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Abstract: Generalized zero-shot learning (GZSL) aims to solve the category recognition tasks for
unseen categories under the setting that training samples only contain seen classes while unseen
classes are not available. This research is vital as there are always existing new categories and large
amounts of unlabeled data in realistic scenarios. Previous work for GZSL usually maps the visual
information of the visible classes and the semantic description of the invisible classes into the identical
embedding space to bridge the gap between the disjointed visible and invisible classes, while ignoring
the intrinsic features of visual images, which are sufficiently discriminative to classify themselves. To
better use discriminative information from visual classes for GZSL, we propose the n-CADA-VAE.
In our approach, we map the visual feature of seen classes to a high-dimensional distribution while
mapping the semantic description of unseen classes to a low-dimensional distribution under the
same latent embedding space, thus projecting information of different modalities to corresponding
space positions more accurately. We conducted extensive experiments on four benchmark datasets
(CUB, SUN, AWA1, and AWA2). The results show our model’s superior performance in generalized
zero-shot as well as few-shot learning.

Keywords: multi-dimensional alignment; intrinsic discriminative features; generalized zero-shot
learning; variational autoencoder

1. Introduction

In recent years, thanks to the rapid development of the internet and computing power,
deep learning can be seen in many application scenarios, such as computer vision and
machine learning tasks [1]. While in some situations, the advantages of deep learning
are lost when compared with human. Humans can do things that machines cannot easily
do. For example, people can better identify some novel things through prior semantic
knowledge, while deep learning can not, as it depends significantly on fully supervised
training, which requires a lot of labeled data. Besides, the tag data is usually obtained
by manually annotating, as well as suffering data imbalance problems in nature, such as
endangered animal samples. So it is difficult, expensive, and sometimes scarcely possible
to get labeled data for all classes.

Therefore, the concept of zero-shot learning (ZSL) [2] emerged to deal with this kind
of recognition problem. ZSL usually recognizes the new category by using labeled samples
of the seen category and auxiliary information (e.g., semantic embedding from the unseen
category) [3]. Traditional ZSL distinguishes samples just from unseen categories, while we
recognize new things usually under the interference of old things in real life. So, generalized
zero-shot learning (GZSL) [4,5] has been put forward to test the classifier on both seen and
unseen classes.

In the early days, the GZSL task was considered a visual semantic embedding problem [6].
Much work on GZSL maps visual features of the image to the semantic space based on
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attribute methods to realize knowledge transferring from seen classes to unseen classes.
However, when the sample points are projected from the original space to the embedding
space, the discriminative information in the original space is likely to be lost, which
was pointed out in [3]. The phenomenon has been mentioned in [7–9] as the hubness
problem, which will significantly reduce the diversity of visual features of seen classes
since high-dimensional visual features are compressed into a low-dimensional semantic
domain [3]. To alleviate the hubness phenomenon, some work [7–9] tries to map semantic
descriptions of unseen classes into the visual domain. But, this also resulted in another
problem called domain shift. As shown in Figure 1, “An animal with four legs and a
tail” can be mapped to many animals, e.g., dogs, leopards, and horses. In contrast, those
animals have other discriminative information from which we can distinguish them. In
addition, the discriminant information in the picture can also be related to its corresponding
semantic description. How to make good use of the discriminative information is the
key point of our experiment. Some visual features are similar in the semantic domain
while different in the visual domain, information from semantic descriptions are prone
to shift when mapped to higher dimensional visual space. To solve the above problems,
some papers [3,10,11] proposed mapping semantic information and visual features into an
identical latent embedding space to make connections between different modalities.

Figure 1. An illustration of visual samples contains more feature information than the semantic
description (e.g., sentence, attribute, and word2vec embeddings).

Thanks to the rapid development and application of the generative model (VAE, GAN),
some works can convert the ZSL/GZSL issue to a visually supervised learning problem by
transferring knowledge from visible to invisible classes using auxiliary information (sen-
tence, attribute, and word2vec embeddings, etc.). Ref. [11] achieved a good performance
both on GZSL and ZSL tasks by mapping visual features and semantic embeddings into
an identical latent space, and based on methods such as cross alignment and distribution
alignment to align them to the same distribution representation, which demonstrated the
importance of latent features.

But, objects of different classes with different visual features may have very similar
semantic properties. For example, a semantic description can correspond to a large number
of visual samples, and the limited semantic information will limit the performance of
zero learning. High-dimensional data usually contains more discriminative information
compared to low-dimensional data in the same class (e.g., visual features and semantic
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attributes in the same class) [3]. Hence we think it is more reasonable to project different
dimensional data features to different dimensional distributions in the same latent space.

Therefore, we propose an improved method based on the paper [11]: n-CADA-VAE,
which can make better use of intrinsic discrimination information from visual images.
Specifically, since a semantic description can correspond to multiple visual images, we
map visual features to high-dimensional distribution, while the semantic description is
mapped to low-dimensional distribution as it contains less information compared to visual
features under the same latent space. And at the same time, aligning the distribution of
semantic embedding and the corresponding dimensional distribution of visual features by
using the methods of Cross-Alignment (CA) [11] and Distribution-Alignment (DA) [11].
Thus to better use of visual discrimination information in seen classes and to improve the
model performance.

In general, the main contributions of our paper are:

(1) The method we put forward can make full use of the intrinsic discriminative infor-
mation of visible class images. We project visual features and semantic attributes
to the distribution of different dimensions in the same latent space, thus mapping
information of different modalities to corresponding space positions more accurately.

(2) To the best of our knowledge, we are the first to propose to map the feature information
of different modalities into a different dimension of distribution representation in the
same latent space. We take our experiment at the setting mapping visual feature and
semantic attribute to there-dimensional distribution and two-dimensional distribution
respectively in the latent embedding space and have good performance compared to
CADA-VAE [11]. It can try more dimensional distributions corresponding to different
modalities in the future.

(3) We extensively evaluate our model on four benchmark datasets, i.e., CUB, SUN,
AWA1, and AWA2. The result shows our model’s superior performance on ZSL and
GZSL settings.

2. Related Work

GZSL/ZSL tasks aim to solve rare label samples and novelty category recognition
problem, which is usually considered missing data issue. The problem of missing training
samples has always been an unavoidable problem in the model training process. How to
realize the recognition of new categories in the absence of relevant samples is the key to
research. The main idea of dealing with GZSL is to turn knowledge from the seen category
to the unseen category by using prior semantic information. Prior semantic information can
be obtained through visible classes and some methods such as word vectors and manually
annotated attributes, to bridge the gap between the seen and unseen classes. Thus, objects
in two neighborhoods (visible and invisible) are recognized. Roughly speaking, methods
for dealing with GZSL can be divided into embedded and generated methods.

Embedded methods usually try to learn a united representation or a shared embedding
space based on an identical projection to connect visual space with semantic space. This
kind of method has been developed very soon after it was proposed. The embedding-based
methods include graph-based, meta learning, attention-based, autoencoder-based, and
bidirectional learning methods. The graph-based approach uses knowledge graphs to
preserve the geometric structure of latent spatial features and uses the learned graphs to
construct a classifier for GZSL. But the graph information also increases the complexity of
the model. Meta Learning hopes to make the model acquire a “learn to learn” ability so that
it can quickly learn new tasks based on acquiring existing “knowledge”. Some researchers
have mitigated bias problems in GZSL tasks by transferring knowledge from visible to
invisible classes based on meta-learning. The attention-based approach focuses on the most
important area of the image and adjusts the attribute features and their corresponding
semantic vectors through the attribute embedding method, which is often used to solve
the multi-label GZSL problem. The autoencoder-based methods are based on the encoder
and decoder learning embedding space to implement the transfer of information between
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the visible and invisible classes. The bidirectional learning methods considers visual
features and their corresponding attribute space and makes full use of information in data
samples based on bidirectional projections to distinguish visible and invisible classes. Due
to suffering from semantic loss and lack of visual features for unseen classes [12], those
approaches often lead to predictions biased toward seen classes. It also becomes more
challenging when coming to the GZSL setting.

By contrast, generative methods can improve model performance by turning the
GZSL task into a supervised learning problem by generative visual features or visual
images for invisible classes. Due to the need to generate visual features or visual samples,
this kind of method is often based on a large number of visual training samples. In
addition, the generated training samples need to be semantically related to real samples and
retain discriminant. f-CLSWGAN [13] using Wasserstein GAN (WGAN) [14], synthesizes
visual features based on class-level semantic information for unseen classes. LsrGAN [15]
incorporated a novel Semantic Regularized Loss (SR-Loss) to relieve the overfitting problem
appearing in GZSL. LisGAN [16] synthesizes visual features for unseen classes from
noise based on WGAN, and proposed soul samples, which are defined as the average
representation of each category to cluster generated samples of each class and regularize
generated samples. The above-generation methods generate visual features or images
of invisible classes by using the auxiliary information of invisible classes to make up for
the missing data in unseen classes. However, there is still a gap between these generated
pictures and the actual pictures, which affects the model effect to some extent. Furthermore,
those methods rely heavily on GAN, which faces issues such as the pattern of collapse,
training instability, etc.

To alleviate instability in model training, some papers introduce VAE into their work.
Besides, to avoid unidirectional alignment production of the unconstrained visual features,
using bidirectional alignment, which means simultaneously aligning the visual and seman-
tic domain to the same latent embedding space. CADA-VAE [11] projects visual features
and semantic descriptions to the same latent embedding space aligned by Cross-Alignment
(CA) [11] and Distribution-Alignment (DA) [11]. In Dual VAEGAN [17], dual frames
containing VAE and GAN and loss of cyclic consistency are proposed to avoid the gener-
ation of unconstrained features. HSVA [18] try to align the visual domain and semantic
domain better through structural adaptation and distribution adaptation. DGDI [15] uses
additional classifier loss to regularize the generator with visual feature representation,
making the synthesized visual features of unseen classes more distinguishable and diverse.
M-VAE [19] put forward a single encoder-decoder pair for each input modality combined
in the VAE reducing the misinformation generation toward reconstruction. Each of these
methods has some performance gains.

However, the above methods all adopt the same mapping function to align the visual
and semantic domain, ignoring the intrinsic discriminant information of the image. The
discriminant information in the image can effectively distinguish different categories and
provide relevant semantic information. In this work, our method improved from [11] by
mapping different modalities to different dimensional distribution representations, can
project visual features and semantic descriptions to latent embedding space more precisely,
and retain potential features that are more discriminating.

3. The Proposed Method
3.1. Definitions and Notations

First, we give related definitions of Zero-shot learning. Let S = {(x, y, c(y)), x ∈ X, y
∈ Ys, c(y) ∈ C} be a training set, consisting of image-features x, class labels y and class-
embeddings c(y). x is extracted from a pre-trained CNN, Ys = {y1, . . . , yk} include k respec-
tive seen classes, and c(y) represents seen class embeddings which are vectors of manually
annotated attributes. Moreover, setting an auxiliary training set U = {(u, c(u))|u ∈ Yu, c(u)
∈ C}, here, u represents unseen classes from Yu = {u1, . . . , uL}, which is disjoint from seen
classes set Ys, and c(u) is unseen class embeddings. In a typical ZSL task, we need to learn



Information 2023, 14, 148 5 of 10

a classifier fZSL : X → YU . While in GZSL task, it is more complex and requires to learn a
classifier fGZSL : X → YU ∪YS.

3.2. Variational Autoencoder (VAE)

Variational Autoencoder (VAE) [20] aims to learn a latent distribution z about relational
data x, consisting of an encoder q and a decoder p. Encoder q projects x to hidden space z.
Decoder p restores the relational parameter Q of hidden space to sample C, then training
model by aligning original sample x with sample C and submitting the latent variable
z of x to the standard normal distribution function. Variational autoencoder was first
proposed based on the encoder. It is often used to generate rare samples to make up for
the problem of missing samples. Here, we can use VAE to convert information between
different modalities. VAE is a critical constituent part of the model we propose, which
is used for mapping data from different modalities to the latent embedding space, from
where we can align visible features and semantic descriptions, so to connect visual space
with semantic space. The objective function of VAE can be expressed as follows:

L(Φ, θ; x) = EqΦ(z|x)[log pθ(x | z)]− DKL(qΦ(z | x)‖pθ(z)) (1)

where the first item is the reconstruction error to restore the original samples as much
as possible during the reconstruction, the second item is the KL divergence between the
inference model q(z|x), and p(z), aiming to submit latent variable z to standard normal
distribution function so that the model has some generating ability. The network consists
of an encoder network E with parameters Φ and a decoder D with parameters θ. Here,
qΦ(z | x) can be seen as an encoder from data space to latent space. And the pθ can be seen
as a decoder, from latent space to data space. We can view this optimization as minimizing
the reconstruction loss with the KL divergence as the regularizer [21]. The traditional VAE
model uses multivariate standard normal distribution and predicts intermediate variable µ
and ∑, which are used in the reparametrization trick to generate the latent distribution z.
We appropriately modified the reparametrization trick as well as the mapping function in
the reconstitution of x. Detailed operations are described in the following subsection.

3.3. New Reparametrization Trick

We modified the reconstruction technique to better utilize the discriminant information
in visual features. We set Z1, and Z2 respectively represent latent variables of the visual and
semantic domain. And ξ is the random noise from the standard normal distribution which
is used for increasing the generative capability of the model. The visual sample x will be
encoded to µ1, ∑1, η as it has more intrinsic discriminant information, while the semantic
information c is just encodered to µ2, ∑2 like before. Then those intermediate variables will
be used in the new reparametrization trick to generate respective latent distribution (Z1
and Z2). As visible samples usually contain more information and discriminative features
than semantic descriptions, we think a higher dimensional mapping function for the visual
domain is more reasonable and can project visual samples to more accurate positioning in
latent space and retain more discriminant information. The implicit function of Z1 and Z2
can be expressed respectively as:

Z1 = µ1 + ∑1 ∗ ξ + η ∗ ξ2 (2)

Z2 = µ2 + ∑2 ∗ ξ (3)

3.4. Model Loss

We show the basic structural details of the n-CADA-VAE in Figure 2. Our model con-
sists of two VAE, which are used separately to process data under the visual domain (x) and
semantic description (c). Each VAE consists of its encoder and decoder. Through two VAE,
we can connect the information between two different modalities. We project visual feature
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and semantic feature to three-dimensional latent distribution (Z1) and two-dimensional
latent distribution (Z2) respectively, as to better reserve the intrinsic discriminative informa-
tion of the image. Latent distribution alignment is achieved by minimizing the Wasserstein
distance between the latent distributions (LDA). Similarly, the cross-alignment loss (LCAn )
encourages the latent distributions to align through cross-modal reconstruction [11]. The
model loss function is similar to the loss function in [11], which includes cross-alignment
loss (LCAn ) and distribution-alignment loss (LDA), as well as basic VAE loss (LVAEn ). The
specific loss function can be expressed as:

Ln−CADA−VAE = δLDA + γLCAn + LVAEn (4)

where δ and γ are the corresponding weighting parameters. Since the input data is just
from two modalities (seen samples and semantic descriptions) in our experiment, there is
only LVAE1 and LVAE2 loss for visual domain (x) and semantic description (c). We define
the function of LVAEn as follows:

LVAEn = LVAE1 + LVAE2

= EqΦ(z1|x1)
[log pθ(x1 | z1)]− βDKL(qΦ(z1 | x1)||pθ(z1)) +

EqΦ(z2|x2)[log pθ(x2 | z2)]− βDKL(qΦ(z2 | x2)||pθ(z2)) (5)

Figure 2. The proposed new CADA-VAE(n-CADA-VAE) model.

The reconstruction is obtained by decoding the underlying encoding of another modal
sample, in the same class. Thus, the decoder corresponding to each mode is trained based
on the potential vectors of the other modalities. The distribution of different modes can
also be matched with the minimum distance. Hence, the distribution-alignment loss (LDA)
and cross-alignment loss (LCAn ) can be defined as:

LDA =

(
‖µ1 − µ2‖2

2 +

∥∥∥∥Σ
1
2
1 − Σ

1
2
2

∥∥∥∥2

Frobenius

) 1
2

(6)

LCAn = ‖x1 − D1(z2)‖1 + ‖x2 − D2(z1)‖1 (7)

in which D1 and D2 respectively represent the image feature decoder and semantic at-
tributes decoder.
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4. Experiments
4.1. Benchmark Datasets

To better contrast with CADA-VAE, we used the same datasets in our GZSL/GFSL
set up to verify the performance and effectiveness of our model: including Animals with
Attributes 1 and Animals with Attributes 2 (AWA1 [2], AWA2 [5]), SUN Attribute (SUN) [22]
and Birds 200-2011 (CUB) [23]. SUN and CUB both have similar visual and semantic aspects
as fine-grained datasets, while AWA1 and AWA2 belong to coarse-grained datasets. They
are all medium-sized datasets.

4.2. Evaluation Metrics

The ZSL task, only need to identify the target in the seen and unseen classes respec-
tively, so the Accuracy of seen (Accs) and Accuracy of unseen (Accu) are mainly used as
indicators. However, in the GZSL task, we need to recognize samples in both visible and
invisible classes at the same time, so we use their harmonic mean H as the reference of
model recognition accuracy, which can be expressed as:

H = 2 ∗ Accs ∗ Accu

Accs + Accu
(8)

4.3. Implementation Details

As the model we put forward is based on CADA-VAE [11], nearly all of the hyper-
parameters in n-CADA-VAE we continue to use the same as in CADA-VAE for a better
comparison. We extract image features of 2048 dimensions for VAE training by using
the pre-trained ResNet-101 model. And setting the train/test splits as in [11] to prevent
violating the zero-shot assumption. The size of hidden units for the encoder and decoder of
image VAE are respectively 1560 and 1660, and the encoder and decoder of attribute have
1450 and 660 hidden units. Those encoders and decoders are all Multilayer Perceptrons
with one hidden layer activated by RelU. The latent embedding size for both modalities
comes to 64 getting the best result.

4.4. Model Analysis on AWA1

We analyze the performance of n-CADA-VAE on AWA1 such as ablation analysis and
parameter selection for the GZSL task.

Ablation Analysis. Since CADA-VAE [11] has done a similar ablation analysis, we take
it as a fundamental contrast, which includes comparison results under different constraints.
Not surprisingly, our approach acquires better accuracy on AWA1. And the ablation results
of different constraints can be seen in Table 1.

Table 1. Ablation study of GZSL based under different settings in the Ablation study on
dataset AWA1.

Model S U H

DA-VAE 65.1 60.1 62.5
CA-VAE 61.3 56.5 58.8

CADA-VAE 72.8 57.3 64.1
n-CADA-VAE 74.6 61.3 67.3

Parameter Selection. In our experiment, the δ and γ we use are as same as in CADA-
VAE [11]. We increased δ from epoch 6 to epoch 22 as well as γ from epoch 21 to 75 by a
rate of 0.54 per epoch and 0.044 per epoch respectively in the experimental phase.

4.5. Comparing Approaches

In this section, we take experiment mainly on the four benchmark datasets, and com-
pare our model n-CADA-VAE with the following models, including CVAE [21], CMT [24],
SE [25], f-CLSWGAN [13], LATEM [26], SJE [27], EZSL [28], ALE [29], DeViSE [30], SYNC [31],
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ReViSE [32], CADA-VAE [11]. Referring to previous work [11], we compared the experi-
mental result in the GZSL as well as the GFSL setting.

Generalized Zero-Shot Learning. The results of four benchmark datasets were shown
in Table 2. Our model has a good improvement over the baseline CADA-VAE on four
datasets. Compared to the baseline CADA-VAE [11], the experiments on our model gets
0.4%, 1.1%, 3.2%, and 2.1% higher accuracy on CUB, SUN, AWA1, and AWA2 respectively.
Furthermore, the improvement is more obvious between data AWA1 and AWA2 we can
see, as the method we put forward is more appropriate for coarse-grained datasets.

Table 2. The results of GZSL were compared mainly with CADA-VAE. Containing seen (S) classes,
unseen (U) classes, and their harmonic mean (H).

Methods
CUB SUN AWA1 AWA2

S U H S U H S U H S U H

CMT [24] 49.8 7.2 12.6 21.8 8.1 11.8 87.6 0.9 1.8 90.0 0.5 1.0
SJE [27] 59.2 23.5 33.6 30.5 14.7 19.8 74.6 11.3 19.6 73.9 8.0 14.4
ALE [29] 62.8 23.7 34.4 33.1 21.8 26.3 76.1 16.8 27.5 81.8 14.0 23.9
LATEM [26] 57.3 15.2 24.0 28.8 14.7 19.5 71.7 7.3 13.3 77.3 11.5 20.0
EZSL [28] 63.8 12.6 21.0 27.9 11.0 15.8 75.6 6.6 12.1 77.8 5.9 11.0
SYNC [31] 70.9 11.5 19.8 43.3 7.9 13.4 87.3 8.9 16.2 90.5 10.0 18.0
DeViSE [30] 53.0 23.8 32.8 27.4 16.9 20.9 68.7 13.4 22.4 74.7 17.1 27.8
f-CLSWGAN [13] 57.7 43.7 49.7 36.6 42.6 39.4 61.4 57.9 59.6 68.9 52.1 59.4
SE [25] 53.3 41.5 46.7 30.5 40.9 34.9 67.8 56.3 61.5 68.1 58.3 62.8
ReViSE [32] 28.3 37.6 32.3 20.1 24.3 22.0 37.1 46.1 41.1 39.7 46.4 42.8

CADA-VAE [11] 53.5 51.6 52.4 35.7 47.2 40.6 72.8 57.3 64.1 75.0 55.8 63.9
n-CADA-VAE 54.7 51.0 52.8 35.7 50.1 41.7 74.6 61.3 67.3 78.6 57.0 66.0

Generalized Few-Shot Learning. The same experimental steps were taken on the
generalized few-shot learning as in [11], we increase the proportion of seen classes by
transferring unlabeled samples to labeled, i.e., zero, one, two, five, and ten shots. The
result can be seen in Figure 3, which shows our experimental results with the CADA-
VAE [11] on all four datasets. And our method outperforms compared CADA-VAE for all
the shot settings.

Figure 3. The comparison of our model and CADA-VAE with different proportions of training
samples from unseen classes in the GFSL.

5. Conclusions

In this paper, we propose the new CADA-VAE(n-CADA-VAE) for generalized zero-
shot learning and generalized few-shot learning. As the amount of information contained
in data of different modalities is different (e.g., visual samples contain more feature infor-
mation than the semantic description), we propose to map different modal information to
different dimensional distributions of the same latent space, to make better use of the dis-
criminant information for high-dimensional data. In the course of our experiment, we take
there-dimensional and two-dimensional latent representations for the visual domain and
semantic domain respectively. The most important point we propose in our paper is that
we give different dimensions (weights) to the feature information in different modalities
to avoid the loss caused by cross-modal embedding. The high-dimensional distribution
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contains more weight parameters compared to the lower dimensional distribution. So it is
more suitable for storing more precise discriminative information. In this way, the loss of
feature information of high-dimensional data is avoided during information transfer (infor-
mation mapping). Through four benchmark datasets, we show that our model outperforms
the other approaches for generalized zero-shot learning as well as few-shot learning.

More extensional research can be tried in the future, such as mapping visual features
of images to higher dimensional distribution (which may be affected by specific datasets)
compared to semantic information.
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