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Abstract: To identify objects in images, a complex set of skills is needed that includes understanding
the context and being able to determine the borders of objects. In computer vision, this task is
known as semantic segmentation and it involves categorizing each pixel in an image. It is crucial
in many real-world situations: for autonomous vehicles, it enables the identification of objects in
the surrounding area; in medical diagnosis, it enhances the ability to detect dangerous pathologies
early, thereby reducing the risk of serious consequences. In this study, we compare the performance
of various ensembles of convolutional and transformer neural networks. Ensembles can be created,
e.g., by varying the loss function, the data augmentation method, or the learning rate strategy. Our
proposed ensemble, which uses a simple averaging rule, demonstrates exceptional performance across
multiple datasets. Notably, compared to prior state-of-the-art methods, our ensemble consistently
shows improvements in the well-studied polyp segmentation problem. This problem involves the
precise delineation and identification of polyps within medical images, and our approach showcases
noteworthy advancements in this domain, obtaining an average Dice of 0.887, which outperforms the
current SOTA with an average Dice of 0.885.

Keywords: deep learning; ensembles; segmentation; transformers

1. Introduction

Image semantic segmentation [1] involves dividing an image into distinct, nonover-
lapping sections with similar properties. It is a fundamental task in computer vision and
image processing. The development of convolutional neural networks (CNNs) has signifi-
cantly advanced deep learning-based image semantic segmentation, finding applications
in various domains like autonomous driving, medical imaging, indoor navigation, virtual
reality, and augmented reality. For example, image semantic segmentation plays a vital
role in autonomous vehicle driving by segmenting the different elements in the scene,
such as roads, vehicles, pedestrians, traffic signs, and obstacles. This information helps
the autonomous system make accurate decisions and navigate safely. In medical imaging,
image semantic segmentation is employed to identify and segment different anatomical
structures or abnormalities in images, including organs, tumors, lesions, blood vessels,
and tissues. This assists in diagnosis, treatment planning, and monitoring of diseases; for
example, clinical practice often involves using object identification to detect polyps, while,
in skin and blood analysis, it can help identify diseases.

Semantic segmentation involves grouping similar components of an image that belong
to the same class. Traditional methods for image segmentation are pixel-based, edge-
detection-based, or region-based, but they have limitations: for instance, edge-detection-
based methods encounter challenges in forming closed regions, while region-based meth-
ods struggle to accurately segment edges [2].

For a long time, the ability to recognize and segment objects in images has been a
unique trait of humans. The growth of deep learning, particularly convolutional neural
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networks (CNNs), has greatly improved the performance of semantic image segmentation,
enabling accurate and efficient segmentation in various application domains. The fully
convolutional network (FCN) [3] was one of the first attempts to create a CNN-based image
segmentation network, where the traditional fully connected layer was replaced by a fully
convolutional layer. U-Net [4] is another popular DNN architecture for image segmentation.
It consists of an encoder–decoder structure with skip connections that help preserve spatial
information. U-Net is widely used in medical image segmentation tasks due to its ability
to handle limited training data effectively. DeepLab [5] is a family of DNN architectures
designed for semantic image segmentation that utilizes atrous (dilated) convolutions to
capture multiscale contextual information effectively. SegNet [6] is an encoder–decoder
style DNN architecture for semantic segmentation. It utilizes pooling indices during the
encoding phase to efficiently upsample feature maps during decoding. SegNet achieves
good results while being computationally efficient.

These and other deep learning approaches [1] based on convolutional neural net-
works (CNNs) have demonstrated remarkable accuracy in various semantic segmentation
tasks. However, CNNs have limitations in capturing global relationships in images due to
their localized convolutional operations. As a result, alternative methods such as vision
transformers (ViT) [7] and pyramid vision transformers (PVT) [8] have been developed.
ViTs and PVT are advanced computer vision techniques that have revolutionized image
understanding and achieved state-of-the-art (SOTA) performance in visual recognition
tasks. ViTs utilize self-attention mechanisms within the transformer architecture to process
images divided into fixed-size patches. This enables capturing global dependencies and
long-range relationships between patches. On the other hand, PVT combines CNNs and
ViTs by employing a hierarchical approach with multiscale feature pyramids. PVT uses
transformers to model relationships between features at different scales, integrating local
details and the global context through innovative attention modules. PVT is trained with a
combination of supervised and self-supervised learning methods to enhance its robustness
and generalization capabilities.

Despite the significance of the methods mentioned, there is still room for enhancing
their segmentation capabilities by combining them into an ensemble. Ensemble learning is
a machine learning strategy that combines multiple models, called base learners, to achieve
more accurate predictions or decisions than any individual model can achieve alone [9].
The concept behind ensemble learning is to leverage the collective intelligence of diverse
models to enhance overall performance. In ensemble learning, base learners can be trained
on the same dataset using different algorithms, parameters, or training sets. Each base
learner learns from the data and generates its prediction, which is then aggregated with
the others to produce the final prediction. Ensemble learning offers several advantages,
including improved prediction accuracy, reduced overfitting, and increased robustness
to noisy data. It is particularly effective when the base learners are diverse and make
uncorrelated errors [9].

Given the significance of the aforementioned methods and the potential enhancement
in segmentation accuracy through their combination, we propose an investigation into the
applicability of different topologies of networks (CNN [10], PVT [11], and mixed CNN
and transformer [12]) for semantic image segmentation. Additionally, we explore the
performance improvement of an ensemble that integrates these methods to evaluate its
impact on segmentation performance. This research builds upon prior work [13–15], which
focused on a limited number of case studies and models. The novelty of our research with
respect to previous works lies in the proposal of ensembles that encompass a wide range
of network architectures, models, and data augmentation techniques. Our experimental
results demonstrate that, through these strategies, we can construct robust and efficient
ensembles for a diverse array of segmentation problems without the need for extensive
hyperparameter tuning.

The structure of this paper is as follows. In Section 2, we present a review of en-
semble approaches. In Sections 3 and 4, we introduce and test an ensemble composed



Information 2023, 14, 657 3 of 18

of different convolutional and transformers topologies that achieves SOTA performance.
Sections 5 and 6 conclude the discussion with some final remarks.

2. Literature Review
2.1. Ensemble Approaches

As anticipated in Section 1, ensemble methods combine the outputs of multiple classi-
fiers to improve classification performance. Component classifiers are called base learners
or, sometimes, weak learners, thus highlighting that the performance of the individual
components of the ensemble is not decisive. What has been experimentally proven to be
crucial is the degree of diversity among the ensemble components ([16] and the references
therein). In other words, base learners should generalize differently [17] and, first of all,
their right and wrong answers on training samples should not be correlated. This key
aspect of ensemble learning creates an advantage out of finding that no single classifier
works well on all datasets, a fact known as the “no free lunch” theorem. In addition to
improved prediction accuracy, other advantages of ensemble methods include the ability
to increase performance without additional training data, which are notoriously difficult to
obtain in many practical applications, increased robustness to noisy data, and a reduced
tendency to overfit the training set [16]. The last advantage is particularly important for
deep neural networks, which are prone to overfitting [9].

Ensemble approaches were proposed well before deep learning, with the first scientific
works dating to the 1990s [17]. Over more than three decades, several methods, both
supervised and semisupervised [18], have been proposed to build ensembles while ensuring
diversity, and combining the answers of the base classifiers themselves. As far as building
strategies are concerned, two renowned methods are boosting [19], where different base
learners are trained on the same data, and bagging [20], where a single base learner is
trained multiple times on different data. In [19], boosting is theoretically analyzed and it is
proved that, by “filtering” the data used to learn the classifiers, the error of the ensemble
classifier as defined in the PAC model [21,22] can be made smaller than ε with probability
1 − δ for any 0 < ε < 1/2. A consequence of the constructive proof is that a labeled
sample of size n of any learnable concept can be compressed into a rule of size only
polylogarithmic in n. The analysis for bagging in [20] is not entirely quantitative. The
fundamental idea is to build multiple training sets of size n by sampling the available n
data multiple times, with replacement. This procedure was first introduced in statistics
with the name bootstrapping [23]. If the training process is “unstable”, that is, bootstrapped
sets produce quite different classifiers, then the combined output of such classifiers exhibits
higher accuracy.

2.2. Ensemble Combination Strategies

As mentioned earlier, different methods have also been proposed to combine the
answers of the base classifiers, a crucial step known as voting. Popular fusion strategies that
are easy to implement in practice are majority voting and the average rule [9]. The former
dictates that the final output of the ensemble is the class on which the maximum number
(for nonbinary problems, not necessarily the majority) of base learners agree. For semantic
segmentation, majority voting implies that a pixel is assigned to the predicted mask if the
majority of the base learners predict so. The average rule, which is applicable when the
classification result is a continuous value, stipulates that the final output is the mean of the
outputs of the base learners. This strategy is attractive for semantic segmentation, where
the output of the learners is typically a per-pixel probability of that pixel belonging to the
mask. The average rule is the simplest member in a family of strategies based on the output
of the base learners [24]. A prominent variant of the average rule is the weighted average
rule, where the sum is performed with weights assigned to the base learners according to
their performance on the training or validation set.
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2.3. Ensembles in Deep Learning

In recent years, ensemble strategies have been successfully applied in deep learning:

• For different tasks, including image classification, detection, and segmentation;
• In several application domains, including healthcare, speech analysis, forecasting,

fraud prevention, and information retrieval.

This paper addresses the task of image segmentation in multiple application domains:
healthcare, detection of skin and camouflaged objects, gesture recognition, human activity
recognition, and portrait segmentation. SOTA results in such domains are reported in
Section 4 as baselines for our experiments. For a broader review of ensembles in deep
learning, we refer the interested reader to the recent survey in [25].

3. Materials and Methods

In this section, we will outline the methods and techniques used in creating our
ensemble models.

In our experimentation, we examine various ensembles constructed from four dis-
tinct network architectures. These networks were selected to diversify our feature repre-
sentations for semantic segmentation. Each network was carefully chosen based on its
unique characteristics:

• DeepLabV3+ [26] and HarDNet-MSEG [10] are both convolutional neural network
(CNN)-based architectures with different encoder structures, offering distinct feature
representations. DeepLabV3+ excels in semantic segmentation, while HarDNet-MSEG
provides unique multiscale feature extraction;

• Polyp-PVT [11] represents a transformer-based architecture, offering a different
approach to feature extraction and context modeling, which complements CNNs;

• HSNet [12] is a hybrid architecture that combines CNN and transformer components,
exploiting the advantages of both, resulting in a broader range of feature representa-
tions and contextual information.

These networks are state-of-the-art within their respective categories. By ensembling
networks from diverse architectural backgrounds, we harnessed the richness of feature
representations, mitigating biases and errors inherent to a single model. This diversity
allowed us to capture a wide range of patterns and contexts, enhancing segmentation
performance and robustness.

Regarding optimization techniques, we used Adam for HarDNet-MSEG, AdamW for
Polyp-PVT and HSNet, and stochastic gradient descent (SGD) for DeepLabV3+, in line
with the original papers.

3.1. Loss Functions

The type of loss function used can affect the training and performance of a model
in semantic segmentation tasks. One common loss function used is pixel-wise cross-
entropy, which evaluates the accuracy of predicted labels at the pixel level. However, this
approach can be problematic when the dataset is unbalanced in terms of labels, which can be
addressed by using counterweights. In this work, we employed a variety of loss functions
for semantic segmentation, each chosen for specific reasons based on its appropriateness
in addressing different challenges in the segmentation task. Our primary objective was to
establish a diverse array of loss functions rooted in various underlying principles. This
approach was pursued with the aim of optimizing the overall performance of our ensemble
model. The types of loss functions used in this study can be categorized into the following
groups:

• Dice-Based Loss Functions:

– The Generalized Dice Loss LGD(Y, T) is a multiclass variant of the Dice Loss;
– The Focal Generalized Dice Loss LFGD(Y, T) is the focal version of the General-

ized Dice Loss, emphasizing hard-to-segment regions while downplaying well-
segmented areas;
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– The Log-Cosh Dice Loss LlcGD(Y, T) is a combination of the Dice Loss and the
Log-Cosh function, applied with the purpose of smoothing the loss curve.

• Tversky-Based Loss Functions:

– The Tversky Loss LT(Y, T) is a weighted version of the Tversky index designed to
deal with unbalanced classes;

– The Focal Tversky Loss LFT(Y, T) is a variant of the Tversky loss where a modu-
lating factor is used to ensure that the model focuses on hard samples instead of
properly classified examples;

– The Log-Cosh Focal Tversky Loss LlcFT(Y, T) is based on the same idea of smooth-
ing, here applied to the Focal Tversky Loss.

• Structural Similarity-Based Loss Functions:

– The SSIM Loss LS(Y, T) is obtained from the Structural similarity (SSIM) index,
usually adopted to evaluate the quality of an image;

– The MS-SIM Loss LMS(Y, T) is a variant of LS(Y, T) defined using the multiscale
structural similarity (MS-SSIM) index.

• Boundary-Based Loss Functions:

– The Boundary Enhancement Loss (LBE) explicitly focuses on the boundary areas
during training. The Laplacian filter L (·) is used to generate strong responses
around the boundaries and zero everywhere else; see [13] for details. We gather
Dice Loss, Boundary Enhancement loss, and the Structure Loss together, weighted
appropriately: LDiceBES = λ1LDice + λ2LBE + LStr. We set λ1 = 1 and λ2 = 0.01;

– The Structure Loss is a combination of the weighted Intersect over Union (LwIoU)
and the weighted binary-crossed entropy loss Lwbce. We refer the reader to [10]
for details. The weights in this loss function are determined by the importance of
each pixel, which is calculated from the difference between the center pixel and its
surrounding pixels. To give more importance to the binary-crossed entropy loss,
we used a weight of 2, as suggested in [10], for it: LSTR = LwIoU + 2Lwbce.

• Combined Loss Functions:
The losses described above can be combined in different ways; notice that each com-
ponent has the same weight equal to 1:

– Comb1(Y, T) = LFGD(Y, T) + LFT(Y, T),
– Comb2(Y, T) = LlcGD(Y, T) + LFGD(Y, T) + LlcFT(Y, T),
– Comb3(Y, T) = LS(Y, T) + LGD(Y, T),
– Comb4(Y, T) = LMS(Y, T) + LFGD(Y, T).

These loss functions were selected based on their specific characteristics and suitability
for addressing various segmentation challenges. For example, Dice-based loss functions
are known for their ability to capture fine details, making them suitable for high-resolution
image segmentation. Tversky-based loss functions, on the other hand, are effective in
handling class imbalance, making them valuable for datasets with uneven class distribu-
tions. Boundary-based losses are designed to focus on the accurate delineation of object
boundaries within segmented regions. These losses aim to penalize errors in boundary
localization and promote precise edge detection. Lastly, SSIM-based loss functions offer
a different perspective by evaluating the structural similarity between the predicted and
ground truth masks, which can be beneficial for certain types of segmentation tasks. The
choice of these diverse loss functions allows us to take advantage of their unique strengths
to effectively address different segmentation problems. This flexibility in loss function
selection enhances the robustness and performance of our semantic segmentation model.

For a more detailed description of the set of loss functions, the interested reader can
refer to [10,13].
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3.2. Data Augmentation

The training of the segmentation network and the final performance of the system
are strongly affected by the size of the training set. In order to increase the amount of data
available for training a system, various techniques can be applied to the original dataset. In
this work, we applied the data augmentation techniques investigated in [12,13]. The choice
of these particular data augmentation techniques was informed by both empirical evidence
from previous experiments, which demonstrated their effectiveness in enhancing segmen-
tation performance, and the need to enhance diversity among classifiers by incorporating
various types of data augmentation.

• Data Augmentation 1 (DA1) [13] is obtained through horizontal flip, vertical flip, and
90° rotation;

• Data Augmentation 2 (DA2) [13] consists of 13 operations, some changing the color of
an image and some changing its shape;

• Data Augmentation 3 (DA3) is a variant of the approach used in [12]. It consists of
using multiscale strategies (i.e., 1.25, 1, 0.75) to alleviate the sensitivity of the network to
scale variability. Simultaneously, random perspective technology is adopted to process
the input image with a probability of 0.5, together with random color adjustment
with a probability of 0.2 for data augmentation. While DA1 and DA2 do not include
randomness, DA3 uses a different training set for each network. The application of
this data augmentation technique substantially amplifies result variability within the
network, consequently fostering greater diversity among ensemble constituents.

Some artificial images, mainly produced by the DA2 method, contain only background
pixels. To discard them, we simply removed all images with fewer than 100 pixels be-
longing to the foreground class. Moreover, we also discarded images that did not contain
background pixels.

3.3. Performance Metrics

As performance indicators, we used two standard metrics: the Dice score and the
intersection over union (IoU). These metrics ensure comparability with other works, pro-
vide insight into segmentation accuracy, and are suitable for a variety of datasets. The
true positives, true negatives, false positives, and false negatives in the formulas below
are represented by TP, TN, FP, and FN, respectively. A is the predicted mask and B is the
ground truth mask. The Dice score is defined as:

F1Score = Dice =
|A ∩ B|
|A|+ |B| =

2 · TP
2 · TP + FP + FN

.

The intersection over union (IoU) is defined as:

IoU =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

.

3.4. Datasets and Testing Protocols

We conducted experiments with our ensembles on nine datasets, selected for our
study because they present diverse and well-documented image segmentation challenges.
These datasets serve as a demonstration of the applicability and versatility of our ensemble
approach to a wide range of image types and applications, offering valuable insights into
the model’s performance across various scenarios. Additionally, we exclusively chose
freely downloadable datasets to establish a benchmark that can be accessed and used by
the entire community.

The following subsections include a brief description of the nine datasets used in this
work (Figure 1).
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Figure 1. Samples from the nine datasets. Top row: original images. Bottom row: corresponding
masks.

3.4.1. Polyp Segmentation (POLYP)

Polyp segmentation in colonoscopy images is a challenging task that involves distin-
guishing between two classes: polyp pixels and the low-contrast background of the colon.
In our study, we conducted experiments on five different datasets widely used [12] for
polyp segmentation.

• The Kvasir-SEG dataset comprises medical images that have been meticulously labeled
and verified by medical professionals. These images depict various segments of
the digestive system, showcasing both healthy and diseased tissue. The dataset
encompasses images with varying resolutions, ranging from 720 × 576 pixels to
1920 × 1072 pixels, organized into folders based on their content. Some of these
images also include a small picture-in-picture display indicating the position of the
endoscope within the body;

• The CVC-ColonDB dataset consists of images designed to offer a diverse range of
polyp appearances, maximizing dataset variability;

• CVC-T serves as the test set of a larger dataset named CVC-EndoSceneStill;
• The ETIS-Larib dataset comprises 196 colonoscopy images;
• CVC-ClinicDB encompasses images extracted from 31 videos of colonoscopy proce-

dures. Expert annotations identify the regions affected by polyps, and ground truth
data are also available for light reflections. The images in this dataset are uniformly
sized at 576 × 768 pixels.

Our training set comprised 1450 images sourced from the largest datasets, with
900 images from Kvasir and 550 images from ClinDB. The remaining images, including 100
from Kvasir, 62 from ClinDB, and all images from ColDB, CVC-T, and ETIS, constituted the
test set for our experiments (Table 1). According to previous works [10–12], we used mean
Dice (mDic) and mean IoU (mIoU) as performance indicators on this problem.

Table 1. Test set for POLYP.

Short Name Name #Samples

Kvasir Kvasir-SEG dataset 100
ColDB CVC-ColonDB 380
CVC-T CVC-EndoSceneStill 300

ETIS ETIS-Larib 196
ClinicDB CVC-ClinicDB 612

The polyp datasets are available at https://github.com/james128333/HarDNet-MSEG,
(accessed on 5 December 2023).

3.4.2. Skin Segmentation (SKIN)

In the context of skin detection, the segmentation task involves identifying parts of
an image that correspond to “skin” or “non-skin”, which makes it essentially a binary
classification problem. In this paper, we employed the framework introduced in [27] for a
fair comparison of skin detection approaches. This framework is based on a small training

https://github.com/james128333/HarDNet-MSEG
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set consisting of 2000 images from the ECU dataset [28] and 10 diverse testing datasets, as
outlined in Table 2. Following the testing protocol outlined in [27], we calculated the Dice
score at the pixel level, not at the image level, and then computed the average score across
each dataset; finally, the average Dice score on the test sets was considered.

Table 2. Test set for SKIN. The ECU dataset was split into 2000 images for training and 2000 as a
further test set.

Short Name Name #Samples

Prat Pratheepan 78
MCG MCG-skin 1000
UC UChile DB-skin 103

CMQ Compaq 4675
SFA SFA 1118
HGR Hand Gesture Recognition 1558
Sch Schmugge dataset 845

VMD Human Activity Recognition 285
ECU ECU Face and Skin Detection 2000
VT VT-AAST 66

3.4.3. Leukocyte Segmentation (LEUKO)

Leukocyte recognition is the task of segmenting the white blood cells from the back-
ground, with the aim of diagnosing many diseases such as leukemia and infections. In
our experiments, we used the freely available LISC database [29], which is a collection
of 250 hematological images extracted from the peripheral blood of eight healthy people.
Images were acquired at a high resolution (720 × 576 pixels) and manually labeled to
segment different types of leukocytes; notice that there is no imbalance in the number of
images between different types of leukocytes. In this work, we did not perform classifi-
cation; therefore, we only consider segmentation performance. The testing protocol, as
suggested by the authors of the dataset, is a 10-fold cross-validation approach. LISC is
available at https://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm
(accessed on 5 December 2023).

3.4.4. Butterfly Identification (BFLY)

As already proposed in the literature, for butterfly identification, we adopted the
public Leeds Butterfly dataset [30]. For a fair comparison with previous results, we used
the same testing protocol proposed by the authors of the dataset, that is, a 4-fold cross-
validation approach, where each fold includes 208 test images and 624 training images. The
dataset is available at https://www.josiahwang.com/dataset/leedsbutterfly/ (accessed on
5 December 2023).

3.4.5. Microorganism Identification (EMICRO)

For the task of identifying microorganisms, we selected the Environmental Microor-
ganism Image Dataset Version 6 (EMDS-6). Proposed in [31], it is a public dataset with
840 images. Following the original paper, we assigned 37.5% of the images to the test
set. EMDS-6 is available at https://figshare.com/articles/dataset/EMDS-6/17125025/1
(accessed on 5 December 2023).

3.4.6. Ribs Segmentation (RIBS)

The goal of this application is the semantic segmentation of ribs from chest radiographs.
The training and testing samples come from the VinDr-RibCXR dataset [32], which is a
small, publicly available dataset for the segmentation and labeling of the anterior and
posterior ribs. The dataset contains 245 anteroposterior/posteroanterior chest X-ray images
and the corresponding masks, created by human experts. We split the dataset into a training
and a test set in the same way as that used by the original authors of [32].

https://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm
https://www.josiahwang.com/dataset/leedsbutterfly/
https://figshare.com/articles/dataset/EMDS-6/17125025/1
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3.4.7. Locust Segmentation (LOC)

The detection and segmentation of locusts is crucial for plant protection robots to
effectively capture and eliminate them. However, locusts often have colors and textures that
blend in with their surroundings, making it difficult for common segmentation methods to
accurately distinguish them. This poses a challenge for efficient locust control. The same
dataset used in [33] was tested. There are 874 images in the training set and 120 images in
the test set.

3.4.8. Portrait Segmentation (POR)

Portrait segmentation is widely used as a preprocessing step in various applications
such as security systems, entertainment, and video conferences. For this study, we utilized
the EG1800 dataset [34], which includes 1447 images for training and 289 images for
validation. In addition, 62.63% of the pixels belong to the foreground class; thus, it is
a fairly balanced dataset. POR can be accessed at https://github.com/HYOJINPARK/
ExtPortraitSeg (accessed on 5 December 2023).

3.4.9. Camouflaged Segmentation (CAM)

The CAMO dataset [35] was specifically created to identify and separate camouflaged
objects in images. It includes two categories: those that are naturally camouflaged, such as
animals, and those that are artificially camouflaged, often corresponding to humans. The
dataset contains a total of 1250 images, with 1000 reserved for training and 250 for testing.

4. Experimental Results

Our extensive empirical evaluation aimed to assess the performance of our ensembles.
The evaluation was carried out on several real-world datasets, as described in Section 3.4.
All networks were trained by resizing the images to a consistent input size. For the test set,
we resized the input images to the input dimensions of the network and resized the output
masks to the original image size to calculate the performance metrics.

We performed two different sets of tests.

• In Section 4.1, different methods for building an ensemble of DeepLabV3+ models are
tested and compared;

• In Section 4.2, the ensemble of different topologies is tested and the different methods
for building the output mask of HArdNet, HSN and PVT are compared.

We selected the specific ensemble architectures in our work for their ability to comple-
ment each other, combining different strengths and mitigating weaknesses. The diversity
of the ensemble members was a key factor in our selection, as it contributes to the over-
all robustness and adaptability of the ensemble. The experiments between the various
topologies are not symmetrical, given the different computation times for training.

4.1. Experiments: DeepLabV3+

In this section, we compare various methods to create a DeeplabV3+ ensemble. The
fusion was performed by the average rule if not specified otherwise. The optimization
parameters were not modified (i.e., they were the same in all the tested datasets) to prevent
overfitting phenomena.

• Initial learning rate = 0.01;
• Number of epoch = 10 or 15 (it depended on data augmentation: see below);
• Momentum = 0.9;
• L2Regularization = 0.005;
• Learning Rate Drop Period = 5;
• Learning Rate Drop Factor = 0.2;
• Shuffle training images at every epoch;
• Optimizer = SGD (stochastic gradient descent).

https://github.com/HYOJINPARK/ExtPortraitSeg
https://github.com/HYOJINPARK/ExtPortraitSeg
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We tested some backbones for coupling with DeepLabV3+: ResNet18 (RN18) pre-
trained on ImageNet; ResNet50 (RN50) pretrained on ImageNet; ResNet101 (RN101) pre-
trained on the VOC segmentation dataset. DeepLabV3+ was trained for 10 epochs if it was
coupled with DA1 or for 15 epochs if DA2 was used as the data augmentation approach.
Data augmentation approaches are described in Section 3.2. Each ensemble is made up of
N models (N = 1 denotes a stand-alone model); if not specified, each network differs only
for the randomization in the training process (i.e., N different trainings were run).

• ERN18(N) is an ensemble of N RN18 networks trained with DA1;
• ERN50(N) is an ensemble of N RN50 networks trained with DA1;
• ERN101(N) is an ensemble of N RN101 networks trained with DA1;
• E101(10) is an ensemble of 10 RN101 models trained with DA1 and five different loss

functions. The final fusion is determined by the formula: 2× LGD + 2× LT + 2×
Comb1 + 2× Comb2 + 2× Comb3, where 2× Lx indicates two RN101 models trained
using the loss function Lx;

• EM(10) is a similar ensemble, but the two networks using the same loss (as in E101(10),
the five losses are LGD, LT , Comb1, Comb2, Comb3) were trained once using DA1 and
once using DA2;

• EM2(10) is similar to the previous ensemble, but LDiceBES was used instead of LT ;
• In EM2(5)_DAx, five RN101 networks were trained using the loss of EM2(10). All five

networks were trained using data augmentation DAx;
• EM3(10) is similar to the previous ensemble, but LSTR was used as a loss function.

The results of the experiments are provided in Table 3 and can be summarized
as follows:

• Among stand-alone networks, RN101 obtained the best average performance, but
in RIBS (a small training set), it performed worse than the others. This probably
happened because it is a larger network than RN18 and RN50, thus it requires a larger
training set for better tuning;

• ERN101(10) always outperformed RN101(1);
• E101(10) outperformed ERN101(10) with a p-value of 0.0078 (Wilcoxon signed rank

test) and EM(10) outperformed E101(10) with a p-value of 0.0352. For the sake of
space, we have not reported the performance obtained from individual losses. In any
case, there was no winner: the various losses led to similar performances;

• EM3(10) obtained the highest average performance, but the p-value was quite high: it
outperformed EM(10) with a p-value of 0.1406 and EM2(10) with a p-value of 0.2812;

• There was no statistical difference between the performance of EM2(5)_DA1 and
EM2(5)_DA2. Instead, EM2, using both data augmentation methods, achieved better
performance (on average) than EM2(5)_DA1 and EM2(5)_DA2.

Table 3. Dice scores for the proposed DeepLabV3+ ensembles on the nine benchmark datasets. The
best performance metrics for each dataset are highlighted in bold.

POLYP SKIN LEUKO BFLY EMICRO RIBS LOC POR CAM

RN18(1) 0.806 0.865 0.897 0.960 0.908 0.827 0.812 0.980 0.624
RN50(1) 0.802 0.871 0.895 0.968 0.909 0.818 0.835 0.979 0.665
RN101(1) 0.808 0.871 0.915 0.976 0.918 0.776 0.830 0.981 0.717
ERN18(10) 0.821 0.866 0.913 0.963 0.913 0.842 0.830 0.981 0.672
ERN50(10) 0.807 0.872 0.897 0.969 0.918 0.839 0.840 0.980 0.676
ERN101(10) 0.834 0.878 0.925 0.978 0.919 0.779 0.838 0.982 0.734
E101(10) 0.842 0.880 0.925 0.980 0.921 0.785 0.841 0.984 0.747
EM(10) 0.851 0.883 0.936 0.983 0.924 0.833 0.854 0.985 0.740
EM2(10) 0.851 0.883 0.943 0.984 0.925 0.846 0.859 0.986 0.731
EM2(5)_DA1 0.836 0.881 0.928 0.982 0.921 0.800 0.841 0.985 0.742
EM2(5)_DA2 0.847 0.869 0.948 0.985 0.920 0.860 0.842 0.983 0.700
EM3(10) 0.852 0.883 0.945 0.985 0.925 0.856 0.860 0.986 0.728
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The IoU performance indicator is only reported in Table 4 for the best ensembles.
Using IoU, we confirmed the conclusions obtained with Dice, i.e., EM3(10) obtained the
highest average performance but the p-value was quite high; it outperformed EM(10) with
a p-value of 0.1484 and EM2(10) with a p-value of 0.2656.

Table 4. IoU for the best DeepLabV3+ ensembles on the nine benchmark datasets. The best perfor-
mance metrics for each dataset are highlighted in bold.

POLYP SKIN LEUKO BFLY EMICRO RIBS LOC POR CAM

EM(10) 0.787 0.798 0.887 0.966 0.869 0.714 0.769 0.971 0.630
EM2(10) 0.790 0.799 0.897 0.969 0.870 0.734 0.778 0.972 0.621
EM3(10) 0.791 0.798 0.899 0.970 0.872 0.749 0.780 0.972 0.617

All these conclusions were obtained using a range of diverse datasets, so we are fairly
confident that these results are reliable.

4.2. Experiments: Combining Different Topologies

Each network was trained end-to-end for 50 epochs, with a batch size of 20. HardNet-
MSEG, PVT, and HSNet were trained using the structure loss function and the following
learning rates:

• LRa: 10−4;
• LRb: 5× 10−4 decaying to 5× 10−5 after 10 epochs;
• LRc: 5× 10−5 decaying to 5× 10−6 after 30 epochs.

We removed the normalization layer from the HardNet, PVT, and HSN models. In the
original versions of these models, the segmentation maps are normalized between 0 and 1
before being output, even though there are no foreground pixels in the image. However,
this assumption may not hold for all datasets. As a result, the segmentation results obtained
using the modified HardNet, PVT, and HSN models may differ slightly from the original
results. Additionally, we changed the way the final segmentation maps are processed in
the PVT and HSN models. In the original versions, the maps are summed and then passed
through a sigmoid function: this saturates the sigmoid and the network output is very
sharp; hence, the average rule among outputs of HSNs and PVTs is almost like a voting
rule. In our modified versions (named SM), we pass each map separately through the
sigmoid and average the results. Our output is given by:

nS

∑
i=1

sigmoid(Pi)/nS,

where Pi is a segmentation map and nS is the number of segmentation maps of the topology.
Tables 5–7 report the performance of the three networks (that is, HardNet-MSEG, PVT,

and HSNet) by varying the data augmentation (DA) and the learning rate (LR) on four
problems. For Tables 6 and 7, the SM column indicates whether we were using the original
output of HSN and PVT (SM = No) or the segmentation maps we previously described
(SM = Yes). The last rows of Tables 5–7 report the performance of the following ensembles:

• Fusion: the combination of all the nets while varying the DA and LR strategy;
• Baseline Ensemble: fusion between nine networks (the same size of Fusion) obtained

via retraining DA3-LRc nine times;
• SOTAEns: The best ensemble, related to a given topology, previously reported in [13–15].

It is important to note that, in this way, we show the comparison with the best previous
results of that network in that dataset, on average, improving on the previous results.
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Table 5. Dice scores obtained by the HardNet based ensembles. The best performance metrics for
each dataset are highlighted in bold.

DA LR POLYP SKIN EMICRO CAM

HardNet DA1
LRa 0.828 0.873 0.912 0.700
LRb 0.821 0.858 0.905 0.667
LRc 0.795 0.869 0.909 0.712

HardNet DA2
LRa 0.852 0.870 0.912 0.715
LRb 0.826 0.854 0.905 0.665
LRc 0.846 0.872 0.910 0.710

HardNet DA3
LRa 0.828 0.853 0.907 0.653
LRb 0.832 0.839 0.904 0.613
LRc 0.828 0.865 0.904 0.694

Fusion DA1,2,3 LRa,b,c 0.868 0.883 0.921 0.726
SOTAEns 0.863 0.886 0.916 —

Table 6. Dice scores obtained by the PVT based ensembles. The best performance metrics for each
dataset are highlighted in bold.

DA LR SM POLYP SKIN EMICRO CAM

PVT DA1
LRa No 0.857 0.874 0.919 0.788
LRb No 0.850 0.844 0.914 0.743
LRc No 0.861 0.877 0.919 0.810

PVT DA2
LRa No 0.862 0.845 0.917 0.742
LRb No 0.847 0.854 0.912 0.743
LRc No 0.862 0.876 0.917 0.813

PVT DA3
LRa No 0.855 0.875 0.917 0.765
LRb No 0.851 0.856 0.916 0.718
LRc No 0.871 0.883 0.918 0.817

Fusion DA1,2,3 LRa,b,c No 0.884 0.892 0.925 0.813
Fusion DA1,2,3 LRa,b,c Yes 0.885 0.892 0.926 0.814
Baseline Ensemble DA3 LRc 0.880 0.886 0.921 0.829
SOTAEns 0.877 0.883 0.922 —

Table 7. Dice scores obtained by the HSN based ensembles. The best performance metrics for each
dataset are highlighted in bold.

DA LR SM POLYP SKIN EMICRO CAM

HSN DA1
LRa No 0.847 0.873 0.919 0.776
LRb No 0.852 0.816 0.916 0.742
LRc No 0.860 0.873 0.919 0.817

HSN DA2
LRa No 0.857 0.873 0.921 0.742
LRb No 0.849 0.850 0.918 0.743
LRc No 0.873 0.873 0.919 0.814

HSN DA3
LRa No 0.866 0.863 0.922 0.782
LRb No 0.854 0.856 0.913 0.697
LRc No 0.866 0.876 0.924 0.800

Fusion DA1,2,3 LRa,b,c No 0.881 0.885 0.926 0.813
Fusion DA1,2,3 LRa,b,c Yes 0.882 0.886 0.926 0.812
Baseline Ensemble DA3 LRc 0.876 0.879 0.923 0.820
SOTAEns 0.879 0.879 — —
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The conclusions that can be drawn from the results in the tables are as follows:

• Fusion obtained the best performance, outperforming (on average) the stand-alone
approaches and previous best ensemble (SOTAEns);

• There was no clear winner among the different data augmentation approaches and
learning rate strategies;

• The proposed Fusion ensemble always improved the Baseline Ensemble except in
CAMO. In this dataset, there was a significant difference in the performance between
LRc and the other learning strategies; combining only the three networks based on
LRc (i.e., using the three data augmentations coupled with LRc), both HS and PVT
obtained a Dice of 0.830, outperforming the Baseline Ensemble.

In summary, the data in the aforementioned tables suggest that using the proposed en-
semble segmentation method improved the performance of previous HSN and
PVT ensembles.

In Table 8, our ensembles are compared with the state of the art (SOTA) reported
in the literature. In our final proposed ensembles, the methods were combined with the
weighted average rule: weight 1 for EM3 and Fusion(FH); weight 2 for Fusion(PVT) and
Fusion(HSN). We report the performance of the following ensembles:

• Ens1: EM3(10) 	 Fusion(FH) 	 Fusion(PVT) 	 Fusion(HSN). See Figure 2;
• Ens2: Fusion(FH) 	 Fusion(PVT) 	 Fusion(HSN);
• Ens3: Fusion(PVT) 	 Fusion(HSN).

It is clear that combining different network architectures led to higher performance
than with a single topology. Moreover, we obtained SOTA performance. For instance, in
EMicro, the authors of the dataset reported a Dice score of 0.884, and our ensembles ob-
tained a higher 0.927 Dice score. Compared with previous work, we standardized the data
augmentation step, which was previously implemented in different languages for CNNs
(Matlab) and transformers (Python); in this work, we only used the data augmentation cre-
ated by Matlab. This led to small differences in performance, e.g., the implementation used
in this paper of the data augmentation method detailed in [14] obtained an average Dice
of 0.891 instead of 0.895, so the method proposed in this work is our suggested ensemble.
In addition, this ensemble was tested on four datasets, so we are more confident that the
proposed approach will perform well in other datasets.

Some inference masks are shown in Figure 3. They demonstrate that our ensemble
model produces better boundary results and makes more accurate predictions with respect
to the best stand-alone net (PVT). Finally, Table 9 presents a performance comparison
between the proposed ensemble Ens2 and recent models developed and available in the
literature for the polyp segmentation problem. Compared to the literature, considering
average performance, the proposed ensemble outperformed the methods proposed in the
literature. In Table 10, the skin segmentation performance for each of the 10 skin datasets is
reported for Ens2 and stand-alone networks; each stand-alone network was coupled with
DA3 and LRc. It is clear that Ens2 strongly outperformed the stand-alone approaches.

Table 8. Comparison with previous SOTA ensembles: Dice scores.

POLYP SKIN EMICRO CAM

Ens1 0.886 0.892 0.927 0.817
Ens2 0.887 0.893 0.927 0.812
Ens3 0.886 0.894 0.927 0.805
[13] 0.874 0.893 0.926 —
[14] — 0.895 — —
[15] 0.885 — — —
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Figure 2. Schema of ensemble Ens1.

Figure 3. Segmentation results on the polyp, skin, EMICRO, and CAMO datasets; each line contains
original images, ground truth, result from PVT_DA3_LRc, and Ens2. False-positive pixels are in
green, while the false negatives are in red.
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Table 9. Comparison of performance between the proposed ensembles and recent models developed
and available in the literature for the polyp segmentation problem. The best performance metrics for
each dataset are highlighted in bold.

Method
Kvasir ClinDB ColDB ETIS CVC-T Average

IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice

Ens2 0.883 0.927 0.893 0.935 0.766 0.840 0.762 0.833 0.834 0.899 0.828 0.887
HSNet [12] 0.877 0.926 0.905 0.948 0.735 0.81 0.734 0.808 0.839 0.903 0.818 0.879

MIA-Net [36] 0.876 0.926 0.899 0.942 0.739 0.816 0.725 0.8 0.835 0.9 0.815 0.877
P2T [37] 0.849 0.905 0.873 0.923 0.68 0.761 0.631 0.7 0.805 0.879 0.768 0.834

DBMF [38] 0.886 0.932 0.886 0.933 0.73 0.803 0.711 0.79 0.859 0.919 0.814 0.875
HarDNet [10] 0.857 0.912 0.882 0.932 0.66 0.731 0.613 0.677 0.821 0.887 0.767 0.828

PraNet, from [10] 0.84 0.898 0.849 0.899 0.64 0.709 0.567 0.628 0.797 0.871 0.739 0.801
SFA, from [10] 0.611 0.723 0.607 0.7 0.347 0.469 0.217 0.297 0.329 0.467 0.422 0.531

U-Net++, from [10] 0.743 0.821 0.729 0.794 0.41 0.483 0.344 0.401 0.624 0.707 0.57 0.641
U-Net, from [10] 0.746 0.818 0.755 0.823 0.444 0.512 0.335 0.398 0.627 0.71 0.581 0.652

SETR [39] 0.854 0.911 0.885 0.934 0.69 0.773 0.646 0.726 0.814 0.889 0.778 0.847
TransUnet [40] 0.857 0.913 0.887 0.935 0.699 0.781 0.66 0.731 0.824 0.893 0.785 0.851
TransFuse [41] 0.87 0.92 0.897 0.942 0.706 0.781 0.663 0.737 0.826 0.894 0.792 0.855
UACANet [42] 0.859 0.912 0.88 0.926 0.678 0.751 0.678 0.751 0.849 0.91 0.789 0.85

SANet [43] 0.847 0.904 0.859 0.916 0.67 0.753 0.654 0.75 0.815 0.888 0.769 0.842
MSNet [44] 0.862 0.907 0.879 0.921 0.678 0.755 0.664 0.719 0.807 0.869 0.778 0.834

Polyp-PVT [11] 0.864 0.917 0.889 0.937 0.727 0.808 0.706 0.787 0.833 0.9 0.804 0.869
SwinE-Net [45] 0.87 0.92 0.892 0.938 0.725 0.804 0.687 0.758 0.842 0.906 0.803 0.865

AMNet [46] 0.865 0.912 0.888 0.936 0.69 0.762 0.679 0.756 - - - -
MGCBFormer [47] 0.885 0.931 0.915 0.955 0.731 0.807 0.747 0.819 0.851 0.913 0.826 0.885

Table 10. Comparison of performance between the proposed ensembles and recent models for the
skin detection problem. The best performance metrics for each dataset are highlighted in bold.

Method Prat MCG UC CMQ SFA HGR Sch VMD ECU VT AVG

Ens2 0.928 0.896 0.913 0.870 0.956 0.972 0.804 0.770 0.956 0.861 0.893
HardNet 0.908 0.881 0.911 0.832 0.948 0.962 0.772 0.661 0.942 0.832 0.865

PVT 0.919 0.891 0.906 0.860 0.950 0.970 0.806 0.726 0.950 0.849 0.883
HSN 0.921 0.898 0.908 0.854 0.954 0.966 0.778 0.659 0.951 0.860 0.876

5. Discussion

The results presented in Section 4 offer valuable insight into the effectiveness of our
proposed ensemble segmentation approach. In this dedicated discussion, we dive deeper
into these findings and their implications.

5.1. Performance and Ensemble Comparison

Our experiments demonstrate that the fusion-based ensemble consistently outper-
formed both the stand-alone approaches and the previous ensemble method. This robust
performance improvement is a key highlight of our research. The fusion approach, which
combines diverse network architectures, models, and data augmentation techniques, show-
cased its potential as a powerful tool to improve segmentation accuracy across a wide range
of problems. This finding underlines the adaptability and utility of ensemble methods,
particularly those that draw upon multiple sources of variation.

5.2. Data Augmentation and Learning Rate Strategies

While we explored various data augmentation techniques and learning rate strategies,
there was no definitive standout approach across all datasets. The choice of data augmen-
tation and learning rate strategy did not yield a clear winner, indicating the complex and
dataset-specific nature of these decisions. However, our ensemble approach was demon-



Information 2023, 14, 657 16 of 18

strated to be effective regardless of these variations, emphasizing its robustness and ability
to mitigate the need for extensive hyperparameter tuning.

5.3. Comparative Analysis with the State of the Art

In Table 8, we provide a comprehensive comparison of our ensembles with the SOTA
results reported in the literature. Our final proposed ensembles combine multiple methods
using a weighted average rule, leading to significant performance gains. It is evident that
incorporating different network architectures within our ensembles results in superior
performance compared to single-topology ensembles. Furthermore, our approach achieved
new SOTA performance in multiple segmentation tasks, underlining the contributions and
advancements made by our research.

5.4. Overall Contribution

In summary, our research introduces a novel ensemble segmentation method that
leverages the fusion of diverse network architectures, models, and data augmentation tech-
niques. The results illustrate the method’s potential for improving segmentation accuracy
without extensive hyperparameter tuning. The ability of our ensembles to consistently
outperform previous ensembles and achieve new SOTA performance is a significant con-
tribution to the field of image segmentation. Moreover, the findings support the notion
that combining diverse network topologies enhances segmentation outcomes. The results
reported in this study provide valuable insights and practical guidance for researchers and
practitioners when selecting and composing ensembles for image segmentation tasks. Our
work emphasizes the adaptability and robustness of ensemble methods and underscores
the potential for their broader application in various domains.

6. Conclusions

Many interesting results were obtained in this work. However, it is essential to
acknowledge the limitations of our method to provide a more balanced perspective on the
research outcomes. While our experiments produced promising results, we recognize that
the generalization of these findings to other application domains may have constraints.
To address these limitations, further tests and evaluations will be conducted in the future,
with the aim of confirming the following:

• The fusion of different convolutional and transformer networks can achieve state-of-
the-art (SOTA) performance;

• The application of diverse approaches to the learning rate strategy is a viable method
to build a set of segmentation networks;

• The integration of transformers (HSN and PVT) in an ensemble can be enhanced
by modifying the way the final segmentation map is obtained, thereby avoiding
excessively sharp masks.

As part of our future work, we also plan to explore techniques such as pruning,
quantization, low-ranking factorization, and distillation to reduce the complexity of the
ensembles and address potential scalability issues.
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