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Abstract: Accurate and efficient medicinal plant image classification is of utmost importance as these
plants produce a wide variety of bioactive compounds that offer therapeutic benefits. With a long
history of medicinal plant usage, different parts of plants, such as flowers, leaves, and roots, have been
recognized for their medicinal properties and are used for plant identification. However, leaf images
are extensively used due to their convenient accessibility and are a major source of information. In
recent years, transfer learning and fine-tuning, which use pre-trained deep convolutional networks to
extract pertinent features, have emerged as an extremely effective approach for image-identification
problems. This study leveraged the power by three-component deep convolutional neural networks,
namely VGG16, VGG19, and DenseNet201, to derive features from the input images of the medicinal
plant dataset, containing leaf images of 30 classes. The models were compared and ensembled to make
four hybrid models to enhance the predictive performance by utilizing the averaging and weighted
averaging strategies. Quantitative experiments were carried out to evaluate the models on the
Mendeley Medicinal Leaf Dataset. The resultant ensemble of VGG19+DensNet201 with fine-tuning
showcased an enhanced capability in identifying medicinal plant images with an improvement
of 7.43% and 5.8% compared with VGG19 and VGG16. Furthermore, VGG19+DensNet201 can
outperform its standalone counterparts by achieving an accuracy of 99.12% on the test set. A thorough
assessment with metrics such as accuracy, recall, precision, and the F1-score firmly established the
effectiveness of the ensemble strategy.

Keywords: ensemble convolutional learning; transfer learning; fine-tuning; multiclass classification;
medicinal plant identification

1. Introduction

Medicinal plants are gaining popularity in the pharmaceutical industry as they are
less likely to have adverse effects and are less expensive than modern pharmaceuticals.
According to the World Health Organization, there are over 21,000 plant species that can
potentially be utilized for medicinal purposes. It is also reported that 80% of people around
the world use medicinal plants for the treatment of their primary health ailments [1].

Systematic identification and naming of plants are often carried out by professional
botanists (taxonomists), who have deep knowledge of plant taxonomy [2,3]. Manually
identifying plant species is a challenging and time-consuming process. Furthermore,
the process is prone to errors, as every aspect of the identification is entirely based on
human perception [4]. There is also a dearth of these plant identification subject matter
experts, which gives rise to a situation of “taxonomic impediment” [5]. It is, therefore,
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important to develop an effective and reliable method for the accurate identification of
these valuable plants.

Machine learning (ML) is a sub-field of artificial intelligence that solves various in-
tricate problems in different application domains with minimal human intervention [6].
Deep learning (DL), inspired by the structure and functionality of biological neurons, is a
sub-field of machine learning (ML). DL involves the training of algorithms and demands a
large amount of data to achieve better identification results. Due to the advancements in
hardware technology and the extensive availability of the data, DL has gained popularity
in various tasks like natural language processing, game playing, and image processing,
and outstanding performance is being achieved, which could be otherwise impossible for
humans to discern [7].

Various research studies have revealed that researchers are showing a great interest in
the automatic identification and classification of plant species using plant image specimens
and by employing ML and DL techniques [8–12]. This automatic identification is carried out
in different stages, viz. (a) image acquisition, (b) image preprocessing, (c) feature extraction,
and (d) classification. Plant species identification can be performed using the different parts
of plants like flowers, bark, fruits, and leaves or using the entire plant image. Researchers
prefer to use leaf images for the identification process as leaves are easily identifiable parts
of the plant. Leaf images are usually available for a long time during the year, while flowers
and fruits are specific to a particular season only. There are more the one-hundred studies
that have used plant leaf images for the automatic identification process [4].

In this research, transfer learning and ensemble learning approaches were employed
to classify medicinal plant leaf images into thirty classes. The transfer learning approach
uses the existing knowledge gained from one task to solve problems of a related nature [13].
This approach is extensively used in image-classification problems, particularly with con-
volutional neural network models pre-trained on advanced GPUs capable of categorizing
objects across a wide range of 1000 classes. Transfer learning can be used in medicinal
plant image classification as the approach facilitates the migration of acquired features and
parameters, so it reduces the need for extensive training from scratch.

The main aim of ensemble learning is to improve the overall performance of classifiers
by combining the predictions of individual neural network models. Ensemble learning
has recently gained popularity in image classification using deep learning [14–16]. We
trained VGG16, VGG19, and DenseNet201 on the Mendeley Medicinal Leaf Dataset and
evaluated the efficiency of these component models. After individual evaluation of the
models, an ensemble learning approach using the averaging and weighted averaging
strategies was employed to make the final prediction. Some of the novel contributions of
this work are as follows:

• An automated system was developed to reduce the reliance on human experts when
it comes to identifying different medicinal plant species. Classically, identifying plant
species often requires experts who possess knowledge of botanical characteristics,
but this system aims to lessen that dependency by using technology to perform the
identification task.

• In this work, we adjusted the hyperparameters, like the learning rates, batch sizes,
and regularization techniques, to ensure the model performed optimally for this
classification task.

• Also, transfer learning and fine-tuning are being used to extract meaningful and infor-
mative features from images of medicinal plant leaves. Instead of training a deep learn-
ing model from scratch, the pre-trained models VGG16, VGG19, and DenseNet201
were used as a starting point. These models were leveraged to enhance the ability of
identifying and extracting relevant information from medicinal plant images, which
were used for species identification or other related purposes.

• Also, a comparative analysis was performed in this study, including several previously
state-of-the-art approaches for the identification of medicinal plants using the same
dataset , leveraging the complementary features of VGG19 and DenseNet201, the
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ensemble approach improved the robustness and balanced the performance, making
it a potent solution for medicinal plant identification.

In this section, we provide an overview of medicinal plants, highlighting their numer-
ous benefits and the challenges associated with their identification. We also discuss existing
methods used for identifying medicinal plants.

The upcoming sections will explore various related research studies shedding light on
the advancements made in utilizing deep learning techniques for plant identification using
their image data. Following the literature review, we describe the methodology employed
and present the results obtained from our experiments. Furthermore, we discuss the
significance and relevance of our proposed approach in addressing the existing challenges
in medicinal plant identification.

2. Related Work

Numerous efforts have been undertaken to tackle the challenge of identifying medici-
nal plants from their different parts [17], employing different machine learning approaches.
However, researchers and experts often rely on leaf images to accurately classify other
plant species, as leaf images, are widely recognized as the most-accessible and trustworthy
sources of information for plant species identification.

Various authors have relied on low-level features such as the leaf shape, color, and
texture to differentiate between species. For example, the mobile application is known
as Leafsnap by Kumar et al. [18] identifies plant species based on plant leaf images. The
feature extraction method captures the curvature of leaf margins at multiple scales. The
authors of [19] emphasized incorporating all these features, including shape, color, texture,
and venation, into a comprehensive feature vector for the probabilistic neural network
(PNN). By utilizing this feature vector, they achieved an impressive average accuracy of
93.75% on the publicly accessible Flavia dataset [20]. Amala Sabu et al. [21] proposed an
Ayurvedic plant-identification system and extracted features with SURF and HOG-based
techniques. In this study, a total of 200 images of 20 different plant leaves were collected, and
K-NN was chosen as the classifier. It is evident that the studies as mentioned earlier have
primarily concentrated on recognition using hand-engineered image features. However,
this approach has several limitations that need to be considered. The expressiveness
and ability to discern intricate patterns and subtle changes in the data may be lacking
in handcrafted features. Manual feature engineering is laborious, time-consuming, and
subject to bias. Handcrafted features might not be able to manage noise and variations
effectively. For massive datasets, the approach can also be computationally costly and
ineffective. These techniques are difficult to apply for practical applications and necessitate
the need to design a method that is less affected by the environment and is well suited for
the recognition of real-world plant images.

In recent years, there has been a notable shift towards the adoption of convolutional
neural networks (CNNs). CNNs have gained prominence due to their ability to auto-
matically learn and extract meaningful features from input images, reducing the need for
extensive human intervention in the feature-extraction process. These algorithms have
received much attention in the literature. Sobitha Raj et al. [22] proposed a deep learning ar-
chitecture by extracting features using MobileNet and DenseNet-121. In the study, different
classifiers, viz. K-nearest neighbor, multinomial logistic regression, and linear discriminant
analysis were used. Barre et al. [23] devised a deep learning approach for extracting dis-
tinctive features from leaf images and, subsequently, classifying plant species. The authors
revealed that the learned features obtained from a convolutional neural network (CNN)
outperformed the handcrafted features. In order to automatically detect plant diseases, the
researchers in [24] successfully created a robust and deep CNN model with nine layers.
To enhance the learning capability of the CNN, the input data were augmented, resulting
in an increased number of samples. The model was subjected to rigorous testing using
various classifiers, and it achieved an impressive accuracy rate of 96%.
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In computer vision tasks, several widely recognized and open-source models have
gained popularity, including VGG-16, VGG-19 [25], Inception V3 [26], DenseNet [27], and
ResNet-50 [28]. These state-of-the-art architectures have been extensively trained, and
other researchers can utilize their parameters and weights to address problems in various
domains. This allows for efficient knowledge transfer and facilitates the application of
pre-trained models in different computer vision applications. Reference [11] employed
transfer learning to extract features from the pre-trained networks and used artificial neural
networks (ANNs), support vector machines (SVMs), and an SVM with batch optimization
(SVM with BO) as the classification algorithms. The results of their study demonstrated that
the model trained with the Xception network and ANN achieved an impressive accuracy
of 97.5% for real-time leaf images. Transfer learning was also employed by [29] to create
different combinations of pre-trained MobileNet CNNs to classify medicinal plant leaves.

3. Methods and Material
3.1. Convolutional Neural Network

In the domain of artificial intelligence, significant progress has been made in recent
years, particularly in the field of computer vision. Researchers have dedicated their efforts
to unlocking the potential of machines in understanding and interpreting visual informa-
tion, such as images and videos. The application of deep learning in computer vision has
propelled the field forward, enabling machines to analyze, interpret, and make intelligent
decisions based on visual input. This advancement has been made possible through the
development of convolutional neural networks (CNNs) and deep learning techniques. A
schematic of a CNN can be seen in Figure 1.

The CNN structure is inspired by the human visual cortex and is widely used for au-
tomatic feature extraction from large datasets [30,31]. It consists of a series of convolutional
layers, followed by sampling layers and a fully connected layer [32].

Figure 1. CNN architecture (feature-extraction block).

Following the convolutional layer, the ReLU activation function is applied to extract
nonlinear features. The purpose of incorporating the ReLU layer is to introduce nonlinearity
into the network. The mathematical representation of the ReLU function is defined as
follows, as shown in Equation (1).

relu(v) = max(v, 0) (1)

The pooling layer plays a crucial role in reorganizing the feature maps to effectively
decrease the factors [33], the allocation of memory, and the computational budget within
the framework. Each feature map undergoes pooling, with the two commonly used
approaches being max pooling and average pooling, as denoted by Equation (2) and
Equation (3), respectively. These pooling functions help summarize the information within
the feature maps while reducing their spatial dimensions.

ak = max
j∈Rk

(
Mj

)
(2)
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ak =
1
|Rk| ∑

j∈Rk

Mj (3)

The pooling layer is denoted as M, and Rk represents all parameters within this layer.
The confidential criteria are computed in the fully connected layers and represented as a
three-dimensional array, like 1 × 1 × c. Each component within this volume corresponds
to structural scores, with c representing the categories. In a fully connected (FC) layer,
all neurons are connected to neurons in the preceding layers; this is a type of intercon-
nection. This connectivity is a characteristic feature of a typical convolutional neural
network (CNN) [33,34], where all layers are sequentially interconnected, as depicted in
Equation (4). This connectivity pattern allows for information flow and feature extraction
across the network.

mr = Fr(mr−1) (4)

In the following, Equation (5) represents a deeper architecture of CNN with a more-
significant number of fully connected layers, which may lead to vanishing or exploding
gradient values. There are various techniques to deal with this issue, such as the application
of shortcut connections among the layers, as can be seen for ResNet [35].

mr = Fr[(mr−1) + mr−1] (5)

As another example of the architecture of CNNs, there is a direct connection between
the whole layers in DenseNet, where the input in the current layer comes from the previous
one as a standard model [36]. The formulation can be seen below.

mr = Fr[(m0, m1, m2, . . . mr−1)] (6)

In this study, three prominent convolutional neural network architectures, VGG16 [25],
VGG19 [25], and DenseNet201 [27], were employed for the identification of medicinal
plant images.

3.2. VGG-16

VGG-16 is a top-rated convolutional neural network (CNN) model that was proposed
in [25]. It has achieved remarkable performance in image-detection and -classification
tasks, and this network is easy to use with transfer learning. The model comprises 13
convolutional layers, five max-pooling layers, and three fully connected layers. The final
layer employs the softmax activation function for classification. The architecture of VGG-16
is relatively straightforward, which takes an input tensor of size 224 × 224 with three
RGB channels.

3.3. VGG-19

VGG-19 [25] is an extended version of VGG-16 designed to enhance image-recognition
performance. It has achieved remarkable success in the ImageNet Challenge 2014, where
the Visual Geometry Group (VGG) team secured top rankings. The VGG-19 architecture
consists of 16 convolutional and three fully connected layers. Like the VGG16 network,
this model also takes a 224 × 224 input image size with 3 RGB channels. The convolutional
blocks serve as feature extractors, generating bottleneck features. VGG-19 exemplifies the
VGG team’s commitment to advancing image-recognition capabilities.

3.4. DenseNet201

DenseNet201 [27], a deep convolutional neural network (CNN) model introduced
in 2017, is known for its dense connectivity pattern. With 201 layers, it employs dense
blocks, where each layer is directly connected to every other layer, promoting feature reuse
and gradient flow. Transition layers are inserted to control the parameters and reduce
the spatial dimensions. Batch normalization and ReLU activation enhance the training.
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DenseNet201 achieves high accuracy in image-recognition tasks by capturing intricate
patterns and hierarchical representations. Pretrained on ImageNet, it serves as a feature
extractor or can be fine-tuned for transfer learning, making it a powerful CNN model for
image classification and related applications.

DenseNet201 has various advantages due to its 201 convolutional layers. These advan-
tages include enabling feature adaptation to be used again, vanishing gradient problems,
achieving optimal feature distribution, and reducing the number of parameters [33]. Let us
consider an image H0 being fed into a neural network comprising S layers with nonlinear
transformation, denoted as Fs(.). In this case, DenseNet201 incorporates conventional
skip connections within the feed-forward network (see Figure 2). These connections allow
bypassing the nonlinear alteration using an identity function, as represented as follows.

Hs = Fs(Hs−1) + Hs−1 (7)

Plant 1

Plant 2

Plant 3

Plant 4

Plant 5

Plant N

Multi-classification

3*3 Max
Pool, Stride 2

Dense Block (4)
Conv(1*1, 3*3)*32

Transition Layer(2) 1*1
Conv, 2*2 Avg. Pool, Stride 2

7*7 Conv., Stride 2

Fully connected
 software

Tr
ai

n
in

g 
sa

m
p

le
s

Dense Block (3)
Conv(1*1, 3*3)*48

Dense Block (2)
Conv(1*1, 3*3)*1

Dense Block (1)
Conv(1*1, 3*3)*6

7*7 Global Average
Pool

Transition Layer(1) 1*1
Conv, 2*2 Avg. Pool, Stride 2

Transition Layer(3) 1*1
Conv, 2*2 Avg. Pool, Stride 2

Figure 2. DenseNet201 architecture (feature-extraction block). The star symbol (*) denotes multiplication.

Further, DenseNet offers a distinct benefit in that the gradient can flow directly through
the identity function from the primary layers to the last layer. On the other hand, dense
networks utilize direct end-to-end connections to maximize the details within each layer.
In this case, the s-th layer receives all the data from the preceding layer, as follows.

Hs = Fs[(H0, H1, . . . . . . . . . , Hs−1)] (8)

DenseNet’s architectural design incorporates a particular process for downsampled
data, which occurs within dense blocks. These blocks are divided into transition layers,
each including a 1 × 1 convolutional layer (CONV), an average pooling layer, and batch
normalization (BN). The elements from the transition layer progressively disseminate to
the dense layers, making the network less intricate. In an effort to enhance network utility,
the average pooling layer was wholly converted into a 2 × 2 max pooling layer. Each con-
volutional layer is preceded by batch normalization. The network’s growth rate, denoted
by the hyperparameter k, allows DenseNet to yield state-of-the-art results. However, the
hyperparameters should be adjusted depending on the complexity and nonlinearity of the
data characteristics [37]. The conventional pooling layers were removed, and the proposed
detection layers were fully amalgamated and connected to the classification layers for
detection purposes. DenseNet264 encompasses even more-complex network designs than
the 201-layer network. However, due to its narrower network footprint, the 201-layer
structure was deemed suitable for the plant leaf detection tasks. DenseNet201, despite a
smaller growth rate, still performs excellently because its design employs feature maps as a
network-wide mechanism. The architecture of DenseNet201 is depicted in Figure 2.
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DenseNet201, as a deep learning architecture, possesses distinct advantages and
disadvantages. The benefits of DenseNet201 are as follows. Firstly, it effectively addresses
the vanishing gradient problem by establishing direct connections between layers. This
facilitates smoother gradient flow during training, leading to improved optimization based
on gradients. Secondly, DenseNet201 excels in distributing features evenly across layers
due to its dense connections. This enhances the model’s overall representational capabilities.
Additionally, DenseNet201 enables the reuse of feature maps at various depths, promoting
efficient information flow and potentially strengthening the network’s learning capacity.
Lastly, it reduces the number of parameters compared to conventional deep learning
architectures by eliminating the need for redundant feature learning in individual layers.
This results in a more-efficient utilization of the parameters in the model. Deep learning
methods on single leaf sheets for plant identification are not a replacement for approaches
dealing with segmentation and identification in scattered environments. Instead, they serve
the specific purpose of simplifying the data collection, enabling in-depth species-specific
analysis, and providing a foundational step for more-complex plant identification tasks.
These methods are valuable and contribute to developing more robust, comprehensive
plant identification systems.

3.5. Ensemble Learning Approach

Ensemble learning offers a compelling approach to elevate the performance of classi-
fiers by encompassing diverse techniques, prominently including bagging, boosting, and
stacking [38]. Ensemble learning considers either a homogeneity or heterogeneity approach.
In the case of homogeneity, a single base classifier is trained on different datasets, whereas
for heterogeneity, additional classifiers are trained on a shared dataset. The resultant ensem-
ble, by harnessing the collective wisdom of its components, generates predictions through
a synthesis of approaches such as averaging, weighted averaging, and voting. These
mechanisms draw from the individual outputs furnished by the base classifiers. In our
pursuit of automating medicinal leaf detection, we embraced the heterogeneous ensemble
paradigm, where the weighted average and average play a pivotal role in amalgamating
the contributions of diverse classifiers to culminate in the ultimate and refined outcome.

3.6. Proposed Ensemble Learning for Medicinal Plant Leaf Identification

The proposed ensemble learning approach illustrated in Figure 3 was tailored for
the precise and reliable identification of medicinal plant leaves. The approach capitalizes
on the collective intelligence of multiple convolutional neural network (CNN) models,
offering a holistic and robust strategy for accurate leaf classification. The framework
initiation encompasses the individual training of three prominent CNN models: VGG16,
VGG19, and DenseNet201. Central to our strategy is the utilization of transfer learning,
a technique where the final layers of the aforementioned CNN models are replaced with
custom pooling and dense layers. This adaptation facilitates the alignment of models with
the unique attributes of our medicinal leaf dataset, enabling them to discriminate between
various leaf species effectively. Each model undergoes extensive training for 100 epochs to
ensure thorough convergence and optimal performance.

Our ensemble approach employs two techniques for combining predictions from
multiple neural network models, including VGG16, VGG19, and DenseNet201. Averaging
involves computing the elementwise average of predictions from each model for a given
input image, reducing the impact of model variations and errors to enhance prediction
reliability. Furthermore, our approach employs weighted averaging by assigning model-
specific weights, represented as (wi), based on individual performance metrics calculated
on the validation data. The weights are determined by dividing each model’s accuracy on
the validation set by the sum of the accuracies of all models within the ensemble. These
normalized weights, where ∑wi = 1, are then applied when making predictions on the
test set. The weights assigned to the component models are 0.3294, 0.3229, and 0.3475
for VGG16, VGG19, and DenseNet201, respectively. This strategy optimizes ensemble
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performance by prioritizing models that demonstrate excellence in classifying medicinal
plant images on previously unseen data.

Figure 3. The process flow of the proposed research study.

The subsequent sections discuss the component models, ensemble learning approach,
experimental results, and discussions, shedding light on the efficacy and contribution to
the field. The applied steps of the proposed ensemble model can be listed as follows:

(1) Data loading and splitting: Collect “Mendeley Data–Medicinal Leaf Dataset” (1835 im-
ages, 30 species), and split into training (70%) and testing (30%).

(2) Model selection: Choose VGG16, VGG19, and DenseNet201 as the base models.
(3) Image standardization: Resize images to 224 × 224 px, which is compatible with the

input size expected by the CNN models.
(4) Data augmentation: Enhance the model learning and diversity by applying random

rotations, flips, translations, and adjustments to brightness or contrast. This exposure
to image variations during training improves the model’s generalization.

(5) Batch generation: Divide the dataset into smaller subsets of images, which are then
fed into the CNN model during training. This approach enhances the computational
efficiency by processing a portion of the dataset at a time, rather than the entire
dataset at once.

(6) Training and transfer learning: The models were trained individually employing
transfer learning with softmax activation [39] for classification using the Adam
optimizer and categorical cross-entropy.

(7) Validation models: For each trained model, the prediction was performed by calcu-
lating the class probabilities on the test set.

(8) Hybridization models: The ensemble models were created by combining the results
generated by individual classifiers, using the averaging and weighted averaging
strategies. Using the three components, VGG16, VGG19, and DenseNet201, the
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feasible ensemble models were created, validated, and compared to select the best-
performing model. The proposed learning framework can be seen in Figure 4.

VGG16 VGG19 DenseNet201

VGG16

VGG19

DenseNet201

VGG16+VGG19

VGG16+DenseNet201

VGG19+DenseNet201

VGG16+VGG19+DenseNet201

C
o

m
p

ar
e

 &
 

Se
le

ct Best-performed 
Model

Figure 4. An overview of the proposed ensemble model framework.

3.7. Hyperparameter Tuning Using Grid Search

Grid search, a commonly used methodology in machine learning for optimizing
hyperparameters, involves exhaustively exploring a pre-determined grid of hyperparam-
eter values in order to identify the combination that maximizes the performance of the
model [37,40]. Let us delve into an illustration of using a parameter sweep to fine-tune
the hyperparameters of the convolutional neural network (CNN) architecture, a highly
esteemed CNN model known for its intricate design and exceptional accomplishments in
image-classification endeavors.

In this particular case, hyperparameters such as the learning rate, batch size, and
weight decay can be refined. To begin, we construct a grid encompassing a wide range of
potential values for each hyperparameter. For example, we might consider learning rates
that span from 0.001 to 0.1, batch sizes that range from 32 to 128, and weight decay values
that encompass 0.0001 to 0.01. By utilizing the technique of parameter sweep, we systemati-
cally generated all possible combinations from these configurations of the hyperparameters.
As an illustration, a combination could consist of a learning rate of 0.001, a batch size of 32,
and a weight decay of 0.0001. Subsequently, we trained the CNN model using the desig-
nated values of the hyperparameters. The process of training usually involves dividing
the dataset into training and validation sets, transmitting the data through the network,
calculating the loss, and adjusting the model’s weights through backpropagation.

After training the model, we carefully analyzed its performance on a separate test
set. This repetitive process was carried out for all combinations of the hyperparameters,
and we selected the combination that achieved the best performance on the validation set.
The determination of the optimal performance can be based on metrics such as accuracy,
precision, recall, or the F1-score, depending on the specific classification task. Once we
had identified the most-promising combination of hyperparameters through a parameter
sweep, we trained the CNN model again using this configuration on the entire training
dataset. Finally, we assessed the performance of the optimized model on a distinct test
dataset to evaluate its ability to generalize to new, unseen data. By thoroughly exploring
various combinations of hyperparameters, the parameter sweep technique enabled us to
discover the optimal configuration for the CNN model, thereby enhancing its performance
in image-classification endeavors.
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3.8. Dataset Description

To start the process of plant species identification, the first step involved collecting
the dataset. A qualitative study was conducted to identify suitable medicinal leaf dataset
sources and determine the dataset format. The selection of a dataset is influenced by several
factors, including the nature of the problem, the availability of data, the diversity of the
data, and the relevance to the application. In order to generalize our approach, we used the
benchmark dataset of medicinal plant leaf classification, i.e., Mendeley Medicinal Leaf [41].
The dataset, representing images from 30 different medicinal plants, was selected for this
study. The selected dataset contained a total of 1835 leaf images. A system’s performance is
affected by factors like the dataset size, class distribution, and data quality. To address this
concern, data preprocessing was employed to clean the dataset. Figure 5 depicts some of
the leaf samples of the Mendeley Medicinal Leaf Dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Showcases a sample of the medicinal leaf dataset images, illustrating the diverse range
of plant images incorporated for classification purposes. (a) Alpinia Galanga (Rasna), (b) Amaran-
thus Viridis (Arive-Dantu), (c) Artocarpus Heterophyllus (jackfruit), (d) Azadirachta Indica (neem),
(e) Basella Alba (Basale), (f) Brassica Juncea (Indian mustard), (g) Carissa Carandas (Karanda),
(h) Citrus Limon (lemon), (i) Ficus Auriculata (Roxburgh fig), (j) Ficus Religiosa (peepal tree),
(k) Jasminum (jasmine), (l) Mangifera Indica (mango).

3.9. Data Preprocessing

Data preprocessing plays an important role in preparing raw data for machine learning
models, ensuring that the data are in a suitable format for effective training and analysis.
The dataset collected was meticulously divided into distinct training and testing subsets,
adhering to the widely adopted 70–30 ratio. This partitioning ensured an optimal allocation
of data for both model development and rigorous evaluation. During the component
model training phase, an additional step of further subdivision was introduced. Within the
training subset, 20% of the data were strategically reserved for validation. This segregation
gave us a dedicated validation set, essential for gauging the convergence and generalization
capabilities of our evolving models. During the training phase of the component models
(VGG16, VGG19, and DenseNet201) and ensemble models, images were resized to a
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uniform size of 224 × 224 px. This preprocessing step ensured that all images were of
the same dimensions, allowing them to be fed into the neural networks consistently. The
images were then normalized to ensure the pixel values fell within a specific range, which
aids in stable and efficient training. To enhance the robustness and prevent overfitting, data
augmentation techniques were applied to the training dataset. These techniques involve
generating new instances by applying transformations to the existing images. Various
transformations, such as random rotation by up to 20◦, zooming by 5%, horizontal and
vertical shifting by 5%, shearing at a 5% angle, and horizontal flipping, were performed.
The “nearest” fill mode handled new pixels resulting from the transformations. These
transformations helped increase the diversity of the training data, enabling the model to
learn a wider range of features and generalize better to unseen data.

4. Evaluation Metrics

Evaluation metrics play a vital role in optimizing classifiers for the accurate detection
and classification of medicinal plant images. In this study, we evaluated the trained models
on the basis of commonly used performance metrics in this domain, which include accuracy,
sensitivity (recall), precision, and the F1-score. Accuracy measures the proximity between
predicted and target values, while sensitivity focuses on the ratio of correctly identified pos-
itive instances. True negatives (TNs) and true positives (TPs) represent correctly classified
negative and positive instances, respectively, contributing to successful classification and
detection. False negatives (FNs) and false positives (FPs) denote misclassifications. These
metrics guide the fine-tuning of classifiers to achieve optimal performance in medicinal
plant image classification. The formulae for the calculation of the metrics used in this study
are shown in Equations (9)–(12).

4.1. Accuracy

Accuracy is a metric that calculates the proportion of correctly predicted values out of
the total number of instances evaluated.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

4.2. Recall

Recall, also known as sensitivity, quantifies the proportion of positive values that are
accurately classified.

Recall =
TP

TP + FN
(10)

4.3. Precision

Precision assesses the accuracy of positive predictions within the predicted values of
the positive class.

Precision =
TP

TP + FP
(11)

4.4. F1-Score

The F1-score quantifies the balanced performance of a classifier by taking into account
both the recall and precision rates through their harmonic average.

F1-Score = 2× Precision× Recall
Precision + Recall

(12)

The classification reports and confusion matrices were analyzed to evaluate the per-
formance of the classifiers. Similar procedures were carried out for the other feature sets,
allowing a comparison of the classifiers’ performance.
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5. Experimental Results
5.1. Classification Outcomes of Component Deep Neural Networks

Employing transfer learning played a pivotal role, where the pre-trained VGG16,
VGG19, and DenseNet201 deep neural network architectures were fine-tuned to classify
medicinal plants. In this work, we initially trained VGG16, VGG16, and DenseNet201
individually for 100 epochs using transfer learning. The batch size was 32. Activation
function = softmax, and optimizer = Adam. Then, the models were evaluated, and ensemble
models were created and evaluated. The hyperparameters were adjusted using grid search,
employed to optimize the results and shown in Table 1.

Table 1. The tuned hyperparameters of the proposed classification model.

Parameter Description Value

Number of Layers Composed of dense blocks, transition blocks, and a final clas-
sification layer 201

Dense Blocks For the dense blocks, the number of layers in these blocks was
(6, 12, 48, 32) 4

Growth Rate Sets the number of feature maps added to each layer in
the DenseNet 32

Learning Rate Step size at each iteration while moving toward a minimum
of a loss function 0.00001

Batch Size Number of samples contributing to training 32

Activation Function Introduces nonlinearity into the network ReLU

Dropout Factor Disregards certain nodes in a layer at random during training
to prevent overfitting 0.5

It is evident from Table 2 and Figure 6 that DenseNet201 displayed an impressive
training accuracy of 100% and a validation accuracy of 94.64%. Notably, DenseNet201
exhibited remarkable generalization, achieving an exceptional test accuracy of 98.93%. In
Figure 7, the training and validation accuracy and loss for DensNet201 are graphically
illustrated, and Figure 8 displays the distribution of the predicted classes against the actual
classes. These results underscore the capacity of transfer learning to adapt models to
the specific characteristics of the medicinal plant dataset, yielding robust and accurate
classifiers for medicinal leaf image classification. The VGG16 and VGG19 architectures
have relatively small receptive fields, which limited their ability to capture long-range
dependencies in the data and led to comparatively lower performance than DenseNet201.
Moreover, VGG16 and VGG19 are deep architectures with 16 and 19 layers, respectively.
While depth can be beneficial for capturing complex patterns in data, it also makes training
and inference computationally expensive. As deeper and more-complex architectures
have been developed, such as ResNet and Inception, they have demonstrated improved
performance with fewer parameters and computational requirements.

Table 2. Training, test, and validation accuracy of VGG16, VGG19, and DenseNet201.

Deep Neural Network Training Accuracy (%) Validation Accuracy (%) Test Accuracy (%)

VGG16 96.19 89.7 93.67

VGG19 95.41 87.94 92.26

DenseNet201 100 94.64 98.93
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Figure 6. Accuracy comparison of VGG16, VGG19, and DenseNet201.

Figure 7. The training and validation loss and accuracy of DenseNet201.

The precision, recall, and F1-score results of the individual deep neural network
models are summarized in Table 3 and visualized in Figure 9. These metrics provide
insights into the models’ performance in terms of correctly identifying positive cases,
capturing actual positive instances, and achieving a balance between precision and recall.
Among the models, DenseNet201 exhibited the highest precision, recall, and F1-score,
indicating its excellence in classification accuracy.
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Figure 8. The confusion matrix of the DenseNet201 component model.

Table 3. Precision, recall, and F1-score obtained by the component deep neural networks.

Deep Neural Network Precision (%) Recall (%) F1-Score (%)

VGG16 94.02 93.67 93.84

VGG19 92.67 92.26 92.46

DenseNet201 99.01 98.94 98.97

Figure 9. Performance comparison between VGG16, VGG19, and DenseNet201 based on precision,
recall, and F1-score.

5.2. Ensemble Approaches for Improved Classification Performance

After individually evaluating the component deep neural network models, the explo-
ration turned towards ensemble techniques for further refinement. Specifically, two ensem-
ble approaches, namely averaging and weighted averaging, were employed to combine the
strengths of the individual models. This culminated in the creation of diverse ensemble
models that revealed enhanced classification capabilities. Table 4 and Figure 10 present
the accuracy outcomes of the four developed ensemble models, VGG19 + DenseNet201,
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VGG16 + VGG19, VGG16 + DenseNet201, and VGG16 + VGG19 + DenseNet201, based on
the average performance strategy.

Table 4. Accuracy outcomes of different ensembled deep neural networks using averaging ensem-
ble approach.

Average Ensemble

Ensemble Deep Neural Networks Training
Accuracy (%)

Validation
Accuracy (%)

Test Accuracy
(%)

VGG19 + DenseNet201 100 95.52 99.12

VGG16 + VGG19 99.04 90.65 96.66

VGG16 + DenseNet201 100 95.52 98.76

VGG16 + VGG19 + DenseNet201 99.90 93.90 98.41

Figure 10. Accuracy comparison between ensemble models: VGG19 + DenseNet201, VGG16 + VGG19,
VGG16 + DenseNet201, and VGG16 + VGG19 + DenseNet201.

We can see the statistical analysis of the weighted average ensemble model for the four
developed approaches based on the training, validation, and testing classification accuracy
in Table 5.

In Figure 11, the confusion matrix for the ensemble of VGG19+DenseNet201 is pre-
sented, which highlights the effectiveness of the ensembled approach using the average
ensemble strategy. The diagonal values of a confusion matrix represent the number of data
points where the predicted label matches the true label, indicating correct predictions. They
signify instances where the classifier identifies the positive class correctly. In contrast, the
off-diagonal elements of the confusion matrix denote the misclassifications made by the
classifier. These errors can be false positives or false negatives, depending on whether the
predicted label is incorrect for the positive class or the negative class, respectively. In other
words, a higher value on the diagonal of the confusion matrix indicates better performance
of the classifier, as it suggests a larger number of correct predictions. The ultimate goal is to
maximize the values on the diagonal while minimizing the off-diagonal elements.
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Table 5. Accuracy outcomes of different ensembled deep neural networks using weighted average
ensemble.

Weighted Average Ensemble

Ensemble Deep Neural Networks Training
Accuracy (%)

Validation
Accuracy (%)

Test Accuracy
(%)

VGG16 + VGG19 + DenseNet201 99.61 92.68 97.89

VGG19 + DenseNet201 99.23 91.86 96.83

VGG19 + VGG16 98.75 89.02 96.66

VGG16 + DenseNet201 99.80 91.05 98.06

Figure 11. The confusion matrix of the average ensemble of VGG19+DenseNet201.

6. Discussion
6.1. Experimental Analysis

In our experimental analysis, we examined the effectiveness of various pre-trained
models, VGG16, VGG19, and DenseNet201. For each of these models, we excluded the
top layers to utilize their pre-trained weights and the acquired feature representations.
We created new models by incorporating a flattening layer to transform the extracted
features into a high-dimensional vector, followed by the addition of a dense layer. These
models were then compiled using the Adam optimizer and categorical cross-entropy loss
function. Table 2 encapsulates the accuracy outcomes achieved by the three distinct deep
neural network architectures: VGG16, VGG19, and DenseNet201. Notably, among these
architectures, DenseNet201 stood out as a model of exceptional performance. It effortlessly
attained a perfect training accuracy of 100%, underscoring its capability to internalize
intricate nuances within the training dataset. This mastery in learning translated cohesively
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to the validation phase, where DenseNet201 achieved an impressive accuracy of 94.64%.
Moreover, during the rigorous test phase, the model showcased a striking test accuracy
of 98.93%, reinforcing its prowess in accurately classifying diverse and previously unseen
medicinal plant samples.

The metrics provided in Table 3 highlight the precision, recall, and F1-score of three
prominent deep neural network architectures: VGG16, VGG19, and DenseNet201. Among
these models, DenseNet201 emerged as a standout performer. Impressively, it achieved a
remarkable precision of 99.01%, reflecting its capability to accurately identify positive cases
while minimizing false positives. The strength of DenseNet201 became evident in the recall
as well, with a value of 98.94%. This signifies its effectiveness in capturing a substantial
portion of actual positive cases. The F1-score of 98.93% for DenseNet201 affirmed its
harmonious balance between precision and recall, showcasing its overall excellence in
classification accuracy.

The accuracy outcomes attained through the distinct ensemble deep learning ap-
proaches are summarized in Tables 4 and 5. Among the strategies applied to the individual
deep neural network models, it is evident that the most-effective solution arose from com-
bining VGG19 and DenseNet201 utilizing the averaging technique. With a perfect training
accuracy of 100%, impressive validation accuracy of 95.52%, and exceptional test accuracy
of 99.12%, this ensemble demonstrated the ability to master intricate patterns, generalize
well to new data, and achieve precise classification. A comparative analysis of this study
with the previous state-of-the-art approaches for the identification of medicinal plants using
the same dataset was conducted, and it can be observed from Table 6 that leveraging the
complementary features of VGG19 and DenseNet201, the ensemble approach improved the
robustness and balanced the performance, making it a potent solution for medicinal plant
identification. Its success underscores the significance of ensemble techniques in enhancing
complex classification tasks and holds promising applications in diverse fields.

Table 6. Comparative analysis of the proposed study with the previously state-of-the-art approaches
for the identification of medicinal plant images.

Reference Technique Medicinal Leaf Dataset Accuracy

[42] MobileNetV1 Mendeley Medicinal Leaf Dataset 98%

[43] MobileNetV2 Mendeley Medicinal Leaf Dataset 81.82%

[44] Mask RCNN Mendeley Medicinal Leaf Dataset 95.7%

[45] Hybrid Transfer Mendeley Medicinal Leaf Dataset 95.25%

Proposed Approach Ensemble Learning Mendeley Medicinal Leaf Dataset 99.12%

6.2. Challenges

In our research, we acknowledge two key limitations. First, our dataset comprises a
relatively small selection of 1835 leaf images from 30 distinct medicinal plants, potentially
impacting the system’s applicability to a wider range of medicinal plant species. To address
this constraint and bolster the system’s generalizability, we propose future work to focus
on expanding the dataset with a more-diverse array of plant species and an increased
number of images per species. Secondly, our approach exclusively relies on leaf images
for plant species identification, which might not be sufficient for certain plant species
requiring identification based on other parts like flowers, fruits, or roots. To address
this limitation, a promising future direction involves the development of a multi-modal
system that incorporates images of various plant parts to ensure comprehensive and
accurate identification. These limitations underscore the need for ongoing research and
development efforts within the field of medicinal plant identification.
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7. Conclusions

In the contemporary world, traditional medicines have gained importance due to the
high costs and potential negative impacts of allopathic medicines. Medicinal plant clas-
sification is usually carried out by plant taxonomists; however, the human-centric nature
of this approach can introduce inaccuracies or errors in judgment. Artificial intelligence
methodologies have found extensive application in automating plant recognition processes.
This research paper investigated the application of ensemble learning to elevate the ac-
curacy of medicinal plant identification. In this work, transfer learning was employed to
extract valuable features from medicinal plant leaf images. The pre-trained models VGG16,
VGG19, and DenseNet201 were used as the base models, which boosted the capability
of the proposed approach to identify and extract pertinent information from the images.
The dataset consisted of medicinal leaf images sourced from a published collection on
Mendeley. To construct ensemble models based on convolutional neural networks (CNNs),
we compared three leading CNN architectures: VGG16, VGG19, and DenseNet201. By
employing transfer learning, a trio of three-component classifiers was harnessed without
their upper layers. This adaptation allowed them to discern crucial attributes within the
medicinal leaf images, and these attributes were then integrated into the dense layers. Sub-
sequently, these classifiers underwent training on a dataset comprising 30 diverse classes
of medicinal leaves using a softmax classifier.

Following the individual assessment of the component deep neural network models,
the medicinal plant identification approach was enhanced through ensemble techniques
employing the averaging and weighted averaging strategies. Upon assessing the ensemble
models, it became evident that the most-potent approach emerged from the fusion of VGG19
and DenseNet201, employing the averaging method. This ensemble displayed remarkable
attributes, including an impeccable training accuracy of 100%, a notable validation accuracy
of 95.52%, and an outstanding test accuracy of 99.12%. These results collectively underscore
the capacity of the ensemble learning approach to proficiently capture intricate patterns,
generalize effectively to novel data, and achieve accurate classification.

Our future plans involve collaboration with domain experts to ensure the high-quality
collection and annotation of our dataset. We also aim to develop intuitive user interfaces
and adapt the model for real-time applications.
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