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Abstract: Intrusion Detection Systems are expected to detect and prevent malicious activities in a
network, such as a smart grid. However, they are the main systems targeted by cyber-attacks. A
number of approaches have been proposed to classify and detect these attacks, including supervised
machine learning. However, these models require large labeled datasets for training and testing.
Therefore, this paper compares the performance of supervised and unsupervised learning models in
detecting cyber-attacks. The benchmark of CICDDOS 2019 was used to train, test, and validate the
models. The supervised models are Gaussian Naïve Bayes, Classification and Regression Decision
Tree, Logistic Regression, C-Support Vector Machine, Light Gradient Boosting, and Alex Neural
Network. The unsupervised models are Principal Component Analysis, K-means, and Variational
Autoencoder. The performance comparison is made in terms of accuracy, probability of detection,
probability of misdetection, probability of false alarm, processing time, prediction time, training time
per sample, and memory size. The results show that the Alex Neural Network model outperforms
the other supervised models, while the Variational Autoencoder model has the best results compared
to unsupervised models.

Keywords: intrusion detection systems; artificial intelligence; smart grid; supervised learning;
unsupervised learning

1. Introduction

With the exponential development of computer networks and technologies, security
has become a major concern due to the numerous cyber-attacks constantly targeting net-
works. To address this issue, one practical solution to improve the security of networks is to
use Intrusion Detection Systems (IDS) and tools to detect and prevent such network threats.
IDS is a promising system that monitors a network for malicious activities or violating
policies [1]. For instance, IDS in a smart grid can prevent an adversary from exploiting the
network’s vulnerabilities to gain illegal access to the nodes. IDS also prevent the misuse of
the available grid resources. In general, IDS can be classified into three categories, namely
signature-based, specification-based, and anomaly-based. In signature-based IDS, cyber-
attacks can be detected using patterns in their malicious behaviors. In contrast, specification
IDS can only detect deviations from malicious activities. In anomaly-based IDS, statistical
measures are used to differentiate malicious behaviors from legitimate activities [2].

The majority of studies have highlighted the advantages and disadvantages of signa-
ture, specification, and anomaly-based IDS. For instance, one of the significant benefits of
anomaly-based IDS over other types of IDS is the high strength of these systems to detect
zero-day or multi-stages attacks. These systems also can be widely used to detect real-time
cyber threats in networks, such as smart grids [3–5]. In addition, anomaly-based IDS are a
better choice in comparison with other types of IDS, due to their ability to detect multi-step,
blended, and sophisticated attacks. Despite the benefits of anomaly-based IDS, they have
several limitations that need to be addressed, including low detection rate and high false
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alarm and misdetection rates. Therefore, several techniques have been proposed to improve
the efficiency of anomaly-based IDS in detecting and classifying different networks, such as
smart grids. One recommended solution to address this is the use of Artificial Intelligence
techniques, including machine learning (ML) models [5,6].

However, most of these studies provided results with high misdetection and false
alarm rates. In addition, the performance of these techniques has been made in terms of a
limited number of metrics, for instance, accuracy. In addition, some of these models were
not optimized and the used datasets were not appropriately preprocessed [7]. Furthermore,
some of these studies compared a few ML models or evaluated their proposed models
without comparing their performance to other existing techniques. Moreover, there are
a limited number of studies that investigated and evaluated unsupervised ML model
performance. There are also no studies that comprehensively compare supervised and
unsupervised models and their ability to detect attacks on a network, such as a smart grid.

Therefore, this paper provides a comparative analysis of several supervised and
unsupervised ML models in detecting and classifying cyber-attacks on IDS systems. The
supervised models investigated are Gaussian Naive Bayes, Classification and Regression
Decision Trees, C-Support Vector Machines, Logistic Regression, Alex Neural Network,
and Light Gradient Boosting. Unsupervised models selected for the investigation were
K-means, Principal Component Analysis, and Variational Autoencoder. To train, test, and
validate the supervised models, we used the dataset CICDDOS 2019. This same dataset
was used for the training process of unsupervised models after removing the labeled class
of data. The results were evaluated in terms of Accuracy (ACC), Probability of Detection
(PD), Probability of Misdetection (PMD), Probability of False Alarm (PFA), Processing
Time (PRT), Prediction Time (PT), Training Per Sample (TPS), and Memory Size (M).

The remainder of this paper is as follows: Section 2 outlines the related works. Section 3
highlights the dataset, the features used, and the methods applied in this study. Section 4
provides and discusses the results. A conclusion is given in Section 5.

2. Related Work

Several recent studies have applied Artificial Intelligence techniques, specifically
supervised machine learning (ML), to improve smart grid security. In the following, we
discuss these studies in more detail.

2.1. Supervised Techniques

The authors of [3] compared the performance of three supervised models, namely
Bagging, Boosting, and Stacking models, in detecting cyber-attacks on smart grids. Their
results show that the Stacking classifier yielded better results than the other techniques.
The authors of [4] applied several supervised Boosting ensembles and conventional models,
including K nearest neighbor, support vector machine, Adaptive Boosting, Naïve Bayes,
Categorial Boosting, and Gradient Boosting to detect intrusions on the smart grid. The
Boosting ensemble classifiers yielded better performance than conventional classifiers.
The authors of [5] compared the performance of four known supervised ML models for
detecting intrusions in smart grids, namely Naive Bayes, Support Vector Machine, Decision
Tree, and Random Forest. The results show that the Random Forest classifier provides
better results than other known techniques. The authors of [6] compared the effectiveness
of Decision Tree, Simple Logistic Regression, Naïve Bayes, Multi-layer perceptron, Support
Vector Machine, Random Forest, and Zero Rule. Their results show that the Decision Tree
classifier outperforms the other models in detecting intrusions. The authors of [8] compared
Neural Networks and different types of Decision Trees for detecting network intrusions.
The Classification and Regression Tree classifier yielded better results than the other models
in detecting network intrusions.

The authors of [9] developed a hybrid supervised model using Extreme Boosting and
Long Short-Term Memory to detect intrusions in a smart grid and compared the results to
other ML models, including Classification and Regression Tree, Iterative Dichotomiser 3,
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Random Forest, K nearest neighbor, and Cervical Segment 4/5. Their results indicate that
the hybrid model’s effectiveness is higher than that of the other models. Another study [10]
compared several supervised models, including Random Forest, Naïve Bayes, Support
Vector Machine, and Extreme Boosting, and their ability to detect intrusions on the smart
grid. The authors indicated that Random Forest and Extreme Boosting models perform
better than the other models. The authors of [11] compared several supervised models to
detect cyber-attacks, including Support Vector Machine, Decision Tree, Artificial Neural
Networks, K-Nearest Neighbors, Naive Bayes, and Random Forrest. The results show that
random forest fairly provided better results in comparison with the other models in terms
of accuracy, false alarm rate, UN-detection rate, true positive rate, and receiver operating
characteristic diagram.

Few other studies focused on supervised deep learning techniques to detect intrusions
on smart grids. For instance, the authors of [12] proposed a detection technique using a
convolutional neural network and a long short-term memory. In [13], the authors proposed
a supervised improved convolutional neural network to detect network abnormalities.
In [14], the authors proposed a hybrid model using Kalman Filter and Recurrent Neural
Network to detect attacks in a smart grid. This technique consists of two levels to predict
and fit linear and nonlinear data and uses a fully connected module to combine the results.

2.2. Unsupervised Techniques

Few studies have been proposed to evaluate the impacts of unsupervised models on
detecting cyberattacks. For example, the authors of [15] used a stacked autoencoder to
detect false data injection attacks. The performance of this technique was evaluated and
compared with those of the Support Vector Machine and K Nearest Neighbor. The authors
of [16] used the K-means model to cluster the data and create an outlier detection model for
data transmission between smart homes and power centers. The authors of [17] proposed
an unsupervised technique based on the Isolation Forest model for detecting attacks on
the smart grid. They extracted features using Principle Component Analysis and Isolate
Forest for training, testing, and validating non-labeled data. The authors of [18] proposed
anomaly-based intrusion detection using a Generative Adversarial Network. This model
consists of three detection layers, network flows, Modbus/Transmission Control Protocol
packets (TCP), and operational data to detect attacks.

The authors of [19] used an unsupervised deep learning model, Restricted Boltzmann
Machine, to detect cyber-attacks on large-scale smart grids. The proposed model uses
feature extraction and symbolic dynamic filtering to decrease the computational burden
with casual interactions between subsystems. The results indicate high accuracy and true
positive rates, as well as low false positive rates. The authors of [20] proposed Hierarchical
Temporal Memory for real-time anomaly detection and compared their results to those
of Random Cut Forest, Bayesian Change, and Relative Entropy, in terms of accuracy and
scoreboard. The results indicated that their model outperforms the other models for
real-time anomaly detection. The authors of [21] proposed an unsupervised model using
Autoencoder and random forest to detect cyber-attacks on a smart grid. The proposed
model yielded satisfactory results for classification among benign operations, natural
events, and malicious vulnerabilities.

3. Methodology

Figure 1 depicts the supervised and unsupervised model workflow. As one can see
in Figure 1A, the supervised model workflow consists of several steps: data acquisition,
dataset assessment, model training, and optimization. Supervised models require labeled
data; hence, several techniques were used for their data assessment, including data bal-
ancing, imputation, normalization, and encoding. Supervised models, namely Gaussian
Naive Bayes, Classification and Regression Decision Trees, C-Support Vector Machines,
Logistic Regression, Alex Neural Network, and Light Gradient Boosting are trained to
detect and classify network attacks and optimized using the optimization techniques, such
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as grid search and ADAM optimizer. In contrast, as shown in Figure 1B, the unsupervised
models are used with an unlabeled dataset, resulting in the use of fewer data assessment
techniques. Unsupervised models, namely K-means, Principal Component Analysis, and
Variational Autoencoder, are evaluated based on an unknown data pattern after optimiza-
tion techniques are applied. Details of materials and techniques are summarized in the
following section.

Information 2023, 14, x FOR PEER REVIEW 4 of 14 
 

 

3. Methodology 
Figure 1 depicts the supervised and unsupervised model workflow. As one can see 

in Figure 1A, the supervised model workflow consists of several steps: data acquisition, 
dataset assessment, model training, and optimization. Supervised models require labeled 
data; hence, several techniques were used for their data assessment, including data bal-
ancing, imputation, normalization, and encoding. Supervised models, namely Gaussian 
Naive Bayes, Classification and Regression Decision Trees, C-Support Vector Machines, 
Logistic Regression, Alex Neural Network, and Light Gradient Boosting are trained to 
detect and classify network attacks and optimized using the optimization techniques, 
such as grid search and ADAM optimizer. In contrast, as shown in Figure 1B, the unsu-
pervised models are used with an unlabeled dataset, resulting in the use of fewer data 
assessment techniques. Unsupervised models, namely K-means, Principal Component 
Analysis, and Variational Autoencoder, are evaluated based on an unknown data pattern 
after optimization techniques are applied. Details of materials and techniques are summa-
rized in the following section. 

 
(A)  

 
(B)  

Figure 1. Supervised and Unsupervised Learning Working Flow. (A) Supervised Working Flow (B) 
Unsupervised Working Flow. 
Figure 1. Supervised and Unsupervised Learning Working Flow. (A) Supervised Working Flow
(B) Unsupervised Working Flow.

3.1. Dataset

We used the dataset CICDDOS 2019 [22] developed by the Canadian Institute of
Cyber-Security and the University of New Brunswick. This dataset includes normal traffic
samples and samples from 10 attack types. These attacks and their corresponding numbers
of samples are listed in Table 1. As one can see in this table, attack classes are not balanced,
which can result in inaccurate detection. To address such an issue, the lowest number of
attack samples (366,461) that belongs to the UDP-lag attacks was used as a threshold for all
attacks; therefore, each attack category was limited to this number. For the normal samples,
we randomly selected 4,031,071, resulting in a dataset with 8,062,142 samples.
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Table 1. List of Attacks.

Attacks Number of Samples

Total Normal 5,693,110

Domain Name System (DNS) 5,071,011

Simple Network Management Protocol (SNMP) 5,159,870

Trivia File Transfer Protocol (TFTP) 20,082,580

Lightweight Directory Access Protocol (LDAP) 2,179,930,232

Network Basic Input/Output System (Netbios) 4,092,937

Microsoft SQL To Server (MSSQL) 5,781,928

Simple Service Discovery Protocol (SSDP) 2,610,611

Network Time Protocol (NTP) 1,202,649

Simple Service Discovery Protocol (SSDP) 2,610,611

User Datagram Protocol Link Aggregation (UDP-Lag) 366,461

The original dataset has 88 features and many of these do not contribute to the
detection of attacks. The authors of [3] removed redundant features using Pearson’s
Correlation and Tree-based feature selection, resulting in 21 features, as shown in Table 2.
The resulting balanced dataset with labeled samples was used for training supervised
models; however, for training unsupervised models, this labeled column was removed
from the dataset.

Table 2. List of Selected Features.

Features Abbreviations

Total Length of Forward Packets Total Length of Fwd Packets

Flow Byte(s) Flow Byte

Flow Packet(s) Flow Packet

Flow Inter Arrival Time Mean Flow IAT Mean

Flow I Inter Arrival Time Std Flow IAT Std

Flow Inter Arrival Time Max Flow IAT Max

Forward Packets Fwd Packets

Backward Packets Bwd Packets

Min Packet Length Min Packet Length

Max Packet Length Max Packet Length

Packet Length Variance Packet Length Variance

Total Forward Packets Total Fwd Packets

Total Backwards Packets Total Bwd Packets

Forward Packets Length Min Fwd Packets Length Min

Forward Packets Length Mean Fwd Packets Length Mean

Forward Inter Arrival Time Mean Fwd IAT Mean

Backward Inter Arrival Time Total Bwd IAT Total

Backward Inter Arrival Time Min Bwd IAT Min

Backward Inter Arrival Time Mean Bwd IAT Mean

Packet Length Mean Packet Length Mean

Forward Packet Length Std Fwd Packet Length Std
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3.2. Data Pre-Processing

This step is used to improve the quality of data. In supervised models, this step consists
of several techniques, namely missing data imputation, transformation, and encoding;
however, in unsupervised learning models, data pre-processing techniques focused only
on missing data imputation and transformation. A mean imputation technique was used
to address the issue of null or missing values contained in the dataset. This technique
replaces a missing value with the mean of all available values of that particular feature
in the given dataset. The given data must also be normalized and standardized using a
feature scaling technique. The features were rescaled according to the Yeo-Johnson Power
Transformer, which shapes the data to appear more Gaussian and handles zero, positive,
and negative values.

3.3. Machine Learning Models

We investigated several supervised and unsupervised models. Figure 2 provides a
classification of these learning approaches. We selected the best model from each category
for this study.
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3.3.1. Supervised Models

The selected supervised models are Gaussian Naïve Bayes (GNB), Classification and
Regression Tree (CART), C-Support Vector Machine (C-SVM), Logistic Regression (LR),
Alex Neural Network (AlexNet), and Light Gradient Boosting (LightGBM). From the
Bayesian-based category, GNBwidely used data with a Gaussian normal distribution is
selected [23,24]. The selected CART model, from the Tree-based category, uses a Gini index
as a splitting criterion and cost-complexity pruning to decrease overfitting problems and
improve accuracy [25,26]. C-SVM, from the instance-based category, stores the training data
without preprocessing the target function [27,28]. The LR model, from the Regularization-
based category, can be used for appropriately fitting a function on the training set and
preventing overfitting problems by adding extra information to the models [29,30]. Alex
Neural Network (AlexNet), from the neural-network-based category, consists of 25 layers,
input, rectified linear units (ReLU), convolutional, max pooling, normalization, dropout,
SoftMax, and output layers [30]. The ReLU activation function enables a faster training
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process compared to other activation functions. In addition, such a function has lower
computational costs without losing any generalization abilities [31–36]. Light Gradient
Boosting (LightGBM), from the ensemble-based category, is based on three models, provid-
ing higher efficiency and faster training, lower memory usage, and better accuracy than
other boosting models [37,38].

3.3.2. Unsupervised Models

From the unsupervised models, as highlighted in Figure 2, K-means clustering (K-
means), Principle Component Analysis (PCA), and Variational Autoencoder (VA-Encoder)
were selected. The K-means model, clustering-based, aims to select centroids that minimize
within-cluster sum-of-square criterion (inertia). Principle Component Analysis (PCA),
dimensionality reduction-based, is widely used to increase the performance of models
on highly correlated data [39]. Variational Autoencoder (VA-Encoder), neural network-
based, uses a compressed representation of the raw data [40]. VA-Encoder comprises
three components: encoder, decoder, and loss function. This model yields a probabilistic
approach to explain an observation in latent space. One of the primary benefits of using the
VA-Encoder is its ability to prevent overfitting issues that guarantee that the latent space
has good features with the generative process [41,42].

3.4. Optimization Approaches

Optimization approaches are necessary to obtain optimal results and decrease the
ML model costs. We used two techniques in this study. These optimization techniques
must be compatible with the main ML model characteristics. The grid search optimization
approach was used for convolutional and ensemble models. Different combinations were
investigated with a cross-validation technique in the grid search. The final result is the
combination of parameters with the highest average score [36,37]. An adaptive moment es-
timation (ADAM) optimizer was selected for the neural network-based techniques AlexNet
and VA-Encoder [38]. ADAM, as an extension of the Gradient Descent Optimization
algorithm, can provide more efficient neural network parameters by running repeated
cycles. This optimization technique can solve non-convex problems quicker with lower
numbers of parameters. It is also an efficient technique to provide optimal results with
large datasets [39,43]. In general, this optimizer usually provides better than any other
optimizers and has a faster processing time and fewer tuned parameters.

3.5. Evaluation Metrics

The models were evaluated in terms of Accuracy (ACC), Probability of Detection
(PD), Probability of Misdetection (PMD), and Probability of False Alarm (PFA). These
metrics are defined as follows:

ACC =
(TP + TN)

(TP + TN + FP + FN)
(1)

PFA =
FP

(TN + FP)
(2)

PD =
TP

(TP + FN)
(3)

PD =
TP

(TP + FN)
(4)

where TP is the number of correctly predicted malicious, TN denotes the number of correctly
predicted normal signals, FP is the number of incorrectly predicted malicious signals, and
FN is the number of incorrectly predicted normal signals.

The models were also evaluated in terms of Processing Time (PRT), Prediction Time
(PT), Training Per Sample (TPS), and Memory Size (M). These metrics are defined as follows:
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• PRT refers to the total time necessary to train, test, and validate the models.
• PT denotes the time taken to predict malicious signals over non-malicious signals.
• TPS denotes the time each sample takes to train the ML model.
• M is the amount of memory the ML models use during the entire period.

4. Results and Discussion

We used a 5-fold cross-validation approach to train 80% of the data and test the
remaining 20%. The training data is split into five equal parts, and the model is fit into four
parts in every iteration. This process is repeated five times using a subset of the dataset.

Table 3 lists the best hyperparameters based on grid search and ADAM optimizer that
was used for training, testing, and validating the ML models.

Table 3. Best Parameters Settings Based on Optimization Techniques.

Model Best Parameters

GNB var_smoothing = 0.001

CART Criterion = ‘gini’, max-depth = 36, splitter = ‘best’, max_features = ‘log2’.

C-SVM C = 4, penalty = ‘l2’

LR Max_iter = 12, penalty = ‘l2’

AlexNet Epoch = 100, momentum = 0.9, Batch size = 128, learning_rate = 0.01.

LightGBM Boosting_type = ‘gbdt’, max_depth = 10, learning_rate = 0.1, n_estimators
= 100

PCA max-depth = 10, Max-features = ‘sqrt’, splitter = ‘best’, Criterion =
‘entropy’.

K-means n-clusters = 2, algorithm = ‘auto’, random-state = 0.

VA-Encoder Loss = ‘mse’, Activation = ‘Relu’, Epoch = 100

Figures 3 and 4 present the results of the ML models in terms of accuracy, probability
of detection, probability of misdetection, and PFA. The AlexNet model yielded the best
results in terms of the selected metrics among supervised models (Figure 3). LightGBM
yielded a slightly lower ACC and PD and higher PMD and PFA compared to the AlexNet
model. The other supervised models, CART and C-SVM, also had satisfactory results.
However, the LR and GNB models yielded the worst results among the supervised models.
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In contrast, the unsupervised models exhibited significantly lower performance in
terms of the same metrics. The VA-encoder model yielded the highest performance com-
pared to the other unsupervised models. The PCA model yielded considerably lower
performance than the VA-Encoder. The K-means model had the lowest ACC and PD and
the highest PMD and PFA.

Comparing the supervised and unsupervised models, the AlexNet model yielded the
best results, followed by LightGBM, VA-Encoder, CART, C-SVM, PCA, GNB and LR, and
K-means.

Table 4 illustrates the model results in terms of the other four metrics. The AlexNet
model has the best PRT, PT, TPS, and M compared to the other supervised and unsuper-
vised models, while the GNB model had the worst performance in terms of these metrics.
The CART model yielded slightly higher results in terms of PRT, PT, TPS, and M than
the AlexNet model. The VA-encoder model yielded the best performance among the
unsupervised models, while K-means has the lowest performance.

Table 4. The ML models’ performance in Terms of PRT, PT, TPS, and M for Test Data (best perfor-
mances are in bold).

Model PRT
(S)

PT
(S)

TPS
(S)

M
(MiB)

GNB 4.33 4.15 0.82 245

CART 1.2 1.1 0.2 132

C-SVM 2.9 1.8 0.39 236

LR 1.6 1.2 0.51 223

AlexNet 1.01 1 0.01 102

LightGBM 1.4 1.3 0.09 112

PCA 1.9 0.91 0.89 164

K-means 1.9 1.4 0.81 180

VA-Encoder 1.77 1.2 0.5 144
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Therefore, the AlexNet model has the best results among the supervised models,
whereas the VA-Encoder yielded the best results among the unsupervised models in terms
of ACC, PD, PMD, PFA, PRT, PT, TPS, and M.

Figure 4 represents the detection results of individual attacks for the two best-selected
models. AlexNet and VA-Encoder, in terms of ACC, PD, PMD, and PFA. AlexNet outper-
formed the VA-Encoder model when detecting cyber-attacks. For example, the DNS attacks
were detected with better performance using AlexNet compared to VA-Encoder. AlexNet
detected these attacks with an ACC of 99.13%, a PD of 99.81%, a PMD of 0.19%, and a
PFA of 0.93%. The VA-Encoder detected the same attacks with considerably lower perfor-
mance with an ACC of 96.83%, a PD of 97.11%, a PMD of 2.89%, and a PFA of 3.23%. The
VA-encoder detected and classified UDP attacks with the highest performance. AlexNet
detected MSSQL attacks with a slightly lower performance than the VA-Encoder; however,
this last model detected SSDP, NTP, and TFP with the lowest performance. In general,
AlexNet outperforms the VA-Encoder in detecting most attacks.

Table 5 presents the results of AlexNet and VA-Encoder in terms of processing time,
prediction time, training time per sample, and memory size. AlexNet outperformed VA-
Encoder in detecting cyber-attacks. For example, DNS attacks could be detected and
classified using AlexNet with significantly lower PRT, PT, TPS, and M than VA-encoder.
AlexNet detected the DNS attacks with a PRT of 1.1 s, a PT of 0.9 s, a TPS of 0.3 s, and an
M of 149 MiB. AlexNet detected NetBIOS attacks with the highest PRT, PT, TPS, and M
compared to those of other attacks; however, VA-Encoder detected SSDP attacks with the
highest PRT, PT, TPS, and M compared to those other attacks.

Table 5. Performance of the ML Models in terms of PRT, PT, TPS, and M for TEST data.

Models Attacks PRT
(S)

PT
(S)

TPS
(S)

M
(MiB)

AlexNet

LDAP 1.4 1.2 0.7 125

DNS 1.1 0.9 0.3 149

SNMP 1.9 1.2 0.4 123

MSSQL 1.3 1.2 0.1 177

NetBIOS 1.9 1.4 0.9 191

NTP 1.2 1.7 0.6 182

SSDP 1.1 1 0.5 173

TFTP 1.4 1.1 0.7 167

UDP 1.8 1.2 0.5 166

UDP-Lag 1.3 1.1 0.2 161

DNS 1.4 1.2 0.7 125

Benign 1.8 1.4 0.4 180

VA-Encoder

LDAP 3.5 3.1 0.4 290

DNS 3.4 2.9 0.4 278

SNMP 3.2 2.3 0.9 276

MSSQL 2.9 2.3 0.3 254

NetBIOS 2.9 2.3 0.4 246

NTP 2.9 1.3 0.6 277

SSDP 3.9 2.1 0.5 297

TFTP 3.1 2.9 0.3 289

UDP 3.8 3.1 0.7 290

UDP-Lag 2.9 2.7 0.2 214

Benign 3.1 2.9 0.2 212
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To demonstrate the efficiency of the proposed techniques, our results are compared
with several existing studies in the literature, as provided in Table 6. As one can see, these
existing studies used different datasets, such as NSL KDD, and KDDCup99, as shown
in Table 6. As can be seen, these studies evaluated and analyzed their proposed models
in terms of a limited number of metrics. It is also worth mentioning that the majority
of these studies only focused on supervised models, while it is necessary to study the
performance of unsupervised models in detecting intrusions on a smart grid. For this
purpose, our study fills this gap by evaluating the performance of the best supervised
and unsupervised models in detecting intrusions on a smart grid. This table shows that
AlexNet and VA-Encoder outperform the other models in the literature in terms of accuracy,
probability of detection, probability of misdetection, probability of false alarm, processing
time, prediction time, training time per sample, and memory size.

Table 6. Comparison of related works with the proposed techniques.
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[1] Stacking X - 97.3 96 4.1 8.9 - - - - - - - - X -

[2] Categorical
Boosting X - 97.71 96.8 5.06 3.98 - - - - - - - - X -

[8]
Long Short-term

Memory with
Extreme Boosting

X - 88 98 - - - - - - X - X - - -

[9] Random
Forest X - 97.01 99.7 - - - - - - - - - - X -

[11] Isolation Forest X X 93.01 - - - - - - - - - - - - -

[12] K-means - X - - - - - - - - - - - - - -

[14]
Generative
Adversarial

Network
- X 93 87.5 - - - - - - - - - - - X

[15] Hierarchical
Temporal Memory - X 96 - - - - - - - - - - - - -

Proposed
Models

Alex
Net X - 98.71 98.9 1.1 1.29 1.16 1.06 0.10 104.2

- - - - X -
VA-

Encoder - X 96.7 97 3 3.3 1.7 1.23 0.11 143.2

To summarize, AlexNet could detect LDAP, DNS, SNMP, MSSQL, NetBIOS, NTP,
SSDP, TFTP, UDP, UDP-Lag attacks, and Benign traffic better than VA-Encoder.

The key points of this study are:

• The AlexNet model yielded the best results of all supervised and unsupervised learn-
ing techniques in terms of the highlighted metrics.
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• GNB and LR models yielded the worst results of the supervised models.
• The VA-Encoder model yielded the highest-performance results of the unsuper-

vised models.
• The worst performance model among the unsupervised models was K-means.
• Several models, such as CART, C-SVM, and PCA, yielded satisfactory results.

5. Conclusions

Intrusion Detection Systems are expected to monitor and detect abnormalities on
the networks. In general, studies have been performed to detect and classify attacks
on Intrusion Detection Systems; however, most of these studies have focused only on
supervised machine learning models. We have provided a comprehensive comparison
of supervised and unsupervised models in terms of accuracy, probability of detection,
probability of misdetection, probability of false alarm, processing time, prediction time,
training time per sample, and memory size. Models were classified as Bayesian, Tree,
Instance, Regularization, Neural Network, and Ensemble categories, and one model was
chosen from each category. We used Gaussian Naive Bayes, Classification and Regression
Decision Trees, C-support vector machines, logistic regression, Alex neural networks, and
Light Gradient Boosting for supervised models. We used Principal Component Analysis,
K-means, and Variational Autoencoder for unsupervised models. The results indicate
that the Alex Neural Network outperforms other supervised and unsupervised models;
however, VA-Encoder provided the best results compared to other unsupervised models.
In addition, cyber-attacks can be detected better with better performance in comparison
with the same attacks using Variational-Encoder. Future works include investigating the
performance of supervised and unsupervised deep learning models in detecting attacks on
intrusion detection systems.
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analysis, T.T.K.; investigation, T.T.K.; methodology, T.T.K.; visualization, T.T.K.; writing—original
draft, T.T.K. and N.K.; writing—review and editing, T.T.K. and N.K.; project administration, N.K.;
validation, N.K.; supervision, N.K.; funding acquisition, N.K. All authors have read and agreed to
the published version of the manuscript.
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