived world. Formally, given a world W, let Rg = (Pg(W), Sg, Lg) and Ra = (Pa(W), Sa,
La) be two reasoning contexts ground and abstract, an abstraction is a functional mapping
A: Pg(W)→ Pa(W) between a perception Pg(W) and a simpler perception Pa(W) of the same
world W. For “simpler” we mean that there is a function from the elements of the first
perception to the element of the second one and this function is not injective.
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7.2. Deduction

Deduction is the most common and famous type of reasoning, for historical and
practical reasons. The psychology of reasoning has, for many years, been centred on the
deductive reasoning paradigm in which people are asked to assess logical arguments or
generate valid conclusions from given premises. The deductive reasoning paradigm is
focused on logical arguments. These are arguments whose conclusions must necessarily
follow from their premises. That is to say, logic guarantees that a valid conclusion is true
if all of the premises are true. Whether the premises are, in fact, true is neither here nor
there [169].

7.3. Induction

Inductive Logic Programming (ILP) can be seen as the merge of two areas: Logic
Programming and Inductive Learning. It provides a formal framework and algorithms for
inductive learning of relational descriptions expressed as logic programs. In logical terms,
the framework is the following: consider LO the language of observations, LB the language
of background knowledge and LH the language of hypotheses.

The problem of induction is: given O ⊆ LO and B ⊆ LB, find an hypothesis H ∈ LH
s.t.:

• B ∧ H |= O

that is, the background knowledge and the hypothesis logically prove the observations [170].
In a good inductive argument, the premises should provide some degree of support for the
conclusion, where such support means that the truth of the premises indicates with some
degree of strength that the conclusion is true. Presumably, if the logic of good inductive
arguments is to be of any real value, the measure of support it articulates should meet the
following condition: as evidence accumulates, the degree to which the collection of true
evidence statements comes to support a hypothesis, as measured by the logic, should tend
to indicate that false hypotheses are probably false and that true hypotheses are probably
true [171].

7.4. Abduction

Abduction is the type of reasoning aimed at inferring causes from effects. Peirce
defined it as the inference process of forming a hypothesis that explains given observed
phenomena [172]. Its goal is to hypothesize unknown information starting from observa-
tions. It has the following characteristics:

• It handles missing information.
• Different explanations are possible.
• Many constraints must be satisfied.

More formally, given:

• a logical theory T representing the expert knowledge and
• a formula Q representing an observation on the problem domain,

an abductive inference is an explanation formula E such that:

• E is satisfiable with respect to T.
• T |= E→ Q

In general, we prefer E to be minimal (e.g., by restricting the number of predicates).
The abductive explanation of an observation is a formula which logically entails the

observation and represents a cause for it.
We remind the strong difference between abduction and induction. The first one wants

to infer causes from observation while the second wants to deduct consequences from
observations. We provide an example:

• If I say that my car will not start this morning, an abductive solution is the explanation
that its battery is empty. An inductive inference can infer that if the battery is empty,
then the car will not start.
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7.5. Argumentation

Argumentation studies the processes and activities involved in the production and
exchange of arguments. It aims at identifying, analyzing and evaluating arguments. It
captures diverse kinds of reasoning and dialogue activities in a formal but still intuitive
way and provides procedures for making and explaining decisions. In AI, it is used for
giving reasons to support claims that are open to doubt and/or defend these claims against
attack. Argumentation takes a clue from everyday arguing which is something typical,
involving different people who have their perspectives which look convincing.

In general, arguments are represented as nodes and relationships amongst arguments
as arcs. It is easy to recognize a graph structure. Arcs are directed and mean that the source
argument attacks the second one.

There are different frameworks for representing arguments. The basic one was pro-
posed by Dung [173] but it turned out to be too limited. Hence, the following ones emerged:

• Bipolar: provides arcs also for supporting arguments, not only to attack.
• Weighted: provides weights for attacks, to distinguish them.
• Trusted: provides weight also for the arguments themselves.
• Mixed: uses a combination of the previous ones, for example, bipolar and weighted.

Through this formalization, relevant aspects of the arguments can emerge, in particular
some subsets of the overall set of arguments, such as the conflict-free, the admissible, the
semi-stable and so on.

Major applications of this kind of reasoning are the debates, in which we can well
formalize arguments, attacks between them, and, if using richer frameworks, possible
weights for describing support relationships.

7.6. Analogy

Analogy is the process of transferring knowledge across domains. The main reasons
for which it is used are the following:

• Relevance in the study of learning, for moving from one domain to another.
• Often used in problem-solving.
• Relevance when studying new domains.
• In the past, it inspired great scientists in new discoveries.
• Frequently used in communication.
• Frequently used for explanations.

The Analogy process is not straightforward. It requires the following phases:

• Retrieval: finding the better base domain that can be useful to solve the task in the
target domain.

• Mapping: searching for a mapping between base and target domains.
• Evaluation: providing some criteria to evaluate the candidate mapping.
• Pattern: shifting the representation of both domains to their roles schema, converging

to the same analogical pattern.
• Re-representation: adapting one or more pieces of the representation to improve

the match.

A summary of all the strategy reasoning techniques and a schema describing the
collocation context of each of them is shown in [174].

8. Validation

One of the main problems when dealing with this validation is that inferences coming
up need some external expert (or tool) in order to be verified. Most case studies require
completely variegated teams which carry out this task specifically. It is not unusual that
the information extracted is already well-known to the experts and so further investigation
is needed in order to discover non-trivial information. The validation team is strongly
dependent on the context of use and, at the state of the art, there is no way to make this
process general.



Information 2023, 14, 154 24 of 32

8.1. SHACL

Despite the difficulties in validating results output from the process of inference, much
attention is being put on the validation of the KBs themselves. In particular, Shapes Con-
straint Language (SHACL) is the W3C recommendation language for integrity constraints
over RDF knowledge graphs [175]. In SHACL, validation is based on shapes, which define
particular constraints and specify which nodes in a graph should be validated against these
constraints. Data validation requires two inputs: an rdf graph G to be validated and a
shacl document M that defines the conditions against which G must be evaluated. The
shacl specification defines the output of the data validation process as a validation report,
detailing all the violations that were found in G of the conditions set by M. If the violation
report contains no violations, a graph G is valid w.r.t. SHACL document M. Formally, a
shacl document is a set of shapes. Validating a graph against a shacl document involves
validating it against each shape. Shapes restrict the structure of a valid graph by focusing
on certain nodes and examining whether they satisfy their constraints [176]. We can think
about this problem from a new perspective: as a problem of satisfiability. Given a particular
SHACL document, satisfiability is the problem of deciding whether there is an RDF graph
which is validated by the document [177].

8.2. ShEx

For validation purposes, there is also an alternative sometimes used in different
contexts but also in combination with SHACL. Shape Expression Schema (ShEx) is a novel
schema formalism for RDF currently under development by W3C. ShEx assigns types to
the nodes of an RDF graph and allows constraining the admissible neighbourhoods of
nodes of a given type with regular bag expressions. A ShEx allows defining a set of types
that impose structural constraints on nodes and their immediate neighbourhood. The
complexity of single-type validation for ShEx is NP-complete [178].

The construction of SHACL or ShEx schemes remains a difficult problem. It requires
mastering different tools and languages and swapping between them in order to complete a
schema construction task: the syntax and semantics of the constraint language, the existing
validation APIs or tools, query languages, or other means of exploring the data [179]. There
are plenty of works [180–185] trying to embed these instruments into graphical tools in
order to facilitate experts of other fields (lay users) to help during the validation process.

8.3. Our Validation

With respect to the standard approaches used today, we have at our disposal a natural
solution to this problem since we separated the schemes from the instances. In this way,
each time data is going to be inserted, we have to check whether some inconsistencies
with respect to some attributes or relationships emerge. Further complex controls such as
mandatory relationships and/or cardinalities on some properties are out of our scope for
now, but we are considering how to empower integrity constraints. Very naturally, we are
going to implement mechanisms to assuring that no external attributes or relationships
appear and that label mismatch will not be allowed.

Up to a certain extent, we are considering SHACL and ShEx but, for the reasons
described above, we keep separate schemes and instances. Hence, their application is out
of scope now.

9. Possible Limitations

We are going to now briefly discuss some possible drawbacks or limitations of our pro-
posal. Please be reminded that the proposal is not fully implemented so any performance
or quantitative analysis would be unfeasible. Nonetheless, we are able to point out possible
critical points. First of all, if the LPG graph is relatively vast (as it is), it is neither advisable
nor even feasible to translate all instances in RDF. For this reason, we are considering which
are the possible techniques to tackle this problem. At the moment, we are thinking about
extracting a single domain of interest so that the overall dimension is considerably less
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than the total amount. Even this idea turns out to be inefficient in the case where a specific
domain is general and full of knowledge. In parallel with the first thought, we are also
examining how to extract relevant pieces of knowledge starting from specific instances of
interest. With some graph mining algorithms, we can depict the hubs for a specific domain
and, starting from them, retrieve neighbours of those hubs.

Another relevant aspect that needs consideration: the RDF processing. In principle,
we are considering processing RDF KBs on the fly. That means that whenever we want to
exploit SW reasoning, we map pieces of data and apply some reasoners. However, it may
be convenient to store pieces of KBs as triple stores so they are available in case multiple
runs on the same knowledge are considered valuable. Keep also in mind that our database
can be updated at any moment since it is developed for a web application. For this reason,
were we to decide to store some RDF triples we would encounter the inconsistency problem
whenever a piece of data in the graph is updated and already mapped into RDF.

Despite all these discussions being relevant, specific answers to these questions can be
given only when applications will be based on our solution. According to specific needs,
some applications may privilege some approaches rather than others.

10. Conclusions

In this work, we illustrated the state-of-the-art issues related to the construction of
knowledge graphs with graph databases, in particular the LPG model used by the most
common graph DBMS. Until now, many methodologies have been proposed but none
of them seem to be completely context-independent. Furthermore, when dealing with
different graph models, many problems in terms of mapping and/or translation occur.
In contrast with the state of the art, we proposed a novel approach which applies the
separation of concerns between schemes and instances, and we provided a mapping from
them into OWL/RDF, so that SW reasoning becomes feasible. Moreover, we mentioned the
possibility of enriching the kind of reasoning, including logic-based reasoning. We aimed
to integrate ontologies, graph databases and a Semantic Web to support and stimulate the
use of graphs for the storage and maintenance of data sources, especially in the context
of knowledge extraction. Future works comprise the generality of the problem and the
understanding of the real potentiality of the approach, also developing (academic or
production) solutions for the community.
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DBMS DataBase Management System
QL Query Language
SQL Structured Query Language
DSL Domain Specific Language
LPG Labelled Property Graph
RDF Resource Description Framework
OWL Web Ontology Language
XML eXtensible Markup Language
DTD Document Type Definition
URI Uniform Resource Identifier
PG Property Graph
RNN Recurrent Neural Network
YARS Yet Another RDF Serialization
SPG Semantic Property Graph
LP Logic Programming
ILP Inductive Logic Programming
SHACL Shapes Constraint Language
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