
Citation: Shuai, S.; Hu, Z.; Zhang, B.;

Liaqat, H.B.; Kong, X. Decentralized

Federated Learning-Enabled Relation

Aggregation for Anomaly Detection.

Information 2023, 14, 647. https://

doi.org/10.3390/info14120647

Academic Editor: Ken McGarry

Received: 7 October 2023

Revised: 25 November 2023

Accepted: 30 November 2023

Published: 3 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Decentralized Federated Learning-Enabled Relation
Aggregation for Anomaly Detection
Siyue Shuai 1, Zehao Hu 1, Bin Zhang 2, Hannan Bin Liaqat 3 and Xiangjie Kong 1,*

1 College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China;
111122120001@zjut.edu.cn (S.S.); 211122120078@zjut.edu.cn (Z.H.)

2 College of Digital Commerce, Zhejiang Yuexiu University of Foreign Language, Shaoxing 312000, China;
20001008@zyufl.edu.cn

3 IT Department of Information Sciences, Division of Science & Technology, Township Campus, University of
Education, Lahore 54000, Pakistan; hannan.liaqat@ue.edu.pk

* Correspondence: xjkong@zjut.edu.cn; Tel.: +86-158-4090-1926

Abstract: Anomaly detection plays a crucial role in data security and risk management across various
domains, such as financial insurance security, medical image recognition, and Internet of Things
(IoT) device management. Researchers rely on machine learning to address potential threats in
order to enhance data security. In the financial insurance industry, enterprises tend to leverage the
relation mining capabilities of knowledge graph embedding (KGE) for anomaly detection. However,
auto insurance fraud labeling strongly relies on manual labeling by experts. The efficiency and
cost issues of labeling make auto insurance fraud detection still a small-sample detection challenge.
Existing schemes, such as migration learning and data augmentation methods, are susceptible to
local characteristics, leading to their poor generalization performance. To improve its generalization,
the recently emerging Decentralized Federated Learning (DFL) framework provides new ideas for
mining more frauds through the joint cooperation of companies. Based on DFL, we propose a
federated framework named DFLR for relation embedding aggregation. This framework trains the
private KGE of auto insurance companies on the client locally and dynamically selects servers for
relation aggregation with the aim of privacy protection. Finally, we validate the effectiveness of our
proposed DFLR on a real auto insurance dataset. And the results show that the cooperative approach
provided by DFLR improves the client’s ability to detect auto insurance fraud compared to single
client training.

Keywords: Decentralized Federated Learning; knowledge graph embedding; anomaly detection;
relation aggregation

1. Introduction

The development of Internet technology makes digitized data and information easy to
be transmitted and analyzed, and the subtle connections between data and information
are easier to mine [1]. But at the same time, hidden crises and potential risks, such as
abnormal data and fraudulent behavior, are also mixed in. Whether it is fraud detection in
the financial field, device quality monitoring in the IoT industry, disease diagnosis in the
healthcare field, or intrusion detection in network security, all rely on anomaly detection to
ensure system reliability and data integrity. Regardless of the industry sector, all involve
serious economic losses and trust crises. Therefore, the research and development of
effective detection mechanisms for the management and analysis of digitized information
have become crucial.

However, anomaly samples are still rare and traditional auto insurance fraud detec-
tion relies directly on expert manual review. This results in extremely inefficient fraud
detection [2]. To reduce human error and missed inspections, insurance companies start to
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leverage the automated intelligence of machine learning [3]. In addition to using unsuper-
vised learning, semi-supervised learning, and other methods to improve the performance
of anomaly detection models, researchers also use these methods: (1) Data generation:
generating abnormal data through transformation, expansion, or learning from existing
data for sample expansion, such as how Zhang et al. utilized MetaGAN, based on a
Generative Adversarial Network, to generate images to strengthen the performance of
sample-level image classification [4]. (2) Transfer Learning [5]: learning anomaly detec-
tion models from the original domain dataset and transferring them to the target domain.
(3) Active Learning [6]: improving model performance by intelligently selecting which
samples should be labeled, thereby reducing dependence on labeled data. (4) Cooperative
train [7]: Collaborating between different data holders to jointly build anomaly detection
models can also help solve the problem of data scarcity. The centralized training of data
can indeed improve the efficiency of detection, but this completely disregards privacy
concerns [8]. Especially in the financial insurance industry, when it comes to a substantial
amount of customer information, data sharing needs to be carried out with the precondition
of ensuring privacy protection.

In the insurance industry, with the rapid increase in the number of auto insurance
motor vehicles and the swift development of the auto insurance industry, auto insurance
fraud has become one of the biggest threats to the current insurance industry [9]. There are
numerous ways to commit fraud, including faking the scene of a car accident, using fake
license plates, and combining with repair shops to exaggerate damages [10]. According
to the annual property and casualty insurance claims service report [11] released by the
China Life Insurance (Group) Company in 2022, annual claims amounted to 59.23 billion
CNY, of which 40.79 billion CNY was paid out for auto insurance.

For the struggling auto insurance industry, cracking down on fraud is urgent. In or-
der to protect the legitimate rights and interests of consumers and insurance companies,
different countries have formulated a large number of rules and regulations. For instance,
the “Regulations on Compulsory Insurance for Motor Vehicle Liability Insurance” issued
by China provide a basic basis for the handling of insurance disputes in all aspects from
insurance coverage and compensation to penalties. To actively fight against auto insurance
fraud, the United States has set up the National Insurance Crime Bureau, armed with a
series of bills such as the “Pre-Claims Underwriting Inspection Act” and the “Motor Vehicle
Claims Information Collection Act”.

In addition to solidifying the institutional foundation and strengthening the con-
struction of the insurance industry team, various companies are promoting the in-depth
development of anti-insurance-fraud work with technology-enabled fraud detection [12].
The means evolve from traditional insurance detection methods to technology-assisted
efficient detection ones, empowered by the following aspects:

• Reduce over-reliance on high-quality expert experience. Considering saving labor
and time costs in the loss determination, pricing, and compensation process, these
companies construct expert knowledge-based empirical information bases in con-
junction with image recognition technology to help identify damaged parts, types of
damage, and assess the extent of damage.

• Improve detection efficiency using machine learning. Insurance companies have
extremely high requirements for the timeliness of auto insurance claims. In order to
ensure the high accuracy of fraud detection, the insurance company mines the features
of historical cases and utilizes machine learning algorithms such as decision tree [13],
random forests [14], logistic regression [15], and XGBOOST [16,17] to train AI models
that can be applied to reporting and surveying.

• Utilize graph structure to mine team fraud. Due to the characteristics of team-based
and industrialized insurance fraud in the current auto insurance industry, inspectors
may face challenges in swiftly unraveling the implicit connections of team fraud
between various cases. Therefore, companies leverage the network structure of graphs
to mine additional feature factors from perspectives such as the incident location and
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reporting time. By identifying abnormal nodes, edges, and neighboring combinations,
they aim to enhance the efficiency and success rate of team fraud detection [18].

We consider adopting collaborative learning to jointly combat fraud, with privacy
protection requirements and limitations. However, as shown in Figure 1, the reality is
that auto insurance data are usually distributed among different insurance companies
and organizations. Since the data contain the privacy of the policyholder’s personal
information and company confidentiality, it is quite challenging for companies to put into
effect traditional centralized data inspection methods in the real world. The auto insurance
industry is urgently seeking an inspection method that balances the depth of cooperation
with the efficiency of inspection and protects data privacy.

Figure 1. Centralized auto fraud detection dilemma.

The complex relations between auto insurance data naturally draw researchers’ at-
tention to the ability of Knowledge Graph (KG) to mine hidden relations [19]. At the
same time, the rise of Decentralized Federated Learning provides a new paradigm for
data protection [20]. Inspired by this, our work aims to leverage the privacy protection
advantages of DFL combined with the high-quality expression of KGE. Our proposed
DFL framework, DFLR, is a new solution designed for auto insurance anomalous fraud
detection. The contributions of our work are summarized as follows:

• We propose a framework, Decentralized Federated Learning-enabled Relation aggre-
gation (DFLR), based on relation embedding aggregation for auto insurance anomaly
detection. Insurance companies participating in this framework will be either in the
client role or server role throughout the training. For the client role, it locally executes
KGE training, while the server performs average aggregation on relation embeddings
to enhance the expression capability of embeddings.

• We design a dynamic server selection mechanism that continuously reorganizes
federation groups based on data dissimilarity among clients. This approach elevates
training efficiency and quality while ensuring privacy protection.

• We conduct experiments on a real auto insurance dataset. The effectiveness of DFLR is
successfully demonstrated through comparative experiments. In particular, the Com-
plEX+SVM model utilizing DFLR can even improve the average prediction precision
to 0.6575, which is 0.0898 higher than the result of training only on private data.

The remainder of the full paper is organized as follows: the Section 2 describes related
research on DFL and knowledge graph embedding; the Sections 3 and 4 elaborate on the
algorithm of the proposed DFLR framework; the Section 5 mainly analyzes the results of
comparative experiments; and the Section 5 provides a summary of the full paper as well
as an outlook for future research.
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2. Related Work
2.1. Decentralized Federated Learning

Artificial Intelligence is steadily developing, and its technical underlying support
remains data. The quantity, quality, and dimension of data have become some of the most
important factors constraining the progress of science and technology. As data owners
need to consider data security protection, competition relations, and legal regulations
when facing data exchange and sharing, it leads to the problem of “data silos” between
enterprises and industries [21]. How to share data safely and effectively has become a
popular research topic.

In 2017, Google first proposed and constructed a Federated Learning (FL) framework
to realize the idea of model updating locally [22]. They aimed to improve the prediction
accuracy of what Android users associate with their next input when typing on their mobile
terminals. Subsequently, a large number of scholars conducted more in-depth research on
data security and personalized models. In 2019, Google released the first FL framework
in the world, TensorFlow Federated Framework. And in the same year, Professor Yang
Qiang with his team open-sourced the first FL framework in China, named Federated
AI Technology Enabler [23], as a secure computing framework to support the Federated
AI system.

FL can not only break through the “data silos” and “small data” limitations during
the training process, but also ensures a certain degree of data privacy and security while
benefitting all participants [24]. Because of this, it has been a high concern of researchers in
various fields. This framework has a wide range of applications, including medical image
processing [25], auto plate recognition [26], air handwriting recognition [27], and so on.

However, due to the high dependence of FL on the central server, it is unable to cope
with the problem of a single point of failure of the central server, and thus DFL emerges [28].
A more decentralized federation aggregation is achieved through communication and
interaction between participants. Currently, this framework has been applied in several
fields. Lu et al. [29] extracted medical patient features more securely by constructing a
DFL model that conforms to realistic cooperation. In addition, Kalapaaking et al. [30]
combined blockchain with FL to improve the security of the system by using the traceable
and untamperable characteristics of blockchain. They used blockchain with a Trusted
Execution Environment to replace the central server to improve the fault tolerance and
attack resistance of the system.

Compared with traditional FL, DFL has no central communication bottleneck, but it gen-
erates a huge client–client communication overhead. To deal with this problem, Liu et al. [31]
pioneered the application of the Lloyd–Max algorithm to DFL. They utilized the exchange
of model information between neighboring nodes to adaptively adjust the quantization
level, and succeeded in improving the communication efficiency by reducing the amount
of data of the federated transmission model parameters. Sun et al. [32] investigated Decen-
tralized FedAVG with Momentum (DFedAvgM) based on the FedAVG paradigm, which
reduces the communication overhead by mixing the matrices, Momentum, multiple local
iterations of client training, and quantization of sending models.

2.2. Knowledge Graph Embedding

Knowledge Graph as a kind of mesh database manages loose multi-source hetero-
geneous data through a standardized structural organization (head entity, relation, tail
entity) [33]. With the advantages of graph structure to reflect and manage information,
and to help accurate positioning and searching, KG provides strong underlying support
for specific downstream applications such as Internet semantic searches, personalized rec-
ommendations, an intelligent Question Answering System and big data decision-making.
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However, such a ternary structure is difficult to deal with directly due to the low porta-
bility of its underlying symbolic properties. Therefore, researchers apply knowledge graph
embedding to ensure computational simplicity by embedding entities and relations into a
continuous low-dimensional vector space, while preserving the structural information of
the KG [34]. The entities and relations are downscaled and stored in the low-dimensional
space in the form of vector matrices or tensors.

The training of KGE involves the semantic understanding level. It is necessary to con-
sider how to extract relations and entities from non-aligned heterogeneous data, and how
to understand the real meaning of different relations and entities for the alignment task [35].

Existing knowledge graph embedding methods are mainly categorized into three
types: (i) Translational Distance Models; (ii) Semantic Matching Models; and (iii) Neural
Network Models. Based on the above three types of models, many models have been
derived.

The Translational Distance Models are based on TransE [36] and extend to derive
models such as TransR [37], RotatE [38], and HAKE [39]. This type of method defines
the scoring function by modeling the relation as the distance from the head entity to
the tail entity like the Euclidean distance of TransE and the rotation transformation of
RotatE. Semantic Matching Models measure the rationality of triples at the semantic level to
construct score functions, mainly including RESCAL (bilinear model) models [40]. Due to
the lack of clear Euclidean inner product correspondence in hyperbolic spaces, in order to
extend the calculation to hyperbolic spaces, Ivana Balaževic et al. first used a combination of
a bilinear model and Poincaré ball [41]. The MuRP model proposed by them can outperform
Euclidean models on the link prediction task at lower dimensionality. As for the Neural
Network Models, they score by embedding the head entity, relation, and tail entity into
the neural network. Jiarui Zhang et al. [42] found that data-driven link prediction tasks
rely on various labels and only utilize the structural information of the graph. Inspired
by knowledge distillation, the DA-GCN proposed by them makes use of logical rules to
reduce the dependence of graph neural networks on data and iterative rules to construct
graph convolutional networks. The KGE trained by DA-GCN can perform excellently in
link prediction tasks.

3. Proposed Approach

Fraud in the insurance industry usually refers to the behavior of the policyholder,
the insured, or the beneficiary to obtain insurance benefits by various means of fabrica-
tion, fiction, exaggeration, concealment, and so on [43]. Insurance fraud corresponds to
the anomaly detection of entity nodes in a static graph [44]. Consider a scenario where
a network represents various insurance claims, policyholders, accident vehicles, and in-
surance companies. Detecting insurance fraud is akin to identifying irregularities in the
interactions between nodes. By treating entities as nodes and their relationships as edges in
a graph, one can employ anomaly detection techniques to uncover unusual connections or
behaviors. In this section, for the auto insurance anomaly detection task, we will detail the
overall framework of the proposed DFLR and introduce the method of server aggregation
embedding and the process of client updating local embedding, respectively. In addition,
this section includes the server selection mechanism we designed in DFLR.

The training process for one round of decentralized federated training is shown in
Figure 2. For the purpose of facilitating the subsequent description of the algorithm and
framework, we define some relevant terms and letters in Table 1.
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Figure 2. Overview of DFLR.

Table 1. Glossary of notations.

Symbol Definition

Round t The complete training process for a full federation round consists of three stages.
(i) The server sends the parameters down to the client; (ii) the client receives
them for local training; (iii) the client uploads the parameters to the server
for aggregation.

N, K The number of clients; the number of the federation group.
E, B The batch size of the client; The training epoch of the client.

KG, E ,R Knowledge Graph set owned by an auto insurance company; the entity
embeddings of KG; the relation embeddings of KG.

St, Sj
t, Cj Set of servers at round t; the server of the j-th federation group; the client’s set of

the j-th federation group.
Z The fixed number of rounds that the client needs to participate in in federated

training before implementing the server selection mechanism.
P The proportion of clients within the same federation group which choose

to regroup.

3.1. DFLR Framework

In the auto insurance industry, it is virtually impossible for car owners to sign up
for the same car insurance policy between different insurance companies, subject to state
laws and auto insurance claim rules. For example, as a rule, an owner can only carry one
Compulsory Third Party Liability Insurance (CTPL) policy on a specific vehicle. Thus,
there is less overlap of entities, and cross-company federal aggregation of these entities
makes little sense. On the contrary, in each company’s private data, the relations between
entities are similar, such as “own”, “policy holder”, and “overhaul at”. The most important
thing is that these simple relation embeddings hardly involve the details of the owner and
vehicle. By sharing these relation embeddings for FL, the risk of a privacy breach is much
less. Therefore, as described in Algorithm 1, after locally training and updating the relation
and entity embeddings, the client uploads the relation embeddings to the server. As for
the server, it is responsible for the aggregation of the relation embeddings in the whole
training framework.

In a real enterprise competition scenario, it is quite challenging for all auto insurance
companies to agree to work closely together, and the depth of cooperation varies from
company to company. Therefore, following the traditional framework of FL, establishing
only one central server appears more utopian when multiple companies cooperate. The in-
troduction of the DFL model is realistic and reasonable. In DFL, the relation is more free
and flexible compared to the structure under the traditional FL framework. As shown in
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Figure 3, any client node in the DFL framework can act as a central server for federation
aggregation, so its role can be either client or server.

Figure 3. Traditional FL and Decentralized FL framework.

Accordingly, in order to better accomplish the auto insurance anomaly detection task,
we focus on the following three issues: (i) the server aggregation algorithm; (ii) the local
model of clients; and (iii) the server selection mechanism for each round of DFL.

Algorithm 1 The DFLR framework.

Server Aggregation
Initialize relation embeddings R0 and select the server set S0 for the first round of

federation.
for round t = 0, 1, 2,. . . do

for Sj
t ∈ St in parallel do

Servers Sj
t distributesRj

t to clients Cj.
for Cj

m ∈ Cj in parallel do
Rj

m ← Client Training
end for
UpdateRj

t+1 based on FedAVG.
end for

end for

Client Training
Receive relation embeddings from server asRc

t .
for e = 1,. . . , E do

Sample KGbatch ⊆ KG of size B;
for each (h, r, t) ∈ KGbatch do

Sample a negative triple (h, r, t’)
Compute loss L by Equation (1)
Update embeddings ∇L

end for
Add Gaussian noise to r

end for
Execute server selection mechanism every Z rounds.
returnRc

t+1

3.1.1. Server Aggregation

One of the key modules of this DFLR framework, the federated aggregation method,
is based on the FedAVG [45] proposed by Mcmahan et al. in 2017. Computing by averaging
can help individual clients within a federation group to achieve embedding consistency and
cooperation. Under the traditional FL, there are two types of roles: (i) client—the company
or institution that jointly trains; and (ii) server—a unique central server built after unified
negotiation among all clients. However, in DFLR, the server is not uniquely determined.
During the local training phase, the company maintains the client role, and during the
federated aggregation phase, some companies transition from the client role to the server
role through the server selection mechanism.
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Considering that in the KG data of auto insurance, entity carries too much privacy in-
formation compared with relation and the private relations of different clients overlap much
more, we chose relation embedding as the data transmitted between clients and servers.
Through the collection, average aggregation, and distribution of relation embeddings, joint
training cooperation between clients is ultimately achieved.

During the initialization phase, the embeddings of all relations are randomly generated
based on the relations owned by all clients, ensuring that the same relation between clients
remains consistent regarding embedding before training. Then, the first round of server
role selection is carried out. This is based on the statistical results of the number of triples
(?, r, ?) that exist in a certain type of relation r for each client, calculating cosine similarity
as a measure of similarity between client data. The (?, r, ?) represents a set of triples where
the relationship is specified, and the head and tail entities can be any entities. By using
the K-means classification method, these clients are divided into K groups. Subsequently,
the client with the highest number of triples in one group is selected as the server for the
initial round of federation, forming a set of servers S. Each server distributes relation
embeddings to all clients within its federation group.

The entity embeddings in the KG of the client are randomly generated locally, and the
relation embeddings are distributed by the server. The client uses a KGE model to update all
triple embeddings. After training with a specific number of epochs on triple embeddings,
the client randomly perturbs relation embeddings. After noise processing, the client
uploads relation embeddings to the server selected in the initial round.

The server is responsible for receiving the relation embeddings after training from all
clients in its federation group. After receiving all, the server performs weighted average
aggregation based on FedAVG. After aggregation by the server, relation embeddings are
distributed to various clients. Subsequently, the above training steps are repeated until all
embedding effects are no longer improved.

The server is not selected in the initial round and remains unchanged. During the
federated training process for all clients, the server is regularly replaced through the server
selection mechanism, as well as the federation group for each client. The specific process is
detailed in Section 3.1.3.

3.1.2. Client Training

The client applies the KGE training model as a way to extract features. We chose
seven typical KGE models to train triples (h, r, t). These models are listed in Table 2, along
with their score functions. Additionally, we adopt loss function Equation (1) proposed by
Zhiqing Sun et al. [38].

L = ∑
h,r,t∈KG

∑
h,r,t’∈KG ′

[γ + f(h, r, t)− f(h, r, t’)]+ (1)

where (h, r, t’) means the tail entity of true triple is replaced with the other tail t ∈ KG, γ
denotes a margin hyperparameter, and [x]+ denotes the positive part of x. We construct
suitable negative samples by randomly replacing tail entities in the same class, like replacing
different Policy IDs. The loss function tends to lower the score of a true triple. After KGE
training, it helps to widen the score between positive and negative samples, making the
embedding quality of positive samples increase.

In the training phase, negative samples, KG ′, need to be constructed by randomly
replacing the tail entity. However, the negative triples generated using the randomized
method are of poor quality, do not help in training the true triples, and even slow down the
convergence. In order to effectively widen the score gap between positive and negative
triple samples, it is important to strategically conduct negative sampling. The negative
sampling we adopt references the method proposed by Yongqi Zhang et al. which utilizes
the concept of negative triple confidence to measure the quality of the negative triples [46].
First, negative triples generated by the uniform random method are used as negative
sample candidates. And then, the negative triple with the highest confidence is selected for
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training based on the ranking of the confidence score results. According to the definition of
triple confidence in CKRL, the confidence of a negative triple is calculated as follows:

Q(h, r, t’) = −f(h, r, t’) (2)

C(h, r, t’) =
exp Q(h, r, t’)

∑h,r,t’∈KG ′ exp Q(h, r, t’)
(3)

where the Q value is based on the score function of the KGE model.
When the client receives the relation embedding transmitted from the server, it re-

updates the local triple embedding based on the above embedding training model.
After local training on the client, the relation embeddings are randomly perturbed

by adding Gaussian distribution noise to further ensure data privacy. By introducing
Gaussian noise, the received embeddings at the server become more blurred and uncertain.
This enhances the achievement of data de-identification, preventing attackers from using
statistical information to back-propagate training data. Its probability density function is
defined as

p(x) =
1

σ
√

2π
e
−

x− µ2

2σ2 (4)

where x is a random variable, µ is the mean value, and σ is the standard deviation. After-
wards, the client uploads the noised relation embeddings to the server.

Table 2. KGE training model.

Model Score Function

TransE [36]: TransE assumes that relations can be represented as translations
between entities. It learns embeddings by minimizing the translation distance
between the head and tail entities.

f = ‖h + r− t‖L1/L2

TransH [47]: TransH builds on TransE by introducing the concept of
hyperplanes. Each relationship has a corresponding hyperplane, and entity
embeddings are projected onto these hyperplanes for more flexible modeling.

f = ‖(h− w>r hwr) + dr − (t− w>r twr)‖
2
L2

TransF [48]: TransF is an improvement over TransH, using the Frobenius norm
to measure the match between entities and relationships. f = (h + t)>t

RotatE [38]: RotatE employs rotation operations and represents relationships as
complex numbers. It models the interaction between entities by rotating them in
the complex plane.

f = ‖h ◦ r− t‖

DISTMULT [49]: DISTMULT measures the match between entities and
relationships by taking the dot product of their embeddings. f = h>diag(r)t

HolE [50]: HolE uses tensor representations to map entities and relationships to
a high-dimensional space. It calculates match scores through convolution
operations.

f = r>(h ∗ t)

ComplEx [51]: ComplEx represents entities and relationships using complex
numbers. It calculates match scores through complex multiplication, allowing
for more flexible modeling of interactions.

f = Re(h>diag(r)t̄)

3.1.3. Server Selection Mechanism

How to select a client to transit from the client role to server roles in a DFL framework
is a key issue.

During the initialization phase, as mentioned in the Server Aggregation section,
the first round of federated server selection is based on the number of triples in the
client’s private KG. In the following training phase, the server selection mechanism will
automatically proceed after Z rounds of federation, and the specific process is as follows:
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(1) Each client will record the triple embeddings of the previous Z rounds of federation
for subsequent traceability and comparison.

(2) If a client’s highest F1-score of fraud prediction on the validation set in the latest Z
rounds is lower than the highest F1-score in the previous Z rounds, it means that this
client did not benefit from this federation group. When more than P percentage of
clients within one federation group have not benefited from training, then all clients
within that group will be added into the Group Re-selected Client Sequences.

(3.a) For all clients in the Group Re-selected Client Sequences, the client with the highest
computing power will calculate the Euclidean distance between the highest quality re-
lation embeddings in the previous Z rounds for K-means grouping. After constructing
federation groups, the clients within the group are selected again based on the number
of triples for the next round of federated training.

(3.b) If client training stagnation occurs only within a single federation group, each client
in it will be assigned to other groups. The Euclidean distance is also used as the
grouping basis. What is calculated here is the Euclidean distance between the relation
embeddings of clients in the Group Re-selected Client Sequences and the relation
embeddings of clients who assume server roles within other groups.

One can perform federation group updates and server selection through the above steps.

4. Experimental Analysis
4.1. Evaluation Metrics and Data

For this binary classification of anomaly detection, the experimental evaluation in-
dicators used are listed in Table 3 according to the confusion matrix. They include the
True Positive Case (TP), which indicates that an actual Fraudulent auto insurance claim
is judged as Fraudulent by the model; the False Positive case (FP), which indicates that a
normal auto insurance claim is judged as Fraudulent by the model; the True negative case
(TN), which indicates that a normal auto insurance claim is judged as normal by the model;
and the False negative case (FN), which indicates that a Fraudulent auto insurance claim is
judged as normal by the model.

The experimental evaluation metrics are selected as the classical indicators for binary
classification problems, which are precision, recall, F1-score, and accuracy.

Table 3. Anomaly detection confusion matrix.

Real Value
Predicted Value

Positive Negative

Positive TP FN
Negative FP TN

The dataset used in the experiment is from a cooperative auto insurance company.
By extracting the entities in auto insurance cases, the graph is organized as shown in
Figure 4, which includes five categories, 14 types of entities, and some main relations
between entities. Due to the transmission of relations, some relations are not shown in
Figure 4. After a series of matching and MD5 encryption operations, preliminary privacy
protection was applied to data related to the personal information of the policyholder, plate
number, driver’s licenses, etc. After a series of data pre-processing, the dataset consisted of
725,388 triples, 11 relations, and 81,381 entities.

For the purpose of simulating the private data differences among clients, we divided
the dataset into 6 and 12 clients through relation, and the average number of KGs is shown
in Table 4. And we randomly deleted some relations so that the relations between clients
are not completely consistent. In addition, in order to ensure the quality of embeddings,
we split the dataset into training, validation, and testing sets in an 8:1:1 ratio.
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Figure 4. Entity and relation of auto insurance Knowledge Graph.

Table 4. The average number of KGs owned by split clients.

Number of Clients N Triples Relations Entities

6 120,898 9 13,563.5
12 60,449 10.45 671.75

4.2. Implementation

We set up three training modes to verify whether the DFLR method is effective,
including Single-Client, All-Clients, and DFLR-Clients. The meanings of these three modes
are as follows:

• Single-Client: In this mode, there is no cooperation between clients and they are
trained using only their own private data.

• All-Clients: In this mode, competition between clients is ignored and no privacy
protection is adopted. All clients pool their private data together, train a single
detection model uniformly, and finally test the model effect with a test dataset on each
client.

• DFLR-Clients: In this model, each client has the ability to switch roles, including
client or server. In the local training phase, all clients only rely on local data for training.
In the federation phase, the server selection mechanism is performed first, and some
of the client identities are switched to servers. After collecting the relation embeddings
uploaded by the clients in the group, the server performs average aggregation based
on FedAVG, and then distributes them. Finally each client evaluates the model effect
on its own test dataset.

In the experiment, we construct different processes using the same type of GPU devices
with the same configurations to simulate the clients for local training. And an SVM anomaly
detection model [52] is applied after local KGE training. We set the embedding dimension
trained in three modes as 256, the learning rate as 0.001, and the margin γ of Equation (1)
as 1.0. For DFLR-Clients mode, the client training batch size B was 512, local training epoch
E was five, and Z was four. As for the SVM model, we set the C parameter to 0.01 and the
gamma parameter to 0.001.

To assess the training efficiency of the federation rounds, it was set that when the
accuracy rate was no longer decreasing within six rounds, the federated training was
ended, and the experimental effect was evaluated using the above-mentioned metrics.
The accuracy of the validation set was evaluated every 10 epochs for training modes Single-
Client and All-Clients, and every 5 Federation rounds for DFLR-Clients. The model fitting
effect was ensured by using the early stopping method, and the whole training session
ended when the accuracy was no longer improved for 12 consecutive epochs/rounds on
the validation set. The trained model was then used on the test set for metrics evaluation.
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4.3. Experiments

Our experiment mainly focuses on three important questions: (i) verifying whether
the DFLR training mode is effective; (ii) detecting the impact on a specific client as the
number of federated participants increases; and (iii) detecting the impact on a specific client
as the number of federation groups increases.

4.3.1. Verify the Effectiveness of DFLR Training Mode

In this experiment, we set the number of clients N to six and the number of federation
groups K in DFLR-Clients mode to three. The results of the three modes of training are
listed in Tables 5 and 6. The scarcity of anomalous samples in the dataset resulted in
relatively low F1-scores in these tables. However, there are still gaps in the predicted results
that can be used for analysis under different mode settings.

Table 5 shows the average results for six clients. This table shows that our proposed
DFLR successfully improved the average training performance of all clients compared to
the Single-Client mode. Especially under the DFLR framework, the TransH+SVM and
HolE+SVM models performed even better than the results of All-Clients mode. And in
all DFLR-Clients training modes, the HolE+SVM model achieved the highest results,
with 0.4822 on precision, 0.3823 on recall, and 0.4265 on F1-score. As mentioned in the
above examples, some results show that DFLR-Clients mode can surpass All-Clients mode.
This may be because the DFLR-Clients mode enables clients to cooperate with clients with
higher embedding similarity. All-Clients, on the other hand, simply centralizes clients’ data
and does not take into account the differences between clients. In the All-Clients mode,
there is a situation that the results of some clients are pulled down, so the average results
will be relatively low.

Table 6 is the test result of one of the clients. The detection results of fraud in DFLR-
Clients mode show that the embedding quality of the client was also effectively improved
through training. The ComplEx+SVM model even achieved the optimal effect in DFLR-
Clients mode. This result may be due to a significant deviation in the data distribution
between Client-1 and other clients in the ALL-Clients mode. And the DFLR-Clients mode
utilizes a reasonable grouping mechanism, thereby improving the prediction results of
Client-1.

Based on the above results, we can verify the effectiveness of our proposed DFLR
framework. The DFLR framework successfully improved the improvement limitation
of single client training, achieving the benefits of each participant through federated
cooperation. The DFLR framework successfully breaks through the limitations of single
client training and benefits each participant through federated cooperation.

Table 5. The average results of 6 clients in 3 different training modes.

Model Training Mode
The Average Results of 6 Clients

Precision Recall F1-Score

TransE + SVM
Single-Client 0.2675 0.2016 0.2299
All-Clients 0.4283 0.2763 0.3359

DFLR-Clients 0.4029 0.2372 0.2987

TransH + SVM
Single-Client 0.2862 0.2348 0.2580
All-Clients 0.4079 0.2783 0.3309

DFLR-Clients 0.4183 0.2902 0.3427

TransF + SVM
Single-Client 0.2822 0.1928 0.2291
All-Clients 0.4324 0.2863 0.3445

DFLR-Clients 0.3739 0.2769 0.3182
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Table 5. Cont.

Model Training Mode
The Average Results of 6 Clients

Precision Recall F1-Score

RotatE + SVM
Single-Client 0.3001 0.2531 0.2746
All-Clients 0.4421 0.3142 0.3673

DFLR-Clients 0.4267 0.2742 0.3339

DISTMULT + SVM
Single-Client 0.3093 0.2361 0.2678
All-Clients 0.4812 0.4046 0.4396

DFLR-Clients 0.4728 0.3836 0.4236

HolE + SVM
Single-Client 0.3533 0.2363 0.2832
All-Clients 0.4529 0.3740 0.4097

DFLR-Clients 0.4822 0.3823 0.4265

ComplEx + SVM
Single-Client 0.2683 0.1578 0.1987
All-Clients 0.5026 0.3822 0.4342

DFLR-Clients 0.4508 0.3878 0.4169
* The bold data in the table indicate that the DFLR-Clients mode outperforms the Single-Client mode, and the
underlined data indicate that the DFLR-Clients mode is the best of the three modes.

Table 6. The results of Client-1 in 3 different training modes.

Model Training Mode Precision Recall F1-Score

TransE + SVM
Single-Client 0.5283 0.1827 0.2715
All-Clients 0.6382 0.3740 0.4716

DFLR-Clients 0.5392 0.2216 0.3141

TransH + SVM
Single-Client 0.5503 0.2012 0.2947
All-Clients 0.6821 0.3872 0.4940

DFLR-Clients 0.5927 0.2672 0.3683

TransF + SVM
Single-Client 0.4928 0.1822 0.2660
All-Clients 0.6519 0.2426 0.3536

DFLR-Clients 0.6222 0.2229 0.3282

RotatE + SVM
Single-Client 0.5113 0.1729 0.2584
All-Clients 0.6018 0.2537 0.3569

DFLR-Clients 0.5762 0.2322 0.3310

DISTMULT + SVM
Single-Client 0.4636 0.2273 0.3050
All-Clients 0.6162 0.3093 0.4119

DFLR-Clients 0.5127 0.2292 0.3168

HolE + SVM
Single-Client 0.5412 0.2282 0.3210
All-Clients 0.6296 0.3527 0.4521

DFLR-Clients 0.6188 0.2928 0.3975

ComplEx + SVM
Single-Client 0.5677 0.3015 0.3938
All-Clients 0.6321 0.3746 0.4704

DFLR-Clients 0.6575 0.3772 0.4794
* The bold data in the table indicate that the DFLR-Clients mode outperforms the Single-Client mode, and the
underlined data indicate that the DFLR-Clients mode is the best of the three modes.

4.3.2. The Impact of the Number of Participants N on One Specific Client

Considering that the premise of FL is that multiple clients choose to cooperate for
mutual benefit, we conducted a comparative experiment about the number of clients N
participating in the cooperation. In this experiment, we used data split into 12 clients and
set K = 2. For Client-1, we sequentially increased the number of clients participating in the
DFLR. The accuracy result of Client-1 is shown in Figure 5. It intuitively reflects that as N
continues to increase, for a certain participant, the ability to detect auto insurance fraud
improved, which means an improvement in the quality of KGE.
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Figure 5. The impact of N on clients in DFLR-Clients mode.

4.3.3. The Impact of the Number of Federation Groups K on One Specific Client

We used data split into 12 clients and set K = 2, 3, 4, 6 so as to observe the impact
of K on a specific client. Figure 6 shows the F1-score results for two clients. The linear
fitting results indicate that increasing the number of federation groups can improve the
performance of the client.

Figure 6. The impact of K on clients in DFLR-Clients mode.

5. Conclusions and Discussion

The proposed DFLR framework takes into account the high difficulty of achieving uni-
fied cooperation among auto insurance companies in real situations, and adopts dynamic
server changes to solve the utopian cooperation of traditional FL. The DFLR uses simple
and efficient KGE models for information mining on the local client, and aggregates the
actual overlapping relations of auto insurance companies on the server to protect privacy.
The experiment has proven that the DFLR framework has higher accuracy than single client
training, which is more practical under real-world cooperative relations.

In experiments, we did not fully consider data heterogeneity, but used data with the
same structure on the client for federal simulation. In real scenarios., different companies
have different requirements for the storage format and structure of data, which largely
blocks the algorithm from obtaining qualitative improvement in real-time anomaly de-
tection. Moreover, the data heterogeneity between all the data of different companies,
including label offset, data volume imbalance, and so on, was not fully considered. In the
future, efforts will be made to improve the efficiency of the data processing process. In ad-
dition, considering the reality of the real-time addition of cases, auto insurance detection
for static auto insurance data will be expanded to dynamic interaction detection for data
updates in the federal round to meet the real-time detection requirements of auto insur-
ance cases. And it is necessary to consider the integrity of cooperation between agencies
and companies to prevent the emergence of malicious participants in the federal sharing
session. Based on game theory, we could start with incentives for cooperation to stimulate
cooperative firms and agencies to reduce destructive behavior in future work.
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