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Abstract: This paper presents an overview of the uses of the combination of eye tracking and artificial
intelligence. In the paper, several aspects of both eye tracking and applied AI methods have been
analyzed. It analyzes the eye tracking hardware used along with the sampling frequency, the number
of test participants, additional parameters, the extraction of features, the artificial intelligence methods
used and the methods of verification of the results. Finally, it includes a comparison of the results
obtained in the analyzed literature and a discussion about them.
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1. Introduction

In the era of system personalization and with growing emphasis on the user experi-
ence, eye tracking technologies are becoming increasingly in demand. Since eye tracking
generates an immense amount of data, it is very challenging, or even quite impossible in
some cases, to process it by hand. One of the solutions to this problem is using artificial
intelligence which is able to automatically identify problem areas or places of a particular
user’s attention. The abundance of data is not the only issue which may be solved by
artificial intelligence (AI).

Eye tracking in general is used to monitor the places of human sight concentration.
Since the beginning of eye tracking studies in the nineteenth century, and over the years,
many different technologies and methods have been established and introduced into
various disciplines [1]. Currently, the most common technology used in eye tracking is
video recording of the eyes using natural or infrared light. For over thirty years eye trackers
were widely used in different types of UX and psychology studies [2], such as the usefulness
of web or desktop applications, perception of information in the form of graphics or texts,
comparative studies of the effectiveness of system interfaces, correlation of eye tracking
data with the strategy of searching for information in web systems, etc.

Most of the eye tracking research is conducted using specialized sensors or devices,
which are often very expensive and may be need specialized knowledge to operate. Despite
the device used, they generate a lot of rough data, growing with the sampling rate. These
data should be processed to find the pattern of the eye’s focus, which is usually carried out
with the help of different AI tools, especially machine learning (ML) algorithms.

AI is a field of computer science that aims to create intelligent machines. The main
issues with AI include programming computers for certain issues such as knowledge,
reasoning, problem-solving, perception, learning, planning and the ability to manipulate
and move objects [3]. Machine Learning (ML) is an application of AI based around the
idea that we let machines have access to data and we let them learn for themselves [4]. ML
algorithms use computational methods to “learn” information directly from data without
relying on a predetermined equation as a model in order to become more accurate in
predicting outcomes without being explicitly programmed to do so.
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Currently, the application of AI methods allows researchers to conduct similar ex-
periments using just a consumer-grade camera, which makes this kind of research more
accessible. The combination of these two technologies can also be used in various eye
movement recognition systems, for example, speech generation systems for paralyzed
people, fatigue detection systems, or even in virtual reality games.

Combining eye tracking with artificial intelligence can bring many benefits to science.
However, the number of publications on this subject remains relatively small. In this
work, the existing applications of these technologies will be reviewed and their quality and
usefulness assessed. Further possible directions for the development of this field will also
be proposed.

The content of the paper is as follows. Section 2 introduces the research methodology
of the review. In Sections 2.1 and 2.2 the applications of the combination of eye tracking and
artificial intelligence are described and categorized. The following chapter describes the eye
trackers and the sampling frequencies used in the analyzed literature. Section 2.3 describes
the number of people participating in the re-search and provides available information
about them. Section 2.4 contains information about the additional parameters used with
eye tracking data. Section 2.5 categorizes the feature extraction types, whereas the eighth
chapter analyzes the methods of artificial intelligence used in the research and their number
per study. Section 2.7 analyzes the methods of the results’ verification and their number
per study. Section 3 shows comparable results obtained in the analyzed literature. The last
chapter provides a summary and discussion of the collected data.

2. Materials and Methods

This survey is based on Systematic Literature Review (SLR) methodology [5]. This
methodology allows the work of other researchers in the field to be summarized in an
orderly and reproducible manner. It was used here for the purpose of investigation the use
of artificial intelligence in the field of eye tracking. For this purpose, the following research
questions were asked:

1. Which eye trackers were used when collecting data for AI?
2. Which sampling frequencies were used when collecting data for AI?
3. What kind of non-eye tracking parameters were used when AI was used?
4. How many people participated in the experiments collecting eye tracking data to be

used with AI?
5. What is the gender distribution of the participants and what age range are they in?
6. How were the features extracted?
7. How many artificial intelligence methods were used in one eye tracking study?
8. Which methods of artificial intelligence were used with eye tracking data?
9. How were the results of using AI with eye tracking data verified?

For this survey papers were collected using the Scopus database. Papers were collected
from the time period from 2015 to 2020. Only papers available in English have been taken
into account. There were 5 queries used:

1. eye AND tracking AND artificial AND intelligence;
2. eye AND movement AND artificial AND intelligence;
3. gaze AND estimation AND artificial AND intelligence;
4. smartphone AND eye AND tracking;
5. webcam AND eye AND tracking.

The above queries relate to the words that are present in the article keywords, titles
and abstracts. The search results overlapped so duplicates were removed before proceeding
to abstract analysis. Then, the criteria for rejection of the publication were selected. They
are as follows:

1. The research analyzed only static images.
2. The research detected only the eye position.
3. The eye tracking data were collected using Electroencephalography (EEG).
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4. Artificial intelligence was not used on eye tracking data nor to calculate eye
tracking data.

5. The paper is not accessible.

After application of the procedure described above, 93 papers were selected.
The methodology employed in this systematic literature review is a robust approach

for summarizing the work of other researchers in the field of eye tracking and artificial in-
telligence. However, in conjunction with the established selection criteria, there are several
potential limitations to consider. To start with, this review relies on papers available in the
Scopus database, which may not include all relevant research in the field. Additionally,
the use of works exclusively in English leads to language bias which may have caused
the omission of valuable studies. An important limitation is also the period from which
the works for analysis were selected. The field of artificial intelligence and eye tracking is
rapidly evolving, and this time frame may omit recent developments and studies that were
not yet published at the time of conducting the survey. Lastly, while the search queries
used are comprehensive, it is possible that some relevant studies are missed due to the
limitations of the keyword search. Different terminology or less common keywords might
not have been included in the search.

2.1. Applications of Artificial Intelligence Enhanced Eye Tracking

Artificial intelligence-enhanced eye tracking has its applications in many different
areas. Teaching and learning applications are the largest group observed. Three of those
studies use eye tracking data to predict student performance [6–9]. Another interest is
reading, in terms of predicting reading ability [10], recognizing reading behavior [11,12],
detecting readability [13] and detecting words which are difficult for the readers [14]. In
the case of words’ analysis, their understanding was also predicted [15]. Another use of
AI and eye tracking was in identifying levels of comprehension [16]. It was also used to
predict SAT scores [17], cognitive abilities [18], learning curves [19] and detect the speed of
learning [20]. The next usage of AI and eye tracking was concentrated on predicting the
type of prior disclosure [21]. The last application from this group was in predicting the
social plane of interaction of a teacher conducting their classes [22].

The second group of applications of eye tracking enhanced with artificial intelligence
is in emotion recognition. First of the considered studies focused on predicting which
of several emotions was being felt by the participants [23] and the second predicted the
aesthetic impression of a website [24]. Others were predicting reactions to advertising [25],
predicting perceived face attractiveness [26], recognizing affect [27] and recommending
paintings which the participants would like [28]. The rest of the papers focused on a single
emotion: excitement [29], enjoyment [30], interest [31], confidence [32], confusion [33],
stress [34] and satisfaction [35]. All of the listed publications focused on participants’
emotions but two additional studies were considered which were predicting the emotions
of other people using the eye tracking data of their observers [36,37].

The third group distinguished in this paper is that of medical applications. AI-
enhanced eye tracking is mostly used to detect neurological disorders such as autism
spectrum disorder [38,39], schizophrenia [40], Parkinson’s disease [41] or dyslexia [42].
Three of the considered publications used eye tracking data to predict whether the pa-
tient has any neurological disease [43–45] and one detected organs in fetal ultrasound
images [46].

Another group which could be identified is that of human behavior. One example
of that group would be detecting the type of the participant’s activity both, when using
a computer [47,48] and in everyday life [49–52]. Another usage is in predicting decision
strategy [53] as well as taking in consideration ethical decision making [54]. Eye tracking
data were also used to teach AI to play games [55], predict dwell time in museums [56],
automatically assess surgery skills [57] and detect eye contact [58]. In terms of human
behavior, research about intention was also found [59–62].
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The fourth group distinguished in this survey is research on predicting tiredness,
attention [63,64] and distraction [65–68]. In contrast to attention and distraction, tiredness
was not detected directly [69]. It was indicated by task demand [70], take-over time [71],
mental workload [72], operator overload [68] and reduced alertness [73].

The fifth identified group is research using eye tracking data as a way to interact with
a software. It was used as to authenticate user, both by entering the password [74–77] and
using sclera biometrics [78], to detect defined gestures [79–82], the desired direction of
movement [83] or choosing an answer in a questionnaire form [84].

A separate category is that of gaze estimation, which was carried out in 13 studies [85–97].
The two last studies which do not fit any of the described categories used eye tracking

data to recognize and classify objects [98] and distinguish Chinese ethnic groups [99].

2.2. Eye Trackers

Researchers used the following eye trackers (Figure 1). It is worth noting that in two
studies [12,24] two different eye tracking devices were used. One used SMI and Tobii and
the other used Tobii and EyeTribe eye trackers [24]. In both cases they were used in parallel
and were not compared.
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Almost a quarter of the studies were conducted using Tobii hardware, and more than
one tenth used a simple web camera. Sadly over 8% of papers did not specify the type of
eye tracker used, but even without that data we can say that there are a lot of options for
eye tracking. In total, 12.9% of studies used hardware which was used only by them in the
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scope of the analyzed research. On the one hand, it prevents monopolization of the market
by a single manufacturer, which also means that eye tracking research is more accessible to
perform, but on the other hand it may make studies harder to compare.

Since Tobii eye trackers have been used the most times, it is possible to observe the use
of many different models. The most common was the Tobii T120 (5 papers), next was the
Tobii EyeX (4 papers) and lastly the Tobii T60, Tobii X1 and Tobii X2-30 (two papers each).
The Tobii hardware used in only one paper were the Tobii 175, Tobii 4C, Tobii Steelseries
Sentry, Tobii TX300, Tobii X2-60, Tobii X3-120 and Tobii X300. One paper did not specify
the exact model used. Regarding the SMI hardware, the most popular model was the SMI
RED 250 (4 papers). One paper used the SMI RED 4 and two did not specify the model
they used.

In terms of sampling rate, 4.3% of studies used external data and 38.7% of studies
did not specify it. The remaining 57% papers used the sampling rates shown in the graph
below. When an interval was given, the minimum value was included (Figure 2).
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The frequencies used only by one paper were (in Hz) 4.5, 5, 10, 15, 17, 28, 50, 150, 176,
240, 256, 3000 and 8000.

There is no clear consensus between the researchers about the proper eye tracking
sampling frequency, but there is a tendency to use higher frequencies (above 200 Hz)
when using velocity-based event detection algorithms [100]. In terms of detecting saccades
and fixations’ sampling frequency, a change from 60 Hz to 120 Hz does not seem to
provide significant improvement in the fixations’ detection rate [101], but it is important
when evaluating saccades [96]. For this exact purpose frequencies lower than 200 Hz are
discouraged in the case of saccades’ speed studies [102]. Overall, since fixations take less
time, they require smaller frequencies than saccades and microsaccades [103]. That is why
low-level research connected with visual cognition usually requires frequencies of 1000 Hz
to 2000 Hz [104].

In terms of this survey, we can observe a tendency to use frequencies of 30 Hz and
60 Hz. The 30 Hz frequency gained its popularity as it was used as an the American
television standard NTSC, whereas 60 Hz was commonly used in cameras. The third
sampling rate, in terms of the number of studies which used it, is 120 Hz, and apart from
that we can clearly see that, similar to the case of eye trackers, there is no tendency to
use one particular frequency. There are also no justification for the selected frequency, at
most researchers include the justification that it is a frequency sufficient for the conducted
research. This indicates that scientists are using the highest sampling rate of the eye tracker
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at the disposal of the researchers. The use of lower frequencies occurs mainly when there is
a need to synchronize an eye tracker with another sensor which has a lower sampling rate.
There is no clear reason for the highest sampling frequencies. They were used for detecting
the speed of reading (8000 Hz), detecting people with dyslexia (3000 Hz), predicting web
user click intention (1000 Hz), using eye-tracking data as an input for teaching AI to
play computer games in a similar way to humans (1000 Hz), detecting cognitive health
(500 Hz), predicting intention (500 Hz) and detecting reading abilities (500 Hz). We can
say that they were used for research connected with cognition and mental health, so,
psychological studies.

In terms of the lowest sampling frequencies, most of those under 30 Hz were used
when a web or mobile camera was chosen as an eye tracker (4), some used Tobii hardware
(3) and one used HTC Vive. They were usually used for tasks related to detecting predefined
types of behavior: predicting targets (17 Hz), detecting eye contact (25 Hz), task recognition
(25 Hz) and behavior identification (28 Hz). They were also used for attention estimation
(5 Hz) and identifying levels of user comprehension (15 Hz). The study with the lowest
sampling frequency (4.5 Hz) used higher sampling frequencies as well, but since it was
conducted by the participants themselves, using their own hardware, such frequencies
were the lowest used but not the only ones. The aim of that study was gaze estimation.

In terms of illumination during an eye tracking experiment, 25.8% of the papers
included some information about lighting conditions but almost all of them would not be
sufficient to conduct an experiment in similar conditions. They only mention that they
kept the illumination constant or similar throughout the experiment. Only one paper
included results for different illuminations. When considering only experiments conducted
using cameras and not eye trackers, the percentage of papers including information on
lighting conditions is 57.89% which is considerably higher than the overall percentage.
This is understandable, since cameras are more sensitive to changes in lighting than eye
trackers, however, it would be advisable to make these data more accurate and appear
more frequently in papers.

2.3. Participants

Overall, 49.25% of the participants of the described studies were men and 50.75% were
women. However, when we look at the average proportions per study there are usually
55.91% men and 44.09% women. Sadly, not all researchers specified the gender ratio of
their participants, so the figures given are based only on the studies that have done so.

The size of the research group varies greatly, with the smallest consisting of only one
person and the largest having 2334 participants. As with eye trackers and sampling rates,
there is no clear trend here. Researchers usually chose a group of 17 to 33 people, and it
can be theorized that, again, this is simply the smallest group which allows for obtaining
statistically significant results.

Since gathering participants may be the one of the biggest challenges of eye tracking
studies, it may be surprising that only 5.38% of the analyzed papers used databases created
by other researchers, but this may be explained by the fact that such databases are few and
they may not be sufficient for very specific applications (Figure 3).

As much as 31.18% of the papers have not given additional information about the
participants. A total of 22.58% clearly defined the participants of their study as students
and 8.6% have stated an age range which strongly suggests that their participants were
also students. Finally, 4.3% of the papers described their participants as children. Clearly,
the biggest issue is these papers not giving proper information about their participants.
However, based on the available data, we can infer that most of the research is carried out
on young people, in particular students, and adults and the elderly are not adequately
represented in eye tracking research.

Other information which the papers were usually lacking was the participants’ vi-
sion. Only 22.58% included such information, but in most cases (42.86% of the papers
with information about the participant’s vision) it stated that participants had normal or
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corrected-to-normal vision without giving accurate data on the proportion and method of
correction. A total of 23.81% of papers included information about the number of partici-
pants wearing glasses, and the exact same amount of papers included only people with
correct vision. Only one paper conducted an experiment with participants both wearing
glasses and not wearing them, and one stated that participants were not asked to remove
their glasses during the experiment which suggests that there were participants wearing
glasses in that study.
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Additionally, it is worth noting that only 17.2% of papers contained information about
the approval of the research by an ethics committee. One paper took Google’s AI Principles
into consideration when designing its experiment but has not included any information
about the approval of an ethics committee.

2.4. Additional Data for Artificial Intelligence

Additional parameters were used for artificial intelligence by 23.65% of the analyzed
studies. The most commonly used data were obtained with electroencephalography (EEG),
which is a non-invasive method of recording electrical activity on the scalp which is used to
determine the activity of the brain. Since many experiments which have used eye tracking
data are connected with cognition this is understandable. Equally popular is movement
and position data. Position data might be especially important since it may influence
eye tracking data. Another parameter which can be used is a video of the face, which
allows researchers to estimate the emotions of study participants. An equally common
parameter is the time which the participant needed to perform the task under consideration.
Lastly, data about the study subjects were used. Four studies used their age and three used
their gender.

Since the area of eye tracking research is quite wide, the parameters that may be
considered are also quite diverse and sometimes really study-specific, like, for example,
data describing studied texts, images or videos. All of the additional parameters used in
the remaining papers are included in Table 1.
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Table 1. Additional data used for teaching in artificial intelligence algorithms.

Ref. Task Additional Parameters

[64] attention estimation EEG, head movement

[38] identifying children with ASD questionnaire, age, gender

[56] predicting dwell time in a museum face expression, body movement, interaction trace logs

[27] affect recognition EEG, ECG

[8] predicting students’ performance
and effort EEG, face videos, arousal data from wristband

[71] predicting take-over time head position, body posture, simulation
data

[30] predicting liking a video infrared thermal image, heart rate, face
expression

[32] predicting user confidence Time

[25] predicting reaction to ads gender, age, survey, time, ad parameters, behavior
connected with an ad (e.g., sharing)

[13] predicting readability text features

[17] predicting SAT score Time

[36] predicting the emotion of an observed person EEG, empatica bracelet

[32] predicting social plane of interaction EEG, accelerometer, audio, video

[33] detecting user confusion mouse actions, distance of the user’s
head from the screen

[72] predicting mental workload Reaction time

[42] detecting people with dyslexia age, text characteristics

[74] predicting reduced driver alertness EEG

[19] predicting learning curve perceptual speed, verbal working memory, visual
working memory, locus of control

[37] classifying emotions in pictures image

[89] predicting eye movement distance between the object and the dis-
tractor

[41] predicting Parkinson symptoms’
development age, sex, duration of the disease

[23] emotion estimation head movement, body movement, audio, video of the face

2.5. Features Extraction

Feature selection usually begins every application of AI methods. The application of
a proper feature selection method has a very large impact on the obtained results of the
AI algorithms, no matter the area of application. This is of even greater importance when
the AI algorithms have to deal with large amounts of data, as is usually the case in image
processing applications. This is also the case in eye tracking. One of the main features of
all eye trackers is the frequency of gathering data on the participant eye focus coordinates
as well as eye blinks and pupil size, which can vary based on changes in lighting and the
mental state of the participant [105]. The eye tracker frequency may vary from 15 Hz to
1000 Hz. With increasing frequency, the amount of data increases, so in some cases we need
to select some features which aggregate the raw data, such as dwell times on AOI or heat
maps [12].

Feature extraction is also crucial when working with visual imagery. Simplification
may include scaling down images, converting them to grey-scale and using Principal
Component Analysis. Such an approach can transform sets with thousands of features to
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several dozen components ready for further analysis [106]. This method may be further
improved by the autoencoding technique, which efficiently reduces dimensionality and
extracts meaningful features from eye-tracking data [107].

In this paragraph we have presented the categorization of the feature selection types
which are present in the analyzed literature. We propose the following categories:

A. Typical eye tracking data which are gathered via typical eye tracker software, such as
Tobii Studio or Tobii Pro Lab [104];

B. Eye tracking data after some additional processing, which are not present in typ-
ical eye tracker software, such as more sophisticated statistics or transformations
(i.e., DWT);

C. The application of some basic ML algorithms to eye tracker data such as k-means or
decision trees;

D. The application of neural networks or deep learning;
N. Not specified in the article.

The figure below presents the percentages of each of the feature extraction types used
in the analyzed literature (Figure 4).
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2.6. Artificial Intelligence Methods Used with Eye Tracking

Most of the surveyed studies used only one artificial intelligence but as many as
37.6 percent decided to compare at least two different AIs. It is worth noting, however,
that in many works using only one AI, the researchers compared results using different
parameters (Figure 5).

Testing different methods of artificial intelligence is very beneficial because often there
is no clear rationale for using one particular solution instead of another.

This is especially true when we look at the type of methods used. As many as 40.9
percent of the works used AIs that were not used in any of the other considered works,
which clearly shows the variety of available solutions. It is also difficult to observe tenden-
cies to use specific algorithms in specific areas of research, apart from the most popular
AI seeming to be the support-vector machine (SVM), which is commonly used for data
classification, especially in the field of image recognition. The second choice for researchers
was Random Forest, which creates a multitude of decision trees and calculates the result
based on the predictions of the individual trees. The third method was a convolutional
neural network (CNN), which is commonly used in image recognition. It is worth noting
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that the multilayer perceptron (MLP) and CNN are both types of artificial neural networks
(ANN), which, combined, were used in 34.5% of the considered papers, but since the
researchers decided to list them separately this separation was kept in this survey.
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By analyzing the use of SVMs and neural networks (all types), changes in their
popularity over the years can be noticed. In 2015, the SVM was used in 65% of surveyed
publications, whereas 29% has chosen neural networks. From that moment on, SVMs began
to be used less and less, and neural networks more and more often. In 2020, SVMs would
be used in 22% of the analyzed studies, and neural networks in 56%. Neural networks
are becoming an increasingly popular method of artificial intelligence in many fields, and
it is not surprising that this is the case for eye tracking applications. There are more
and more ready-made solutions that allow scientists to use this method, even without
detailed knowledge of it, and, what is more, they allow the use of incomplete data. Much
smaller changes in use occurred in the case of Random Forest, which was used in 30% of
publications in 2016, and then decreased its share to 22% in 2020. The continuing popularity
of Random Forest is probably due to the ease of using this method while it provides fairly
good results (Figure 6).

The artificial intelligence methods which were used by only one paper include a
bag of visual words, Bayes net, Bayesian classifier, Bayesian lasso regression, boosted
logistic regression, canopy, CNN + long short-term memory, decomposition tree, Deep
Bayesian Network, discriminant analysis, DNN, double q-learning, extremely randomized
trees, farthest first, generalized additive models, generative model base method, gradient
boost, hidden-state conditional random fields, hierarchical clustering, lasso regression,
least-squares regression, low-rank constraint, Mahalanobis distance-based classifier, mixed
group ranks, multi-layer combinatorial fusion, multinomial logistic regression, radial
basis function, random sample consensus, recurrent neural network, recurrent neural
networks with long short-term memory, repeated incremental pruning to produce error
reduction, semi-supervised extreme learning machine, sequential minimal optimization,
Static Bayesian Network with supervised clustering, a strengthened deep belief network,
Tabu search, transfer learning and a Viola-Jones algorithm with haar cascade classifiers.
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In terms of the best results, we can see a similar tendency. Mostly the best results were
achieved by AIs which were used in only one paper, then SVMs, followed by Random
Forest and convolutional neural networks. If a study used only one AI it was considered to
be the best (Figure 7).

Information 2023, 14, x 12 of 22 
 

 

 
Figure 7. Artificial intelligence methods revealed to give the best results. 

The artificial intelligence methods which were chosen by only one paper include a 
Gaussian process regression, Bayesian lasso regression, long short-term memory net-
work, generative model base method, DNN, transfer learning, Deep Bayesian Network, 
Tabu search, decision tree, low-rank constraint, linear discriminant analysis, ensemble, 
lasso regression, naive Bayes, a strengthened deep belief network, semi-supervised ex-
treme learning machine, Support vector regression, Decomposition tree, recurrent neural 
network, CNN + long short-term memory, Viola-Jones algorithm with haar cascade clas-
sifiers, recurrent neural networks with long short-term memory, random sample consen-
sus and linear regression. 

2.7. Methods for Verification of the Results 
Almost three quarters of the researchers used only one method of verification for 

their results, while the rest used from two to five methods (Figure 8). 

 
Figure 8. Number of result verification methods used in each paper. 

Figure 7. Artificial intelligence methods revealed to give the best results.



Information 2023, 14, 624 12 of 22

The artificial intelligence methods which were chosen by only one paper include
a Gaussian process regression, Bayesian lasso regression, long short-term memory net-
work, generative model base method, DNN, transfer learning, Deep Bayesian Network,
Tabu search, decision tree, low-rank constraint, linear discriminant analysis, ensemble,
lasso regression, naive Bayes, a strengthened deep belief network, semi-supervised extreme
learning machine, Support vector regression, Decomposition tree, recurrent neural network,
CNN + long short-term memory, Viola-Jones algorithm with haar cascade classifiers,
recurrent neural networks with long short-term memory, random sample consensus and
linear regression.

2.7. Methods for Verification of the Results

Almost three quarters of the researchers used only one method of verification for their
results, while the rest used from two to five methods (Figure 8).
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Most of the studies used accuracy as a result of their study, but, secondarily, there
are methods used by only one paper which are often study-specific. It makes it extremely
difficult to compare different results so a comparison will be made between only the results
which were verified using the accuracy value. Apart from that, the next three most popular
indicators were precision, recall and f-score (also called f 1-score). Including accuracy, they
are all based on components of the confusion matrix: the true positive (TP), false positive
(FP), false negative (FN) and true negative (TN). Their formulas are as follows [108]:

accuracy =
TP + TN

TP + FP + FN + TN

precission =
TP

TP + FN

recall =
TP

TP + FN

f − score =
2

precission + recall

All papers used those formulas or did not specify which ones they had used, possibly
considering them universally accepted (Figure 9).
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The verification methods used by only one paper include accuracy in degrees, angular
error, average distance error, average error, average hit ratio, average success rate, average
visual angle error, confidence, cross-validation error, D error, discounted cumulative gain,
equal error rate, error, error in centimeters, false positive rate, G-mean, gaze estimation bias
(degrees), improvement in game score, Mann–Whitney u-value, mean absolute residual,
mean and standard deviation of fp and fn, mean angular error, mean squared error, overall
average error, R-squared, relative difference to baseline, reliability, root mean squared error,
percent of screen size error, sensitivity index, specificity, support and visual angle.

3. Results

In the event that no single result was given, the best result obtained in a given publica-
tion is given. Some of the papers have not specified the number of participants (ns) and
some used external data sources (ext.) (Table 2).

Table 2. Comparison of the accuracy of artificial intelligence algorithms.

Ref. Task AI N Accuracy

[47] detecting the type of behavior when
using laptop SVM ns 99.77%

[67] detecting driver distraction Semi-Supervised Extreme
Learning Machine 34 97.2%

[95] gaze estimation Random Forest 10 97.2%

[37] classifying emotions in pictures Strengthened Deep Belief
Network 40 97.1%

[45] predicting neurological diseases Random Forest 96 96.88%

[12] predicting type of reading SVM 30 96.69%

[81] detecting eye gestures naive Bayes ext 95.0%

[11] reading behavior recognition Hidden Markov Model 4 95.0%

[92] gaze estimation ANN 29 94.1%

[61] predicting targets MLP 5 94.0%

[48] detecting computer activity type CNN 150 93.15%
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Table 2. Cont.

Ref. Task AI N Accuracy

[76] authentication CNN 26 93.14%

[63] detecting attention SVM 10 93.1%

[80] detecting eye gestures SVM 5 93.0%

[46] detecting organs AdaBoost 10 92.5%

[29] predicting excitement DNN 20 92.0%

[75] smartphone authentication Random Sample Consensus 21 91.6%

[82] eye gestures for patients Recurrent Neural Network 270 91.4%

[69] detecting mental fatigue SVM 18 91.0%

[54] predicting ethical decision-making MLP 75 90.7%

[22] predicting social plane of interaction Gradient Boosted Decision Tree 1 90.6%

[59] predicting movement intention CNN 24 88.37%

[32] predicting user confidence Random Forest 23 88.0%

[73] detecting operator overload Linear Discriminant Analysis 20 87.91%

[39] detecting people with ASD SVM 130 86.89%

[13] predicting readability MLP ext 86.62%

[50] identifying children’s behavior Random forest 32 84.0%

[38] distinguishing children with ASD Logistic Regression 33 83.9%

[62] predicting web user click intention ANN 25 82.0%

[83] choosing direction Viola-Jones Algorithm with HAAR
Cascade Classifiers ns 82.0%

[30] predicting liking a video ANN 30 81.8%

[35] detecting satisfaction SVM 30 80.53%

[42] detecting people with dyslexia SVM 97 80.18%

[20] detecting speed of learning Random Forest 161 80.0%

[99] distinguishing Chinese ethnic
groups SVM 35 80.0%

[58] detecting eye contact SVM ns 80.0%

[41] predicting Parkinson symptoms’
development Decomposition Tree 10 79.5%

[40] detection of Schizophrenia Generative Model Base Method 44 79.2%

[70] detecting task demand Random Forest 48 79.0%

[72] predicting mental workload Ensemble 20 78.0%

[19] predicting learning curve Random Forest 95 77.0%

[17] predicting SAT score Decision Tree 30 76.67%

[15] predicting word understanding SVM 16 75.6%

[68] detecting mind wandering SVM 178 74.0%

[65] detecting cognitive distraction SVM 18 73.0%

[27] affect recognition Long Short-Term Memory Network 130 72.8%

[57] automatic surgery skills assessment Random Forest 9 69.0%

[96] gaze estimation ANN 10 68.31%
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Table 2. Cont.

Ref. Task AI N Accuracy

[18] predicting user’s cognitive abilities Random forest 166 66.1%

[60] predicting intention SVM 20 64.0%

[9] predicting student’s performance Logistic Regression 95 63.0%

[32] detecting user confusion Random Forest 136 61.0%

[49] predicting type of task Hidden Markov Model 8 57.0%

[21] predicting the prior disclosure
type from eye data Gradient Boosted Decision Tree 20 53.5%

[88] predicting the duration of gaze fixation SVM Ext. 49.1%

[36] predicting the emotion of an
observed person MLP 44 42.7%

When looking at the results we can see that the SVM gives better results than Random
Forest, but it is important to note that it is possible that this was caused by the fact that
SVM was used more often. However, neural networks seem to give consistently higher
results than Random Forest, even though Random Forest gave two results higher than
neural networks were capable of giving in this survey.

There is no clear correlation between the number of participants and the resulting
accuracy of the AI. A larger number of subjects might lead to having too diverse a dataset,
which may make the prediction more challenging, but on the other hand, having a smaller
number of participants may lead to a dataset not diverse enough to properly predict the
desired parameters.

The papers which used more than one artificial intelligence method produced slightly
better results. It might be also worth noticing that the half of the papers with the higher
accuracies did not use sampling frequencies higher than 256 or lower than 30. Sadly, some
of the frequencies were not specified. Furthermore, of the top 20 results, only one used an
additional parameter, which may suggest that studies with information clearly associated
with eyeball movement give the best results, and that combining eye tracking data with
other kinds of data is not always the best choice.

There seems to be no correlation between the result and the type of eye tracker,
especially since the researchers used many different devices.

4. Discussion

Eye tracking and artificial intelligence appeared in a variety of applications connected
to measuring academic performance, emotion recognition, medical studies, human behav-
ior and tiredness detection. This combination also made it possible to use eye movement as
an input and to track it using digital, web and mobile cameras.

The choice of the eye tracker, sampling frequency, artificial intelligence algorithm and
verification method is characterized by a huge variety, which may result from the various
fields of application. Many researchers decide to use unique solutions that do not appear
in other works, which may indicate that this remains a new field of research, which is just
developing research standards.

There are some noticeable trends though. The most popular eye trackers were made by
Tobii and most common sampling frequencies were 30 and 60 Hz. The most popular artifi-
cial intelligence methods used for eye tracking data analysis were SVM and Random Forest,
while the results were most often judged on the basis of their accuracy. Unfortunately,
information about the illumination during the experiments is usually lacking.

The research was carried out on groups of various sizes, most often from 17 to
33 people, with a relatively equal gender division. On the other hand, almost one quarter
of experiments were conducted on students, while adults and the elderly were usually



Information 2023, 14, 624 16 of 22

underrepresented. Sadly, information about the participant’s eye-sight was usually not
included and even if it was it was not detailed enough to replicate the study. Another issue
was the lack of clear information about the approval of an ethics committee.

One clear parameter allowing for the higher accuracy of artificial intelligence using eye
tracking data has not been found. Recommendations could include the use of a sampling
rate between 30 and 265 Hz and the use of more than one artificial intelligence method.

Clearly, eye tracking data analysis, especially with the support of artificial intelligence,
can teach us a lot about human nature, and there is still a lot to discover. The fields in which
this technology can be used are very diverse, which on the one hand makes it difficult to
compare the results, but on the other hand shows the great possibilities of its use. The
accuracy of some solutions still leaves room for improvement, but they still show various
correlations between human behavior and emotions, due to which they can act as a clue for
researchers in the fields of psychology, medicine, didactics, etc., when choosing the subjects
of their research.

Future research directions offer a wealth of opportunities, including expanding this
technology’s applications across diverse demographic groups, enhancing multimodal inte-
grations, and exploring novel clinical, educational, and cross-cultural domains. Exploring
education and the detection of psychological disorders holds great promise as a starting
point for future research. In education, the integration of AI-enhanced eye tracking can
transform teaching and learning methods, while in the realm of psychology, it offers poten-
tial for early diagnosis and interventions, including interventions in real time during tasks
like driving. These research directions are poised to yield practical, impactful solutions.
To further advance the field, interdisciplinary collaborations could foster the development
of holistic solutions that draw from various domains and have broader societal impacts.
Additionally, cross-cultural validation is essential, particularly in emotion recognition and
behavior prediction, to ensure the cultural sensitivity and accuracy of AI models. Real-time
interventions based on gaze behavior in educational settings hold potential for enhancing
learning outcomes.

There are, however, some areas which should be improved in future studies. In
some papers, vital information about the study participants is often missing, leaving a
significant gap in our understanding. This lack of information spans from the basic number
of participants to more detailed aspects like gender distribution, age ranges, and eye
sight parameters (such as the use of glasses). Such information should be included by
future researchers to ensure that their studies are more comprehensive and ultimately more
impactful. Perhaps the most crucial improvement in terms of participants’ information is
the need for the inclusion of documented approval from ethics committees.

A promising avenue for collaborative progress could revolve around the establishment
of comprehensive eye tracking databases, allowing researchers from diverse backgrounds
to access and analyze this valuable resource. It is noteworthy that a mere 5.33% of papers in
our study drew upon external data sources, signifying a missed opportunity for the broader
scientific community to benefit from shared datasets and foster collective advancements in
eye tracking research. Incorporating additional parameters, such as electroencephalography
(EEG), participant position, and movement data, as well as experiment-related factors like
duration and stimulus parameters, holds the potential to enrich the depth and breadth
of eye tracking studies. These additional dimensions offer a holistic perspective on the
cognitive and contextual aspects influencing visual attention, paving the way for more
comprehensive and nuanced findings in the field of eye tracking research. Researchers
should consider these multifaceted variables as valuable assets in their quest to unravel the
complexities of visual perception and cognition.

Furthermore, fostering the use and comparison of multiple AI methods within research
endeavors is poised to substantially elevate the quality and rigor of eye tracking studies.
The absence of a clear rationale for choosing one AI solution over another underscores the
need for comprehensive comparisons. By exploring and evaluating various AI techniques,
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researchers can identify the most effective solutions tailored to the specific challenges they
aim to address.

Lastly, a critical advancement required in the field of eye tracking research lies in the
inclusion of standardized and diverse methods for analyzing result verifications. While
accuracy emerges as the most frequently employed parameter, it is crucial to consider
its future integration with additional performance metrics like precision, recall, and F-
score. These established metrics provide a more comprehensive understanding of the true
accuracy of AI models. Furthermore, the research community may find it advantageous
to explore or develop novel verification methods tailored specifically to the nuances of
AI and eye tracking. This approach not only enhances the quality and precision of eye
tracking research but also facilitates the comparability of results across different papers. By
establishing standardized verification methods and broadening the spectrum of the metrics
employed, researchers can effectively compare and benchmark their findings with those
from other studies.

5. Conclusions

Eye tracking data analysis, particularly when combined with artificial intelligence,
offers valuable insights into human behavior and emotions. Its versatile applications make
result comparison challenging but highlight its immense potential. While their accuracy can
still be improved, these solutions provide valuable insights for researchers in psychology,
medicine, education, and other fields, when selecting their research subjects.
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