
Citation: Vanetik, N. Sufficient

Networks for Computing Support of

Graph Patterns. Information 2023, 14,

143. https://doi.org/10.3390/

info14030143

Academic Editors: Sławomir

Nowaczyk, Rita P. Ribeiro and

Grzegorz Nalepa

Received: 26 January 2023

Revised: 15 February 2023

Accepted: 19 February 2023

Published: 21 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Sufficient Networks for Computing Support of Graph Patterns
Natalia Vanetik

Department of Software Engineering, Shamoon College of Engineering, Beer Sheva 84417, Israel;
natalyav@sce.ac.il; Tel.: +972-8-647-5015

Abstract: Graph mining is the process of extracting and analyzing patterns from graph data. Graphs
are a data structure that consists of a set of nodes and a set of edges that connect these nodes. Graphs
are often used to represent real-world entities and the relationships between them. In a graph
database, the importance of a pattern (also known as support) must be quantified using a counting
function called a support measure. This function must adhere to several constraints, such as anti-
monotonicity that forbids a pattern to have support bigger than its sub-patterns. These constraints
make the tasks of defining and computing support measures highly non-trivial and computationally
expensive. In this paper, I use the previously discovered relationship between support measures in
graph databases and flows in networks of subgraph appearances to simplify the process of computing
support measures. I show that the network of pattern instances may be successfully pruned to contain
just particular kinds of patterns and prove that any legitimate computing support measures in graph
databases can adopt this strategy. When the suggested method is utilized, experimental evaluation
demonstrates that network size reduction is significant.

Keywords: data mining; graph mining; support measures; flows

1. Introduction

Graph mining is used in a variety of fields and applications. In social network analysis,
graph mining techniques are often used to analyze social media networks to understand
the relationships between users and identify key influencers [1]. Graphs can be used to
represent financial transactions for the task of fraud detection, and graph mining algorithms
can be used to identify suspicious patterns that may indicate fraudulent activity [2,3]. In
recommendation systems, graphs are used to represent the relationships between users and
items (e.g., products, articles), and graph mining algorithms can be used to recommend
items to users based on their relationships with other users and items [4,5]. Graphs can also
be used to represent networks of interconnected systems (e.g., transportation networks,
communication networks), and graph mining algorithms can be used to understand the
structure and function of these networks [6]. In bioinformatics, graphs are used to represent
biological networks (e.g., protein–protein interaction networks, gene regulatory networks),
and graph mining algorithms can be used to understand the relationships between the
elements in these networks [7,8]. In Natural Language Processing (NLP), graphs are used
extensively to represent relationships between words and concepts in natural language
texts, and graph mining algorithms can be used to understand the meaning and context of
the text [9,10].

Graphs are also used to describe various modern technologies such as wireless sensor
networks, neural networks, the Internet of Things (IOT), Global System For Mobile Com-
munication (GSM) networks, landscape connectivity and conservation planning, image
and signal processing, subway systems analysis, robotics, and more [11–13].

A frequent graph pattern is a subgraph (i.e., a subset of vertices and edges) that
appears frequently in a given graph database. Frequent graph patterns are often used to
discover interesting and meaningful patterns in graph data that may not be apparent when
looking at the graph as a whole.

Information 2023, 14, 143. https://doi.org/10.3390/info14030143 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14030143
https://doi.org/10.3390/info14030143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-4939-1415
https://doi.org/10.3390/info14030143
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14030143?type=check_update&version=2

Information 2023, 14, 143 2 of 17

The task of finding all frequent graph patterns in a database is called graph mining.This
task has been applied successfully to several challenging real-world problems, such as
library recommendations [14], social network analysis [15], aerial scene classification [16],
software requirements analysis [17], molecular database processing [18], and drug discov-
ery [19].

The frequency of a graph pattern is typically defined as the number of times it ap-
pears in the transactional dataset, and a threshold is set to determine which patterns are
considered frequent. The problem of counting patterns is more difficult for single-graph
datasets. In a large unlabeled graph, for instance, a single node is regarded as a frequent
pattern because the number of times it appears is equal to the graph order. However, larger
patterns will often have intersecting appearances, and the number of them may increase
exponentially with the size of the dataset. To handle this issue, one typically first defines a
notion of support, which is a measure of how frequently the pattern occurs in the graph.
The support of a pattern must represent the total number of subgraphs in the graph that
are isomorphic to the pattern.

Once the support of a pattern has been defined, one can use algorithms to search
for patterns with high support. These algorithms typically involve searching the space of
all possible subgraphs in the graph and counting the support of each pattern. This issue
makes graph mining algorithms computationally challenging because the search space
of all possible subgraphs is exponential in the size of a database graph. If a database is a
single large dense graph, this issue becomes even more serious. Graph density is defined
as the ratio between the number of edges present in a graph and the maximum number of
edges that the graph can contain. Common examples of dense graphs are complete graphs
or expander graphs [20]. In practice, the transitive closure of a social network graph (i.e., a
friend of a friend) is a dense graph.

The support measure is required to successfully manage the graph mining task. Graph
databases present a problem, as opposed to transactional databases, where a support
measure typically calls for counting and perhaps even standardization. This issue is caused
by the highly non-trivial way that graph patterns might contain additional patterns as
subgraphs. This is crucial in single-graph databases, which are the focus of this paper.

Several intuitive properties must be fulfilled by every support measure—an absent
pattern should have measure zero, independent (e.g., non-intersecting) patterns should be
counted separately, and the measure must be anti-monotonic, meaning that support of a
pattern cannot increase when a pattern grows. Several support measures for graphs that
uphold all of the above properties have been proposed over the years [21–26]. In [27] it
was established that all proper support measures for graph databases can be viewed as
flows in the network of pattern instances for all graph patterns.

However, computing support of a graph pattern usually requires finding all instances
(e.g., isomorphic copies) of that pattern in the database graph and examining their connec-
tions, which is a computationally challenging task. Several general methods have been
suggested to tackle this challenge. Ya et al. [28] present the distributed graph mining frame-
work G-thinker for graph mining workloads that require a large amount of computing
power. Graph summarization techniques that produce compact data representations can
also be used for this purpose [29]. Paper [30] investigated how maximal subgraphs with all
of the vertex degrees at least k might be used to improve the efficiency of graph mining.
Symmetry-breaking techniques that solve computing duplication in graph mining systems
have also been proposed in [31,32]. When the number of possible subgraphs is large, the
MapReduce architecture was used in [33] to parallelize the production of such subgraphs.
To manage database graphs that are too huge to fit into memory, paper [34] employed
graph partitioning and optimization techniques; this approach guarantees that there are no
false negatives in the search for frequent subgraphs. The authors of [35] studied what chip
architecture works best for parallel graph mining.

In this paper, I examine networks constructed from graph pattern instances. I use the
connection between support measures and flows in these instance networks established

Information 2023, 14, 143 3 of 17

earlier in [27] to describe when a smaller sub-network can be used to compute valid support
measures, thus decreasing the computational effort. By utilizing a unique sub-network of
the instance network, called the intersection network, I present an effective approach that
computes support measures directly from the database graph. This method is particularly
helpful when a user wants to determine whether a particular graph pattern is statistically
significant or not. Due to the difficulty of the computational process, one would not
want to find all frequent patterns in this situation. Instead, the end user can discover the
solution by using a much smaller intersecting network. This situation can be used in code
analysis and the biomedical field, where a graph pattern represents a code sample or a
molecular structure.

Section 2 contains formal definitions of graphs, patterns, support measures, and
instance networks, and describes the connection between measures and flows. Section 3
introduces the concept of sufficiency and describes how the instance network can be pruned
to facilitate the computation of support measures. Section 4 studies a specific type of pruned
instance networks, called intersection networks, and shows that they possess the sufficiency
property. The experimental evaluation is presented in Section 5, and the limitations and
expansions of the suggested approach are covered in Section 6. Section 7 summarizes the
results of this paper.

2. Definitions
2.1. Graphs and Networks

Let G = (VG, EG) be a simple undirected graph (no multiple edges, no loops) with a
node set VG and an edge set EG. An undirected edge between nodes u and v is denoted by
{u, v}. Nodes u and v are said to be adjacent, and the edge {u, v} is said to be incident to
nodes u and v. The number of a graph’s nodes is called its order and is denoted by |G|. I
use the following relations between graphs:

• Graphs G = (VG, EG) and H = (VH , EH) are isomorphic, denoted by G ∼ H, if there
exists a bijection µ : VH → VG such that {u, v} ∈ EH if and only if {µ(u), µ(v)} ∈ EG;

• A graph H = (VH , EH) is called a subgraph of a graph G = (VG, EG) if VH ⊆ VG and
EH ⊆ EG, written as H ⊆ G;

• A graph H is a proper subgraph of a graph G if it is a subgraph of G but it is not equal
to G, denoted by H ⊂ G;

• A subgraph isomorphism from a graph H to a graph G exists if H is isomorphic to a
subgraph of G, denoted by G v H;

• If a graph H is isomorphic to a proper subgraph of a graph G, we denote it by G @ H.

This paper relies heavily on the concept of graph connectivity:

• A graph G is disconnected if there exists a partition {V1, V2} of its nodes such that there
are no edges with one end in V1 and another in V2, and it is connected otherwise;

• A node subset U is a node-cut (or cut) if removal of U and edges incident to the nodes
in U results in a disconnected graph;

• A node-cut of minimal size is called a minimal node-cut or simply a min-cut.

A network (sometimes called a flow network) is defined as a tuple N = (G, s, t, c), where
G = (V, E) is a directed graph, and s, t ∈ V are nodes in it that are called the source and
the sink, respectively. Function c : E→ R≥0 is called the edge capacity function. A flow f in
a network N is a weight function f : E → R≥0 that satisfies the edge capacity constraint
f (e) ≤ c(e) for every edge e ∈ E, and the flow preservation constraint ∑(u,v)∈E f (u, v) =
∑(v,w)∈E f (v, w) for all nodes v ∈ V \ {s, t}. The following definitions and notations are
used for flows:

• The size | f | of a flow is the total weight of paths exiting the source or entering the sink;
• A flow of maximal size is called a maximal flow (or max-flow);
• A flow is called integer if it assumes an integer value on all edges—such a flow is a

collection of paths with one end in the source and another in the sink; for a path P its
segment bounded by nodes x, y is denoted by xPy;

Information 2023, 14, 143 4 of 17

• An integer flow is node-disjoint if its paths have no common nodes except for the
source and the sink.

For node-disjoint integer flows with one source and one sink the following Menger’s
theorem is used:

Theorem 1 ([36]). The size of a maximal node-disjoint flow is equal to the size of a minimal
node-cut separating source and sink.

2.2. Patterns and Support Measures

Let us observe graphs p and G. Graph call p is called a graph pattern, or simply a
pattern, in a graph database/dataset G. A subgraph of G that is isomorphic to p is called an
instance of p in G. A set of all instances of pattern p in G is denoted by inst(p). Note that a
pattern does not have to be a connected graph. Two instances of a pattern are called disjoint
if their node sets do not intersect. An instance q′ is called a sub-instance of an instance p′ if
q′ ⊂ p′.

Intuitively, a support measure ‘counts’ the instances of a pattern while preserving
properties that align with properties of support measures in transactional databases.

Next, let us define a notion of valid support measures that are used by graph mining
algorithms. A valid support measure M should return zero for a pattern p if there are no
instances of p in the database, and n if there are n disjoint instances of p in the database. The
value of a valid support measure can not exceed the total number of pattern instances in the
database, and it should have the property of anti-monotonicity stating that M(p) ≤ M(q)
for every pair of patterns p, q such that q @ p.

The task of graph mining deals can be re-defined as the task of finding all patterns p
in the database having M(p) ≥ S for some valid support measure M and a user-defined
support value S ≥ 0.

2.3. Properties of Valid Support Measures

A Hasse diagram is a graphical representation of a finite partially ordered set, in
which each element is represented by a node and each relationship between elements is
represented by an edge connecting the vertices. The nodes are arranged in a hierarchy, with
the elements that are related by a partial order being placed on a single line. The edges of
the diagram are directed, pointing from the element that is lower in the partial order to the
element that is higher in the partial order. A Hasse diagram example for a power set of a set
1, 2, 3 is shown in Figure 1. The partial order in this instance is the subset–superset relation.

Version February 15, 2023 submitted to Information 4 of 17

• a flow is called integer if all its edge weights if it assumes an integer value on all edges 144

– such a flow is a collection of paths with one end in the source and another in the sink; 145

for a path P we denote its segment bounded by nodes x, y is denoted by xPy; 146

• an integer flow is node-disjoint if its paths have no common nodes except for the 147

source and the sink. 148

For node-disjoint integer flows with one source and one sink we use the following Menger’s 149

theorem is used: 150

Theorem 1. [36] The size of a maximal node-disjoint flow is equal to the size of a minimal node-cut 151

separating source and sink. 152

2.2. Patterns and support measures 153

Let us observe graphs p and Gbe graphs. GraphWe call p is called a graph pattern, or 154

simply a pattern, in a graph database/dataset G. A subgraph of G that is isomorphic to p 155

is called an instance of p in G. A set of all instances of pattern p in G is denoted by inst(p). 156

Note that a pattern does not have to be a connected graph. Two instances of a pattern are 157

called disjoint if their node sets do not intersect. An instance q′ is called a sub-instance of an 158

instance p′ if q′ ⊂ p′. 159

Intuitively, a support measure ’counts’ the instances of a pattern while preserving 160

properties that align with properties of support measures in transactional databases. 161

Next, let uswe define a notion of valid support measures that are used by graph 162

mining algorithms. A valid support measure M should return zero for a pattern p if there 163

are no instances of p in the database, and n if there are n disjoint instances of p in the 164

database. The value of a valid support measure can not exceed the total number of pattern 165

instances in the database, and it should have the property of anti-monotonicity stating that 166

M(p) ≤ M(q) for every pair of patterns p, q such that q ⊏ p. 167

The task of graph mining deals can be re-defined as the task of finding all patterns p 168

in the database having M(p) ≥ S for some valid support measure M and a user-defined 169

support value S ≥ 0. 170

2.3. Properties of valid support measures 171

A Hasse diagram is a graphical representation of a finite partially ordered set, in 172

which each element is represented by a node and each relationship between elements is 173

represented by an edge connecting the vertices. The nodes are arranged in a hierarchy, with 174

the elements that are related by a partial order being placed on a single line. The edges of 175

the diagram are directed, pointing from the element that is lower in the partial order to the 176

element that is higher in the partial order. A Hasse diagram example for a power set of 177

a set 1, 2, 3 is shown in Figure 1. The partial order in this instance is the subset-superset 178

relation.

{1, 2, 3}

{1, 3}{1, 2} {2, 3}

{1} {2} {3}

∅

Figure 1. Hasse diagram of a power set of {1, 2, 3}.
179

Figure 1. Instance network as a Hasse diagram.

Using this concept, I define a flow network N for a single-graph database G = (V, E)
that is called an instance network as follows:

Information 2023, 14, 143 5 of 17

• The nodes of this network are instances of all the patterns in G, including the empty
instance ⊥ and G itself.

• The empty instance is the bottom element of the diagram, and G is the top element.
• The edges of the network are defined by the Hasse diagram of the partially ordered

set implied by the subgraph relation on pattern instances.
• All edge weights are set to 1.
• The empty instance ⊥ is considered to be a subgraph of all the nodes in V.

Example 1. Figure 2 shows the instance network of a database graph G, which is an unlabeled
path of length 2. It has three patterns, L1, L2, and L3, that are unlabeled paths of length 1, 2, and 3,
respectively. L1 has three instances in G that are single nodes, L2 has three different instances, and
L1 has one instance.

Version February 15, 2023 submitted to Information 5 of 17

v2v2 v3

v1 v3v1 v2 v2 v3

v1 v2 v3

⊥

Patternsv3v2v1G L1

L2

L3

Figure 2. Instance network as a Hasse diagram.

Using this concept, Iwe define a flow network N for a single-graph database G = 180

(V, E) that is calledwe call an instance network as follows: 181

• The nodes of this network are instances of all the patterns in G, including the empty 182

instance ⊥ and G itself. 183

• The empty instance is the bottom element of the diagram, and G is the top element. 184

• The edges of the network are defined by the Hasse diagram of the partially ordered 185

set implied by the subgraph relation on pattern instances. 186

• All edge weights are set to 1. 187

• The empty instance ⊥ is considered to be a subgraph of all the nodes in V. 188

Example 2. Figure 2 shows the instance network of a database graph G, which is an unlabeled 189

path of length 2. It has three patterns, L1,L2, and L3, that are unlabeled paths of length 1,2, and 3, 190

respectively. L1 has three instances in G that are single nodes, L2 has three different instances, and 191

L1 has one instance. 192

For a pattern, p, N [p] denotes the instance network defined on instances of p and its 193

subpatterns only. 194

In this paper, Iwe rely on the following theorem proven in myour previous work. 195

Theorem 3. [27] Let M be a valid support measure, G be a database graph, and p a pattern in G. 196

Then there exists a node-disjoint flow fp in N [p] so that | fp| = M(p). 197

Given the connection between flows and support measures, Iwe define a separate 198

category for measures that correspond to max-flows in the following definition. 199

Definition 4. A valid support measure M is maximal for pattern p in database G if the size of 200

a max-flow in instance network N [p] is M(p). A valid support measure M is maximal if it is 201

maximal for all patterns p. 202

Figure 2. Insufficient sub-network of H3 in Counterexample 1.

For a pattern, p, N [p] denotes the instance network defined on instances of p and its
sub-patterns only.

In this paper, I rely on the following theorem proven in my previous work.

Theorem 2 ([27]). Let M be a valid support measure, G be a database graph, and p a pattern in G.
Then, there exists a node-disjoint flow fp in N [p] so that | fp| = M(p).

Given the connection between flows and support measures, I define a separate category
for measures that correspond to max-flows in the following definition.

Definition 1. A valid support measure M is maximal for pattern p in database G if the size of
a max-flow in instance network N [p] is M(p). A valid support measure M is maximal if it is
maximal for all patterns p.

Note that any valid support measure can be extended to a maximal one by taking its
corresponding flow in the instance network and extending it to a max-flow.

Additionally, I prove here some basic properties of maximal node-disjoint flows that
will be used later.

Information 2023, 14, 143 6 of 17

Property 1. Let p be a pattern, and N [p] its corresponding instance network of a database graph
G. Let C be a node min-cut in N [p], and fmax be a (⊥, G)-flow saturating (i.e., traversing all the
nodes of) cut C. Then, no two paths of fmax intersect in a node different from ⊥ and G.

Proof. Assume the contrary and let two paths P, Q ∈ fmax, have a common node x. Let p
and q be the nodes of C traversed by P and Q, respectively. Then, C \ {p, q} ∪ {x} is a node
cut in N that is saturated by fmax \ {P} of size |C| − 1. This contradicts the assumption
about C being a min-cut by Menger’s theorem.

Property 2. Let p be a pattern, and N [p] its corresponding instance network. Let C be a node
min-cut in N [p], and fmax be a node-disjoint (⊥, G)-flow saturating (i.e., traversing all the nodes
of) C. Let path P ∈ fmax traverse a node x ∈ C and a node y lie on a segment xPG of P. Then,
C \ {x} ∪ {y} is a node min-cut in N as well.

Proof. Note that node set C \ {x} ∪ {y} is saturated by the paths of fmax that do not
intersect by Property 1, and its size is identical to the size of C.

3. Sufficient Instance Networks

For frequent graph patterns or those with support measures bigger than a user-defined
parameter S, one is interested in computing valid graph measures when mining graphs,
meaning that one must determine whether M(p) is bigger than S for a given measure M.
Theorem 2 states that for any valid measure M, a flow corresponding to M(p) exists in the
instance network N, allowing one to compute M using this network. However, when there
are numerous patterns and instances and the database graph is dense, the size of a network
N might be rather huge.

In this section, I demonstrate how N can be replaced by smaller instance network
sub-networks. When using a certain graph mining algorithm, the obvious reason to
seek a smaller network is to reduce the computation time of a reliable support measure.
These algorithms have a propensity to iteratively construct graph patterns, but the precise
sequence in which they appear varies from method to algorithm (e.g., [37–41]). The process
of graph mining does not require a central element. Patterns are usually generated and
tested for frequency in a bottom–up fashion, from smaller patterns to larger ones.

3.1. Definition

First, notation is provided below.

Definition 2. LetM⊆ N be a sub-network of the instance network defined on instances of some
patterns in G. Let M be a valid support measure. Then, M(p,M) denotes the value of the measure
M for pattern p computed from the networkM.

Super patterns of p are not necessary to compute the value of M(p) by Theorem 2 if
M is a valid support measure. As a result, we can declare the following right away.

Property 3. Let p be a pattern and let Nsmaller include the instances of p and its sub-patterns only.
Then, M(p,Nsmaller) = M(p).

Following Property 3, I can introduce an extension of this concept.

Definition 3. Let M be a sub-network of the instance network N . M is called sufficient if
for every valid support measure M, every pattern p, and every user-defined support threshold
S ≥ 0 holds

M(p,M) ≥ S if M(p) ≥ S
M(p,M) < S if M(p) < S and M is maximal

(1)

Definition 4. A sub-networkM is called sufficient for pattern p if Equation (1) holds for p.

Information 2023, 14, 143 7 of 17

Note that sufficiency is transitive because pruning a sufficient network with a filter
according to Equation (1) preserves it.

3.2. Examples of Insufficient Sub-Networks

I list several counterexamples of sufficiency below to demonstrate that the notion of
sufficiency is not straightforward. They serve to demonstrate that naive recommendations
for adequate sub-network architecture are ineffective.

Counterexample 1. Graphs g1, . . . , gn are said to cover graph g if the union of instances give us
precisely the node and edge sets of g. Let p be a connected pattern in G. Sub-network Ncover, which
contains instances of patterns covering p, is not sufficient.

Proof. Observe an unlabeled pattern H3 (for the ‘three horns’) depicted in Figure 3. In
a setting where G = H3, a subpattern L1 (a single edge) of H3 covers all other patterns,
including H1 and K3. Let M be any maximal valid support measure. Clearly, M(K3) = 1
because K3 has only one instance in G and therefore the size of a node min-cut in N [K3] is
1. Then, M(H1) ≤ 1 because K3 is a subgraph of H1 and M is anti-monotonic.

Let us define a sub-network Ncover to contain the instances of edge L1 only (this
network is shown in Figure 4). This network does not contain a node cut of size 1 separating
G and ⊥, and thus by Menger’s theorem a max-flow corresponding to M(Ncover, K3) has a
size bigger than 1.

Version February 15, 2023 submitted to Information 7 of 17

Definition 9. LetM be a sub-network of the instance network N . M is called sufficient if for 245

every valid support measure M, every pattern p, and every user-defined support threshold S ≥ 0 246

holds 247

M(p,M) ≥ S if M(p) ≥ S
M(p,M) < S if M(p) < S and M is maximal

(1)

Definition 10. A sub-networkM is called sufficient for pattern p if equation (1) holds for p. 248

Note that sufficiency is transitive because pruning a sufficient network with a filter 249

according to equation (1) preserves it. 250

3.2. Examples of insufficient sub-networks 251

Iwe list several counterexamples of sufficiency below to demonstrate that the notion of 252

sufficiency is not straightforward. They serve to demonstrate that naive recommendations 253

for adequate sub-network architecture are ineffective.

1

2 3

4

5 6
H3

H1 K3 L1

Figure 3. Counterexample graphs for the cover assumption.

G

H1H1 H1

1 2 3 4 5 6

⊥ Sub-network Ncover

Figure 4. Insufficient sub-network of H3 in Counterexample 11.
254

Counterexample 11. We say that Graphs g1, . . . , gn are said to cover graph g if the union 255

of instances give us precisely the node and edge sets of g. Let p be a connected pattern in G. 256

Sub-network Ncover that contains instances of patterns covering p is not sufficient. 257

Figure 3. Counterexample graphs for the cover assumption.

Version February 15, 2023 submitted to Information 7 of 17

Definition 9. LetM be a sub-network of the instance network N . M is called sufficient if for 245

every valid support measure M, every pattern p, and every user-defined support threshold S ≥ 0 246

holds 247

M(p,M) ≥ S if M(p) ≥ S
M(p,M) < S if M(p) < S and M is maximal

(1)

Definition 10. A sub-networkM is called sufficient for pattern p if equation (1) holds for p. 248

Note that sufficiency is transitive because pruning a sufficient network with a filter 249

according to equation (1) preserves it. 250

3.2. Examples of insufficient sub-networks 251

Iwe list several counterexamples of sufficiency below to demonstrate that the notion of 252

sufficiency is not straightforward. They serve to demonstrate that naive recommendations 253

for adequate sub-network architecture are ineffective.

1

2 3

4

5 6
H3

H1 K3 L1

Figure 3. Counterexample graphs for the cover assumption.

G

H1H1 H1

1 2 3 4 5 6

⊥ Sub-network Ncover

Figure 4. Insufficient sub-network of H3 in Counterexample 11.
254

Counterexample 11. We say that Graphs g1, . . . , gn are said to cover graph g if the union 255

of instances give us precisely the node and edge sets of g. Let p be a connected pattern in G. 256

Sub-network Ncover that contains instances of patterns covering p is not sufficient. 257

Figure 4. Insufficient sub-network of H3 in Counterexample 1.

Information 2023, 14, 143 8 of 17

Because K3 is still the bounding factor when computing any maximal valid measure for
H1, the same issue as in Counterexample 1 arises if one uses larger patterns encompassing
H1, such as paths of length 2.

It may seem that covering p with patterns similar to K3 will provide a solution, but
the next claim shows that is not true.

Counterexample 2. Let p be a connected pattern in G and letNcomplete,c be a sub-network limited
to instances of complete graphs Ki of size no more than c. Then, Ncomplete,c is not sufficient.

Proof. Observe a maximal valid measure M. Let Hm (for ‘m horns’) be a pattern consisting
of a complete graph Km, m > c, and nodes x1, . . . , xm of degree 1, each connected to a
different node of Km (see Figure 5). A pattern Hm,1 consists of a complete graph Km and
one degree 1 node connected to it.

Clearly, instances of all complete graphs K1, K2, . . . , Kc cover both Hm and Hm,1 in the
data graph. However, Km itself has only one instance in the database graph that is not
contained in Ncomplete,c.

Then, M(Hm,1,Ncomplete,c) ≥ 2 because there are at least two instances of graphs Hc,1
that are the largest subgraphs of Hm,1 represented in Ncomplete,c and thus the size of a node
min-cut is at least 2. In the original network, however, M(Hm,1) = 1. Therefore, Ncomplete,c
is not sufficient.

Version February 15, 2023 submitted to Information 8 of 17

Proof. Observe an unlabeled pattern H3 (for the ‘three horns’) depicted in Figure 3. In 258

a setting where G = H3, a subpattern L1 (a single edge) of H3 covers all other patterns, 259

including H1 and K3. Let M be any maximal valid support measure. Clearly, M(K3) = 1 260

because K3 has only one instance in G and therefore the size of a node min-cut in N [K3] is 261

1. Then M(H1) ≤ 1 because K3 is a subgraph of H1 and M is anti-monotonic. 262

Let usWe define a sub-network Ncover to contains the instances of edge L1 only (this 263

network is shown in Figure 4). This network does not contain a node cut of size 1 separating 264

G and ⊥, and thus by Menger’s theorem a maxflow corresponding to M(Ncover, K3) has a 265

size bigger than 1. 266

Because K3 is still the bounding factor when computing any maximal valid mea- 267

sure for H1, the same issue as in Counterexample 11 arises if onewe uses larger patterns 268

encompassing H1, such as paths of length 2. 269

It may seem that covering p with patterns similar to K3 will provide a solution, but 270

the next claim shows that is not true.

Km

x1

x2xm

Hm

Km

x1

H1 K2 = L1

Figure 5. Patterns for Counterexample 12.
271

Counterexample 12. Let p be a connected pattern in G and letNcomplete,c be a sub-network limited 272

to instances of complete graphs Ki of size no more than c. Then Ncomplete,c is not sufficient. 273

Proof. Observe a maximal valid measure M. Let Hm (for ‘m horns’) be a pattern consisting 274

of a complete graph Km, m > c, and degree 1 nodes x1, . . . , xm of degree 1, each connected 275

to a different node of Km (see Figure 5). A pattern Hm,1 consists of a complete graph Km 276

and one degree 1 node connected to it. 277

Clearly, instances of all complete graphs K1, K2, . . . , Kc cover both Hm and Hm,1 in the 278

data graph. However, Km itself has only one instance in the database graph that is not 279

contained in Ncomplete,c. 280

Then M(Hm,1,Ncomplete,c) ≥ 2 because there are at least two instances of graphs Hc,1 that are 281

the largest subgraphs of Hm,1 represented in Ncomplete,c and thus the size of a node min-cut 282

is at least 2. In the original network, however, M(Hm,1) = 1. Therefore, Ncomplete,c is not 283

sufficient. 284

Even if we waive a limit on the order of complete subgraphs is waived, sufficiency 285

remains out of reach. 286

Counterexample 13. Let G = Ln denote a simple path with n ≥ 3 edges. Let p be a connected 287

pattern in G and let Ncomplete be the sub-network that contains instances of complete graphs of any 288

order. Then Ncomplete is not sufficient for Ln. 289

Proof. Because G = Ln, the only complete subgraphs with instances in G are K1 and 290

K2. A pattern Ln contains more than two disjoint copies of K2 because n− 1 ≥ 3. Then 291

Ncomplete contains no node cut of size 1, meaning that M(Ln,Ncomplete) ≥ 2 for any maximal 292

Figure 5. Patterns for Counterexample 2.

Even if a limit on the order of complete subgraphs is waived, sufficiency remains out
of reach.

Counterexample 3. Let G = Ln denote a simple path with n ≥ 3 edges. Let p be a connected
pattern in G and let Ncomplete be the sub-network that contains instances of complete graphs of any
order. Then, Ncomplete is not sufficient for Ln.

Proof. Because G = Ln, the only complete subgraphs with instances in G are K1 and K2. A
pattern Ln contains more than two disjoint copies of K2 because n− 1 ≥ 3. Then, Ncomplete
contains no node cut of size 1, meaning that M(Ln,Ncomplete) ≥ 2 for any maximal valid
supports measure M. It contradicts (1) because there is only one instance of Ln in the
database and for support values S ≥ 2, sufficiency requires that M(Ln,Ncomplete) < 2.

3.3. Sufficient Networks

In this section, I prove sufficiency for several types of instance networks. Our first
theorem addresses connected patterns. It is worth noting that most modern graph mining
algorithms focus on connected patterns only.

Theorem 3. Let Nconn be the sub-network of N containing the instances of connected patterns
only. Then, Nconn is sufficient for all connected patterns.

Information 2023, 14, 143 9 of 17

Proof. Let p be a connected pattern in G and let M be a valid support measure.
Suppose first that M(p) < S and M is maximal. Then, there exists no node-disjoint

flow of size S in N [p], implying the existence of a node min-cut C in N [p] of size |C| < S.
Case 1: C contains instances of connected patterns only. Then, C is a cut in Nconn[p] as

well. This cut prevents the existence of flows of a size larger than |C| in Nconn, meaning
that M(p) < S by Theorem 2.

Case 2: C contains at least one instance of a disconnected pattern. Let fmax be a
maximal edge-disjoint flow in N [p] that saturates C, and let P ∈ fmax be a path that
traverses a disconnected instance x ∈ C. Because P traverses a single instance pj of p that
is connected by definition, we can replace x by pj in C by Property 2. Thus, one can assume
that C contains connected instances only and we have the previous case.

Suppose now that M(p) ≥ S. Let fmax be a maximal flow in N [p] that saturates a
node min-cut C. Then, |C| ≥ M(p) ≥ S by Theorem 2. Observe a path P ∈ fmax. If all
instances traversed by P are connected, this path exists in Nconn[p] as well. Otherwise,
P contains at least one disconnected instance. Let xPy denote the segment of P whose
start x and end y are connected instances, and the inner nodes are disconnected instances.
Because x is a subgraph of y, there exists a path x, z1, . . . , zk, y in N [p] such that all zi are
connected instances. For example, one can take z1 to be a union of x and a spanning tree
of y and then add edges until one obtains y. Replace the segment xPy in path P with a
new segment x, z1, . . . , zk, y and obtain a new path P′. Flow f ′max := fmax \ {P} ∪ {P′} has
the same size as fmax and is therefore a maximal flow in N [p] that saturates C. Then, by
Property 2, its paths do not intersect. Thus, one can always select the paths of fmax to
contain connected instances only, meaning that this flow of size at least S exists in Nconn.
Then, M(p,Nconn) ≥ S as well, as required.

The theorem below and its corollaries describe additional classes of patterns of suffi-
cient networks.

Theorem 4. Let C be a class of graph patterns closed under inclusion, meaning that subgraph
isomorphism q @ p implies that either q ∈ C or q is a single node. Then, the sub-network NC
limited to instances of patterns in C is sufficient for all the patterns in C. Moreover, the value of a
valid support measure in this network is identical to the original.

Proof. Let p be a connected pattern in G and let M be a valid support measure. By
Theorem 2 there exists a flow f of size | f | = M(p) in N [p]. Any path P ∈ f traverses
instances of sub-patterns of p that are contained in C because C is closed under inclusion.
Therefore, the flow f exists in the network NC [p] too, meaning that M(p,NC) ≥ M(p).

Similarly, let P be a path of a flow g inNC [p] and let (x, y) be an edge of P. If this edge
does not exist inN [p], thenN [p] contains a path Q from x to y because x is a subgraph of y.
However, C is closed under inclusion, and any instance traversed by Q lies in C, meaning
that it is present in networkNC [p] as well. But then Q exists inNC [p] and thus an edge (x, y)
cannot exist there because the network is a Hasse diagram. Therefore M(p,NC) ≤ M(p).
Therefore, we have M(p,NC) = M(p) and thus sufficiency holds.

Corollary 1. Any class of graphs with forbidden minors satisfies Theorem 4. This includes planar
graphs and graphs of bounded treewidth.

Corollary 2. Trees satisfy the condition of Theorem 4.

Proof. By Theorem 3 and transitivity of sufficiency, we can limit the network to connected
subgraphs of trees, which are trees as well.

Because any valid support measure M is anti-monotonic, M(p) ≥ S implies that
M(q) ≥ S for any q @ p. Therefore, frequent patterns are closed under inclusion and the
following can be deduced.

Information 2023, 14, 143 10 of 17

Corollary 3. Let the network Nfreq contain only the instances of frequent patterns. Then, Nfreq
is sufficient.

Joining Theorem 3 and Corollary 3 together and using a transitivity of sufficiency, the
following corollary arises.

Corollary 4. Let Nfreq,conn be the sub-network containing only the instances of frequent connected
patterns. Then, Nfreq,conn is sufficient for any connected pattern p.

4. Intersection Networks

In this section, I describe instance networks that can be utilized to compute a valid
support measure for a given pattern directly from the database graph.

Let G be a database graph, p a pattern in that graph, and N the instance network
corresponding to G. Let inst(p) = p1, . . . , pn be the instances of p in G. Observe a set of
patterns contained in intersections of these instances:

Int =
⋃

1≤i<j≤n
pi ∩ pj ∪V

Definition 5. The intersection network Nintersect[p] is the sub-network of N that contains ⊥, the
database graph G, the instances of p, the instances of all the patterns in the set Int, and the instances
of their sub-patterns.

This network is far smaller than N as a whole.

Sufficiency

Next, I prove the sufficiency of intersection networks.

Theorem 5. Network Nintersect[p] is sufficient for p.

Proof. Let p be a connected pattern in G, M be a valid support measure and S be a support
boundary. By Theorem 2 there exists a flow f of size | f | = M(p) in N [p].

Assume first that M(p) ≥ S. If Nintersect[p] has no flow of size M(p) or bigger, then it
contains a node min-cut C of size |C| < M(p). The cut C contains instances of sub-patterns
of p that lie in Int. But then C is a cut for a network N [q] for some subpattern q of p such
that q ∈ Int. Because M is valid and thus anti-monotonic, M(q) ≥ M(p) and by Theorem 2
there exists a flow of size M(q) in N [q], which is a contradiction to C being a node-cut in
N [q].

Assume now that M(p) < S and M is maximal, meaning that a node cut C of size
|C| < S exists in N [p].

• Case 1: if C contains nodes, instances of p and instances of patterns in Int, it exists in
network Nintersect[p] as well and then M(p,Nintersect) < S as well because there is no
flow of size S or bigger in Nintersect[p].

• Case 2: otherwise, C contains instances of patterns q1, . . . , qk /∈ Int. Then, every
instance qinstance

i of qi in C is a subgraph of a different instance of p, denoted by pi. If
this is not the case then qinstance

i lies in an intersection of two instances of p and we
have qi ∈ Int contrary to our assumption. Let us replace in C every such instance
qinstance

i by the instance pi of p and have case 1.

Next, observe an even smaller network that contains only inclusion-maximal intersec-
tions of instances of p. Define the set Intmax to be a subset of Int where x ∈ Intmax if and
only if there exists a pair of instances p, q ∈ inst(p) such that x ∼ p ∩ q.

Information 2023, 14, 143 11 of 17

Definition 6. The intersection network Nmax
intersect[p] is the sub-network of N that contains ⊥, the

database graph G, the instances of p, and the instances of all the patterns in the set of inclusion-
maximal patterns Intmax.

Corollary 6. Network Nmax
intersect[p] is sufficient for p.

Proof. Let p be a connected pattern in G, M be a valid support measure and S be a support
boundary. By Theorem 2 there exists a flow f of size | f | = M(p) in N [p].

The case of M(p) ≥ S is identical to Theorem 5. If M(p) < S and M is maximal, then
a node cut C of size |C| < S exists in N [p]. If C is a cut in Nintersect[p] as well, meaning
that C is a subset of V ∪ inst(p) ∪ Intmax, then M(p,Nmax

intersect) < S by Menger’s theorem.
Otherwise, C contains instances q1, . . . , qk /∈ Intmax. If these instances are not contained
in Int either, we have the case identical to Theorem 5. Otherwise, let qi ∈ Int \ Intmax. Let
P be a path of max-flow fmax in N [p] that saturates C and traverses qi. Then, P traverses
an instance ri ∈ Intmax by the definition of Intmax. Replace qi by ri in C and do so for all
non-maximal instances in C; it is possible because the paths of fmax are node-disjoint. Then,
we have the previous case.

Maximal intersection networks are minimal in the sense that in general, omitting
even one maximal intersection pattern results in an insufficient instance network. As an
illustration, if one looks at database graph Hm and sees pattern H1, the only maximal
intersection pattern for its instances is Km (shown in Figure 5). The single node-cut in the
instance network with a size of 1 is eliminated when this pattern is skipped, and a maximal
valid support measure for this pattern will then have a value of ≥2.

Next, I offer a method for computing a reliable support metric for a graph pattern
using maximal intersection networks. Using Corollary 6, this approach uses only the
instances of p to reconstruct the necessary portion of the instance network. Therefore, one
just needs to look at the sub-network Nmax

intersect of these patterns and their sub-patterns for a
pattern p. The top–down construction used in this method is described in Algorithm 1.

Algorithm 1 Computing maximal support measures from Nmax
intersect[p]

Require: database graph G = (V, E), pattern p, valid support measure M.
Ensure: M(Nmax

intersect, p)
1:
2: function IntersectionNetwork(G,p)
3: Initialize Nmax

intersect[p] with G, V, ⊥, and inst(p)
4: for p, q ∈ inst(p) do
5: if q 6= p then
6: Add to Nmax

intersect[p] all instances of p ∩ q
7: end if
8: end for
9: return Nmax

intersect[p]
10: end function
11:
12: Nintersect ← IntersectionNetwork(G, p)
13: if Nintersect 6= ∅ then
14: return M(p,Nintersect)
15: else
16: return |inst(p)|
17: end if

Information 2023, 14, 143 12 of 17

5. Experimental Evaluation
5.1. Graph Types and Objectives of Experiments

The testing was conducted on synthetic graphs of three types: Erdős–Rényi graphs
(with default density 0.5), complete graphs (denoted by Kn), and balanced complete bi-
partite graphs (denoted by Kn,n). Density of an undirected graph G = (V, E) is measured
as

density(G) =
|E|

|V| · (|V| − 1)

Queries in all cases were random Erdős–Rényi graphs of orders 10 to 20; even sizes only
were used for complete bipartite graphs. Experiments evaluated sizes of several instance
network types: (1) the complete network N , (2) the network Nconn containing connected
patterns only, and (3) the intersection network Nintersect. The purpose of experimental
assessment was multifold:

• To study whether or not using Nconn instead of N decreases the network size;
• To evaluate the effect of graph density on network size when using Nconn;
• To study how the use of an intersection network for a specific pattern affects the

network size.

5.2. Software and Hardware Setup

Experiments were performed on Google Colab [42] with Pro settings. The code
was written in Python using the networkX package [43] for graph generation, graph
isomorphism, and subgraph isomorphism testing.

5.3. Evaluation Results

Table 1 shows the sizes of full instance networks N and Nconn that were generated
for the three types of graphs. Graph sizes vary from 10 to 20 nodes. In the final column,
the ratio of instance network sizes is displayed. Since the ratios are tiny and the number
of instances rises quickly, they are shown in exponential form. As can be seen, the ratio
|Nconn|/|N | decreases as graph size increases. This growth is more noticeable for denser
graphs, such as complete graphs.

Charts in Figure 6 show how the ratio of sizes N and Nconn varies. For Erdős–Rényi
random graphs of various densities, the charts in Figure 7 show dependency of Nconn size
on graph density for graphs of size 10 and 20. The finding unmistakably demonstrates that
as the database graph becomes denser, employing the Nconn instance network offers more
significant benefits.

Citation: Vanetik, N. Sufficient

networks in graph databases.

Information 2023, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Information for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Sufficient networks for computing support of graph patterns
Natalia Vanetik 1*

1 Department of Software Engineering, Shamoon College of Engineering; natalyav@sce.ac.il
* Correspondence: natalyav@sce.ac.il; Tel.: +972-8-647-5015

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

101

100

10−1

10−2

10−3

10−4

10−6

10−7

10−8

10−9

density

|N
co

nn
| /
|N
|

|G| = 10

|Nconn|/|N |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.910−47

10−41

10−35

10−28
10−24

10−19

10−12
10−8
10−4

100

density

|N
co

nn
| /
|N
|

|G| = 20

|Nconn|/|N |

Figure 6. Ratio |Nconn|/|N | and graph density.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
101

102

103

104

density

|N
co

nn
|

|G| = 10

|Nconn|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

103

104

105

106

107

density

|N
co

nn
|

|G| = 20

|Nconn|

Figure 7. Size of |Nconn| and graph density.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are 1

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). 2

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from 3

any ideas, methods, instructions or products referred to in the content. 4

Version February 21, 2023 submitted to Information https://www.mdpi.com/journal/information

Figure 6. Ratio |Nconn|/|N | and graph density.

Information 2023, 14, 143 13 of 17

Table 1. Instance network size comparison for N and Nconn.

Graph Nodes Edges |N | |Nconn|
|Nconn|/|N |

Ratio

Erdős–Rényi 10 20 1.0486× 106 576 5.4932× 10−4

Erdős–Rényi 11 26 6.7109× 107 1496 2.2292× 10−5

Erdős–Rényi 12 30 1.0737× 109 3066 2.8554× 10−6

Erdős–Rényi 13 34 1.7180× 1010 6265 3.6467× 10−7

Erdős–Rényi 14 41 2.1990× 1012 13,561 6.1668× 10−9

Erdős–Rényi 15 56 7.2058× 1016 30,517 4.2351× 10−13

Erdős–Rényi 16 55 3.6029× 1016 57,956 1.6086× 10−12

Erdős–Rényi 17 68 2.9515× 1020 121,646 4.1215× 10−16

Erdős–Rényi 18 74 1.8889× 1022 247,486 1.3102× 10−17

Erdős–Rényi 19 85 3.8686× 1025 497,709 1.2865× 10−20

Erdős–Rényi 20 102 5.0706× 1030 1,031,828 2.0349× 10−25

Kn 10 45 3.5184× 1013 1023 2.9075× 10−11

Kn 11 55 3.6029× 1016 2047 5.6816× 10−14

Kn 12 66 7.3787× 1019 4095 5.5498× 10−17

Kn 13 78 3.0223× 1023 8191 2.7102× 10−20

Kn 14 91 2.4759× 1027 16,383 6.6170× 10−24

Kn 15 105 4.0565× 1031 32,767 8.0777× 10−28

Kn 16 120 1.3292× 1036 65,535 4.9303× 10−32

Kn 17 136 8.7112× 1040 131,071 1.5046× 10−36

Kn 18 153 1.1418× 1046 262,143 2.2959× 10−41

Kn 19 171 2.9932× 1051 524,287 1.7516× 10−46

Kn 20 190 1.5693× 1057 1,048,575 6.6819× 10−52

Kn/2,n/2 10 25 3.3554× 107 971 2.8938× 10−5

Kn/2,n/2 12 36 6.8719× 1010 3981 5.7931× 10−8

Kn/2,n/2 14 49 5.6295× 1014 16,143 2.8676× 10−11

Kn/2,n/2 16 64 1.84467× 1019 65,041 3.5259× 10−15

Kn/2,n/2 18 81 2.41785× 1024 261,139 1.0800× 10−19

Kn/2,n/2 20 100 1.26765× 1030 1,046,549 8.2558× 10−25

Citation: Vanetik, N. Sufficient

networks in graph databases.

Information 2023, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Information for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Sufficient networks for computing support of graph patterns
Natalia Vanetik 1*

1 Department of Software Engineering, Shamoon College of Engineering; natalyav@sce.ac.il
* Correspondence: natalyav@sce.ac.il; Tel.: +972-8-647-5015

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

101

100

10−1

10−2

10−3

10−4

10−6

10−7

10−8

10−9

density

|N
co

nn
| /
|N
|

|G| = 10

|Nconn|/|N |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.910−47

10−41

10−35

10−28
10−24

10−19

10−12
10−8
10−4

100

density

|N
co

nn
| /
|N
|

|G| = 20

|Nconn|/|N |

Figure 6. Ratio |Nconn|/|N | and graph density.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
101

102

103

104

density

|N
co

nn
|

|G| = 10

|Nconn|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

103

104

105

106

107

density

|N
co

nn
|

|G| = 20

|Nconn|

Figure 7. Size of |Nconn| and graph density.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are 1

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). 2

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from 3

any ideas, methods, instructions or products referred to in the content. 4

Version February 21, 2023 submitted to Information https://www.mdpi.com/journal/information

Figure 7. Size of Nconn and graph density.

Table 2 shows how the size of instance network N [p] changes with the growth of |p|.
Both database graph G and patterns p are Erdős–Rényi unlabeled random graphs. For
|G| = 35 and larger, the search becomes infeasible in our experimental setting.

Information 2023, 14, 143 14 of 17

Table 2. Sizes of N [p] for patterns p on Erdős–Rényi graphs.

of Graph # of Graph # of Pattern # of Pattern Size of # of Pattern
Nodes Edges Nodes Edges N [p] Instances

25 141 5 6 1.0247× 1010 2752
25 141 6 4 1.6245× 107 3032
25 141 7 9 5.0141× 1013 1693
25 141 8 16 5.5117× 1020 136
25 141 9 23 1.9373× 1026 1
25 141 10 17 4.0944× 1021 2
25 141 11 26 2.0661× 1028 0
25 141 12 32 7.0010× 1031 0
25 141 13 38 5.7118× 1034 0
25 141 14 45 2.9213× 1037 0
30 225 5 6 1.7319× 1011 9141
30 225 6 8 1.4909× 1014 13,144
30 225 7 11 1.5406× 1018 1339
30 225 8 14 6.9244× 1021 933
30 225 9 18 1.8567× 1026 85
30 225 10 26 9.0937× 1033 1
30 225 11 28 4.8019× 1035 0
30 225 12 32 8.3537× 1038 0
30 225 13 43 4.1064× 1046 0
30 225 14 50 4.5124× 1051 0

The size comparison for the full instance network N [p] and intersection network
Nintersect[p] for various sizes of a pattern p is shown in Table 3. Patterns p and database
graph G are both Erdős–Rényi unlabeled random graphs. Due to the necessity of including
all of the nodes in G, G itself, and the empty node ⊥, it should be noted that the minimum
size of any instance network in this scenario is |G|+ 2. The ratio of instance network sizes
is displayed in the last column.

Table 4 shows size comparison for the full instance network N [p] and intersection
network Nintersect[p] for labeled graphs. The size of a pattern is fixed (|p| = 5). Both the
database graph and patterns are Erdős–Rényi random graphs with randomly assigned
node labels, with the number of labels being in the range 1.5. The ratio of instance network
sizes is shown in the last column. One can see that all network sizes decrease as the number
of labels increases, but the sizes of intersection networks are still significantly smaller.

Table 3. Comparison of |N [p]| and |Nintersect[p]| for Erdős–Rényi graphs.

of Graph # of Graph # of Pattern # of Pattern Size of Size of Ratio
Nodes Edges Nodes Edges N [p] Nintersect[p] |Nintersect [p]|/|N [p]|

25 150 5 7 3.09019× 1011 3139 1.0158× 10−8

25 150 6 6 1.49090× 109 3648 2.4468× 10−7

25 150 7 13 2.01888× 1018 1297 6.4244× 10−16

25 150 8 16 1.55251× 1021 181 1.1659× 10−19

25 150 9 15 1.82322× 1020 44 2.4133× 10−19

25 150 10 25 2.43387× 1028 27 1.1093× 10−27

25 150 11 28 2.44802× 1030 27 1.1029× 10−29

25 150 12 33 2.28816× 1033 27 1.1800× 10−32

25 150 13 42 4.93515× 1037 27 5.4710× 10−37

25 150 14 56 1.71663× 1042 27 1.5728× 10−41

30 224 5 2 2.52020× 104 1542 6.1186× 10−2

30 224 6 8 1.43811× 1014 7135 4.9614× 10−11

30 224 7 9 3.46866× 1015 2223 6.4088× 10−13

30 224 8 11 1.46565× 1018 320 2.1833× 10−16

30 224 9 23 1.54009× 1031 137 8.8956× 10−30

30 224 10 19 1.8635× 1027 32 1.7172× 10−26

30 224 11 21 1.87748× 1029 32 1.7044× 10−28

30 224 12 38 1.74807× 1043 32 1.8306× 10−42

30 224 13 32 7.17287× 1038 32 4.4613× 10−38

30 224 14 50 3.99394× 1050 32 8.0121× 10−50

Information 2023, 14, 143 15 of 17

Table 4. Comparison of |N [p]| and |Nintersect[p]| for Erdős–Rényi graphs with different number of
labels and |p| = 5.

of # of Graph # of Graph # of Pattern # of Pattern Size of Size of Ratio
Labels Nodes Edges Nodes Edges N [p] Nintersect[p] |Nintersect [p]|/|N [p]|

1 25 149 5 3 5.5145× 105 1644 2.9812× 10−3

2 25 157 5 6 1.9654× 1010 277 1.4094× 10−8

3 25 140 5 3 4.5745× 105 53 1.1586× 10−4

4 25 148 5 6 1.3745× 1010 38 2.7647× 10−9

5 25 149 5 8 5.2715× 1012 27 5.1219× 10−12

1 30 217 5 5 3.9195× 109 8380 2.1380× 10−6

2 30 217 5 2 2.3655× 104 56 2.3674× 10−3

3 30 224 5 5 4.5970× 109 40 8.7013× 10−9

4 30 230 5 4 1.1561× 108 36 3.1139× 10−7

5 30 234 5 6 2.1947× 1011 32 1.4580× 10−10

6. Extensions and Limitations

The approach presented in this paper can be extended to the following types of graphs.

• Directed graphs.
In this case, patterns and their instances are directed graphs as well, and the instance
network is defined in the same way as for the undirected graphs. Therefore, Theorem 2
holds for directed graphs as well, and all the results in this paper apply to them.

• Edge and node labeled graphs.
Node and edge labels affect how instances of graph patterns are found in the database
graphs because subgraph isomorphism has to take label matching into account. How-
ever, the rest of the results are not affected. Table 4 shows some experimental evalua-
tions I performed for this type of graph.

• Multi-graphs and graphs with integer edge weights.
An integer edge weight w is equivalent to replacing that edge with w edges between
its incident nodes. In both cases, the subgraph isomorphism test for pattern instances
is affected, because of the number of edges between a pair of nodes taken into account.
The rest of the results hold for these graph types.

• Graphs with real edge weights.
This case is equivalent to the previous one.

The main limitation of the presented approach is that it does not address extensions
of subgraph isomorphism, such as graph homomorphism, and less-than-or-equal edge
matching for a real edge-weighted graph. For example, a graph G1 = {V = {1, 2}, E =
{{1, 2}}, w({1, 2}) = 2} can be considered a subgraph of G2 = {V = {1, 2}, E =
{{1, 2}}, w({1, 2}) = 2.5}, and they cannot be reduced to multigraphs. In this case,
Theorem 2 needs to be extended, and the instance network (in the form it is currently
defined) is not suitable for representing support measures.

7. Conclusions

In this paper, I demonstrate how instance network sub-networks can be used to com-
pute valid support measures for graph patterns. This concept has been incorporated into
several graph mining methods, but because it is frequently entangled with the techniques
themselves, each algorithm and each supporting measure must have its proof. Before the
connection between flows and support measures was established in Theorem 2 in my prior
work, it was impossible to verify these types of broad statements. This relationship means
that a proving effort only needs to be made once, and this is the main result of this paper.

I demonstrate that smaller networks restricted to connected patterns, patterns with for-
bidden minors, or pattern intersections can be employed in place of larger networks when
computing the support measure of a pattern. Additionally, I carried out an experimental
evaluation that demonstrates unequivocally how important it is for graphs of different
sizes, types, and labels to reduce the size of the instance network.

Information 2023, 14, 143 16 of 17

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barbier, G.; Liu, H. Data mining in social media. In Social Network Data Analytics; Springer: Berlin/Heidelberg, Germany, 2011;

pp. 327–352.
2. Kurshan, E.; Shen, H. Graph computing for financial crime and fraud detection: Trends, challenges and outlook. Int. J. Semant.

Comput. 2020, 14, 565–589. [CrossRef]
3. Pourhabibi, T.; Ong, K.L.; Kam, B.H.; Boo, Y.L. Fraud detection: A systematic literature review of graph-based anomaly detection

approaches. Decis. Support Syst. 2020, 133, 113303. [CrossRef]
4. Kutty, S.; Nayak, R.; Chen, L. A people-to-people matching system using graph mining techniques. World Wide Web 2014,

17, 311–349. [CrossRef]
5. Ebrahimi, F.; Asemi, A.; Nezarat, A.; Ko, A. Developing a mathematical model of the co-author recommender system using graph

mining techniques and big data applications. J. Big Data 2021, 8, 1–15. [CrossRef]
6. Shin, Y.; Yoon, Y. Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for

traffic forecasting. IEEE Trans. Intell. Transp. Syst. 2020, 23, 2082–2092. [CrossRef]
7. Ay, F.; Gülsoy, G.; Kahveci, T. Mining Biological Networks for Similar Patterns. In Data Mining: Foundations and Intelligent

Paradigms; Springer: Berlin/Heidelberg, Germany, 2012; pp. 63–99.
8. Durmaz, A.; Henderson, T.A.; Bebek, G. Frequent Subgraph Mining of Functional Interaction Patterns Across Multiple Cancers.

In Proceedings of the BIOCOMPUTING 2021: Proceedings of the Pacific Symposium, Fairmont Orchid, HI, USA, 5–7 January
2020; pp. 261–272.

9. Mihalcea, R.; Tarau, P. Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, Barcelona, Spain, 25–26 July 2004; pp. 404–411.

10. Jiang, C.; Coenen, F.; Sanderson, R.; Zito, M. Text classification using graph mining-based feature extraction. In Research and
Development in Intelligent Systems XXVI; Springer: Berlin/Heidelberg, Germany, 2010; pp. 21–34.

11. Liu, J.B.; Raza, Z.; Javaid, M. Zagreb connection numbers for cellular neural networks. Discret. Dyn. Nat. Soc. 2020, 2020, 8038304.
[CrossRef]

12. Majeed, A.; Rauf, I. Graph theory: A comprehensive survey about graph theory applications in computer science and social
networks. Inventions 2020, 5, 10. [CrossRef]

13. Kenyeres, M.; Kenyeres, J. Distributed Mechanism for Detecting Average Consensus with Maximum-Degree Weights in Bipartite
Regular Graphs. Mathematics 2021, 9, 3020. [CrossRef]

14. Krasanakis, E.; Symeonidis, A. Fast library recommendation in software dependency graphs with symmetric partially absorbing
random walks. Future Internet 2022, 14, 124. [CrossRef]

15. Jalali, M.; Tsotsalas, M.; Wöll, C. MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis.
Nanomaterials 2022, 12, 704. [CrossRef]

16. Li, P.; Chen, P.; Zhang, D. Cross-modal feature representation learning and label graph mining in a residual multi-attentional
CNN-LSTM network for multi-label aerial scene classification. Remote Sens. 2022, 14, 2424. [CrossRef]

17. Singh, M. Using natural language processing and graph mining to explore inter-related requirements in software artefacts. ACM
Sigsoft Softw. Eng. Notes 2022, 44, 37–42. [CrossRef]

18. Nijssen, S.; Kok, J.N. Frequent graph mining and its application to molecular databases. In Proceedings of the 2004 IEEE
International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), The Hague, The Netherlands, 10–13
October 2004; Volume 5, pp. 4571–4577.

19. Takigawa, I.; Mamitsuka, H. Graph mining: Procedure, application to drug discovery and recent advances. Drug Discov. Today
2013, 18, 50–57. [CrossRef]

20. Hoory, S.; Linial, N.; Wigderson, A. Expander graphs and their applications. Bull. Am. Math. Soc. 2006, 43, 439–561. [CrossRef]
21. Vanetik, N.; Shimony, S.E.; Gudes, E. Support measures for graph data. Data Min. Knowl. Discov. 2006, 13, 243–260. [CrossRef]
22. Bringmann, B.; Nijssen, S. What is frequent in a single graph? In Proceedings of the Pacific-Asia Conference on Knowledge

Discovery and Data Mining, Osaka, Japan, 20–23 May 2008; pp. 858–863.
23. Fiedler, M.; Borgelt, C. Subgraph support in a single large graph. In Proceedings of the Seventh IEEE International Conference on

Data Mining Workshops (ICDMW 2007), Omaha, NE, USA, 28–31 October 2007; pp. 399–404.
24. Wang, Y.; Guo, Z.C.; Ramon, J. Learning from networked examples. In Proceedings of the International Conference on

Algorithmic Learning Theory, Kyoto, Japan, 15–17 October 2017; pp. 641–666.
25. Meng, J.; Tu, Y.c. Flexible and Feasible Support Measures for Mining Frequent Patterns in Large Labeled Graphs. In Proceedings

of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017; pp. 391–402.

http://doi.org/10.1142/S1793351X20300022
http://dx.doi.org/10.1016/j.dss.2020.113303
http://dx.doi.org/10.1007/s11280-013-0202-z
http://dx.doi.org/10.1186/s40537-021-00432-y
http://dx.doi.org/10.1109/TITS.2020.3031331
http://dx.doi.org/10.1155/2020/8038304
http://dx.doi.org/10.3390/inventions5010010
http://dx.doi.org/10.3390/math9233020
http://dx.doi.org/10.3390/fi14050124
http://dx.doi.org/10.3390/nano12040704
http://dx.doi.org/10.3390/rs14102424
http://dx.doi.org/10.1145/3310013.3310018
http://dx.doi.org/10.1016/j.drudis.2012.07.016
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1007/s10618-006-0044-8

Information 2023, 14, 143 17 of 17

26. Meng, J.; Tu, Y.C.; Pitaksirianan, N. A New Polynomial-time Support Measure for Counting Frequent Patterns in Graphs. In
Proceedings of the 31st International Conference on Scientific and Statistical Database Management, Santa Cruz, CA, USA, 23–25
July 2019; pp. 214–217.

27. Vanetik, N. Graph support measures and flows. Soc. Netw. Anal. Min. 2022, 12, 1–9.
28. Yan, D.; Chen, H.; Cheng, J.; Özsu, M.T.; Zhang, Q.; Lui, J. G-thinker: Big graph mining made easier and faster. arXiv 2017,

arXiv:1709.03110.
29. Koutra, D. The power of summarization in graph mining and learning: Smaller data, faster methods, more interpretability. Proc.

VLDB Endow. 2021, 14, 3416. [CrossRef]
30. Shin, K.; Eliassi-Rad, T.; Faloutsos, C. Corescope: Graph mining using k-core analysis—patterns, anomalies and algorithms. In

Proceedings of the 2016 IEEE 16th international conference on data mining (ICDM), Barcelona, Spain, 12–15 December 2016;
pp. 469–478.

31. Mawhirter, D.; Reinehr, S.; Holmes, C.; Liu, T.; Wu, B. Graphzero: Breaking symmetry for efficient graph mining. arXiv 2019,
arXiv:1911.12877.

32. Rao, G.; Chen, J.; Yik, J.; Qian, X. Intersectx: An efficient accelerator for graph mining. arXiv 2020, arXiv:2012.10848.
33. Teixeira, C.H.; Fonseca, A.J.; Serafini, M.; Siganos, G.; Zaki, M.J.; Aboulnaga, A. Arabesque: A system for distributed graph

mining. In Proceedings of the 25th Symposium on Operating Systems Principles, Monterey, CA, USA, 4–7 October 2015;
pp. 425–440.

34. Talukder, N.; Zaki, M.J. A distributed approach for graph mining in massive networks. Data Min. Knowl. Discov. 2016,
30, 1024–1052. [CrossRef]

35. Buehrer, G.; Parthasarathy, S.; Chen, Y.K. Adaptive parallel graph mining for CMP architectures. In Proceedings of the Sixth
International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; pp. 97–106.

36. Menger, K. Zur allgemeinen kurventheorie. Fundam. Math. 1927, 10, 96–115. [CrossRef]
37. Huan, J.; Wang, W.; Prins, J.; Yang, J. Spin: Mining maximal frequent subgraphs from graph databases. In Proceedings of the

Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 22–25 August 2004;
pp. 581–586.

38. Li, X.L.; Foo, C.S.; Tan, S.H.; Ng, S.K. Interaction graph mining for protein complexes using local clique merging. Genome Inform.
2005, 16, 260–269. [PubMed]

39. Falkowski, T.; Barth, A.; Spiliopoulou, M. Studying community dynamics with an incremental graph mining algorithm. AMCIS
2008 Proc. 2008, 29.

40. Kuramochi, M.; Karypis, G. An efficient algorithm for discovering frequent subgraphs. IEEE Trans. Knowl. Data Eng. 2004,
16, 1038–1051. [CrossRef]

41. Yan, X.; Han, J. gSpan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining, Maebashi City, Japan, 9–12 December 2002; pp. 721–724.

42. Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners;
Apress: New York, NY, USA, 2019.

43. Hagberg, A.; Swart, P.; S Chult, D. Exploring Network Structure, Dynamics, and Function Using NetworkX; Technical Report; Los
Alamos National Lab. (LANL): Los Alamos, NM, USA, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14778/3484224.3484238
http://dx.doi.org/10.1007/s10618-016-0466-x
http://dx.doi.org/10.4064/fm-10-1-96-115
http://www.ncbi.nlm.nih.gov/pubmed/16901108
http://dx.doi.org/10.1109/TKDE.2004.33

	Introduction
	Definitions
	Graphs and Networks
	Patterns and Support Measures
	Properties of Valid Support Measures

	Sufficient Instance Networks
	Definition
	Examples of Insufficient Sub-Networks
	Sufficient Networks

	Intersection Networks
	Experimental Evaluation
	Graph Types and Objectives of Experiments
	Software and Hardware Setup
	Evaluation Results

	Extensions and Limitations
	Conclusions
	References

