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Abstract: The paradigm known as Cognitive Radio (CR) proposes a continuous sensing of the elec-
tromagnetic spectrum in order to dynamically modify transmission parameters, making intelligent
use of the environment by taking advantage of different techniques such as Neural Networks. This
paradigm is becoming especially relevant due to the congestion in the spectrum produced by in-
creasing numbers of IoT (Internet of Things) devices. Nowadays, many different Software-Defined
Radio (SDR) platforms provide tools to implement CR systems in a teaching laboratory environment.
Within the framework of a ‘Communication Systems’ course, this paper presents a methodology for
learning the fundamentals of radio transmitters and receivers in combination with Convolutional
Neural Networks (CNNs).
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1. Introduction

The integration of computing, communication, and information technologies into
everyday objects, or things, is made possible by the miniaturization of microelectronics.
Artificial intelligence (AI), big data, robotics, cloud computing, and IoT are among the
disruptive technologies that are increasingly influencing our day-to-day lives. The demands
brought on by the COVID-19 pandemic, during which millions of people were forced to
interact virtually, have prompted the acceleration of this penetration. In fact, a set of digital
layers surround our natural environment, enabling us to experiment with virtual entities
and objects in an augmented reality known as the metaverse [1–3].

IoT is one of the most important technological players in the current digital transfor-
mation of our society. IoT refers to the interconnection of billions of cyberphysical entities,
which can be real, virtual, or use a hybrid software/hardware structure. These cyberphysical
entities are able to communicate with one another, sometimes without the need for human
intervention, thanks to machine-to-machine communication protocols. In addition, it is
anticipated that IoT technologies will have a potential impact on the global economy of
USD 11.1 trillion by 2025, which equates to more than 10% of the world’s gross domestic
product. There are approximately 30 billion connected devices as of 2023, and this is
expected to rise to 350 billion by 2030 [4].

The widespread utilization of electromagnetic spectrum is one of the main outcomes
of the IoT boom. Even though new frequency bands such as millimeter wavelengths (mm-
Wave) are being included in the most recent 5G and 6G mobile networks generations, data
traffic continues to grow [5–10]. By dynamically modifying the transceiver specifications in
response to the information that is sensed from the electromagnetic environment, so-called
CR [11] enables communication systems to make better use of the frequency spectrum.
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Nonetheless, the viable execution of CR presents an enormous number of constraints. These
include aspects connected to legal regulations associated with bands being licensed to mo-
bile and internet services along with countless technical difficulties. Examples of the latter
include the interference brought about by CR clients as well as spectrum management tasks
(access, sensing, band allocation, hand-off, etc.) which must be carried out simultaneously
with the signal processing [12–14].

In order to dynamically select the optimal set of performance metrics and transmission
bands, CR-based terminals may benefit from embedding AI engines in their main subsys-
tems. However, this necessitates new circuits and systems strategies with a high degree of
programmability and reconfigurability [1,6,10,14–16]. In this manner, a few recent works
have proposed utilizing AI (Machine Learning (ML) and Deep Learning (DL)) methods
to improve the management of the electromagnetic spectrum and to facilitate the signal
processing and performance of IoT nodes equipped with CR technology [15,17–19].

As a result, the development of effective IoT devices necessitates multidisciplinary
expertise in wireless communications, DL, and microelectronics. During the last decades,
many different works have proposed multiple ways to use CR concepts and SDR platforms
for educational purposes [20–25]. Inspired by these references, initial pedagogical efforts
were made to introduce this topic in the framework of the Department of Electronics and
Electromagnetism of the University of Seville through two different bachelor theses [26,27].
As a continuation of this preliminary work, a learning methodology based on the use
of SDR platforms as a pedagogical tool to improve the quality of teaching and learning
in telecommunications and electrical engineering is presented in this paper. In order to
accomplish this aim and contribute to the field, two distinct case studies are presented
here. These case studies use SDR/CR systems as an application scenario and provide
students with the opportunity to acquire both fundamental knowledge and practical
insight regarding wireless communications, DL, and signal processing. To illustrate how
the presented strategy can be applied to a variety of educational contexts, experimental
results are presented.

2. Materials and Methods
2.1. SDR-Based Learning Methodology

The mobile terminals prevalent at the beginning of the wireless telecom era were basic
electronic devices that mostly only transmitted voice data. Nearly three decades later, 5G
mobile telecom is gradually being implemented, reaching data rates of tens of gigabits
per second and operating in multiple frequency bands from the sub-6 GHz band to the
mm-Wave band [28,29].

2.1.1. Towards Software Defined Radio

Today, the majority of wireless devices have very small radio modules; however, it is
challenging to maintain and scale the mechanism when seeking to add new communica-
tion modes and services. Dedicated Radio Frequency (RF) chipsets are usually required
each time a new communication protocol is created. On the other hand, the rate at which
new features are incorporated into handheld devices is beginning to exceed the rate of
package reduction and the trend toward Systems on Chip (SoC) that technology down-
scaling facilitates. Moving away from pure hardware-based devices and towards hybrid
hardware/software-based ones is necessary to address this issue. An SDR system, as Mitola
envisioned in 1995 [30], is a universal radio platform that can be programmed to steer
any frequency band and process arbitrary communication protocols while guaranteeing
privacy and security and providing the necessary service quality [31].

An ideal SDR transceiver, conceptually depicted in Figure 1a, processes all digital
information using three main components: a Digital Signal Processor (DSP), Analog-to-
Digital (A/D) interface, and antenna. As shown in Figure 1b, an effective interface between
RF signals and digital data necessitates at least some analog signal conditioning circuitry,
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meaning that this ideal implementation is not practically feasible due to the significant
power consumption of A/D interfaces.
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Figure 1. Block description of a generic SDR transceiver: (a) ideal blocks and (b) programmable
multi-standard (direct-conversion) architecture.

2.1.2. Commercial SDR Boards as Learning Tools

The majority of signal processing is transferred to the digital domain by SDR
transceivers. This feature makes software programming easier and allows SDRs to serve
as the foundation for a variety of communication protocols and technologies, including
CR; in essence, CR-based SDRs enable wireless networks and handheld terminals to dy-
namically utilize the RF spectrum. Consequently, both licensed and unlicensed spectrum
can be utilized more effectively with lower power consumption and/or less interference.
Along the same lines, SDR/CR-based mobile terminals can be prepared to dynamically
sense the spectral environment and take advantage of received data to change their trans-
mission/reception parameters on the fly, thereby improving the communication link and
decreasing the amount of energy consumed.

SDRs’ high level of programmability and adaptability can be used in an educational
context to teach students the fundamentals of communication systems with real hardware
and RF signal processing. To this end, Analog Devices ADALM-Pluto, Ettus USRP B210,
Nuan BladeRF, and a number of other commercially available SDR platforms are offered
by vendors. The primary specifications of these SDR boards can be found at [32], and
they include, among other things: frequency tuning range, duplex method, Analog-to-
Digital Converter/Digital-to-Analog Converter (ADC/DAC) resolution, FPGA (Field Pro-
grammable Gate Array) chipset, Rx (receiver) noise figure, etc. The majority of SDR boards’
performance, at a reasonable hardware cost, can be very useful for teaching and learning.
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The SDR-based learning module setup used in this work is depicted in Figure 2. A
commercial SDR board such as the Analog Devices ADALM-Pluto, Nuan BladeRF, or Ettus
USRP B210 is connected to a personal computer, where it can be controlled by various
programming applications (for example, GNU Radio, URH, Gqrx, etc.) and programming
languages (C, Python, and MATLAB).

PC/Workstation

USB

MATLAB 
(Communications & 

DL Toolboxes)

Python & C 
programming

Commercial SDR boards

Figure 2. Proposed setup for a learning module based on commercial SDR boards.

2.2. Neural Networks for Cognitive Radio

Several of the tasks performed by CR systems require abilities that resemble those
present in the human brain, suggesting that the use of neural networks can be especially
suited to implementation of CR systems due to the similarities between artificial neural
networks and the brain [17]. These required abilities are:

• The ability to deal with incomplete or erroneous data without affecting the results.
• The ability to process large amounts of data, given the massively parallel architecture.
• The ability to make decisions based on the processed data.

In this section, we briefly describe the main reasons why neural networks are so power-
ful, and summarize the most important applications of neural networks to CR systems.

2.2.1. Neural Networks

Based on our understanding of the way in which the human brain processes complex
information through a structure formed by layers of neurons [33], preliminary comput-
ing systems have been designed inspired by biological architecture, such as using the
weights of the connections to implement learning mechanisms [34]. After the idea of
backpropagation was introduced as a systematic method to train neural networks [35], it
was demonstrated that these bio-inspired processing systems could be used for recognition
applications [36], enabling the impressive growth of the field of neural network research
observed during the last decades.

The generic structure of a neural network is shown in Figure 3a. Inspired by the human
brain, the processing capabilities are distributed in very simple processing units (neurons)
organized in different layers. In principle, each layer receives inputs from the previous
layer and sends outputs to the next layer (this is the definition of a feed-forward neuron;
recurrent networks include backward connections as well). The basic computational model
of a neuron is illustrated in Figure 3b. In general, it is a processing unit with multiple inputs
and single output. The operation performed by neuron j is a weighted addition of inputs
xi, with the weights wij applied to an activation function φ through a threshold θj. Synaptic
plasticity allows the weights of the network to be modified, supporting the implementation
of learning capabilities through learning algorithms.

Under this generic definition of a neural network, the field has evolved towards a
great number of specific implementations for many applications. In the next subsection,
we focus on several applications of neural networks to CR.
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Figure 3. (a) Generic structure of a neural network and (b) basic computational model of a neuron.

2.2.2. Applications to Cognitive Radio

The use of neuromorphic techniques within the framework of CR systems can be
approached from many different points of view. We first briefly review a number of the
most relevant strategies for applying neural networks at the different layers of the protocol
stack in a communications system [17]:

• In the physical layer, neural networks can be used for interference alignment, to
classify the modulation modes, or to design efficient error correction codes.

• In the data link layer, neural networks can be used for resource allocation or link
quality evaluation.

• In the network (or routing) layer, they can help to seek an optimal routing path.
• In higher levels, such as the application layer, they can be used to enhance data

compression and multi-session scheduling.
• Outside of the protocol stack, there are many advantages for using neural networks in

other functions, such as security and privacy protection.

One of the communication systems tasks in which neural networks can be used is asso-
ciated with channel resource allocation, that is, dynamically selecting the most appropriate
channel and modifying the parameters of the receiver. Many different approaches have
been studied to solve this task without neural networks, for example, channel-hopping
blind rendezvous protocols [37] and channel-hopping sequences in the SDR transmitter
and receiver, including experiments implemented on Pluto boards [38]. In this section we
focus on the application of neural networks for CR. In [19,39], Long Short-Term Memory
(LSTM) networks were used to predict the future evolution of the occupation of different
frequency bands. Using real-time measurements of the occupation for each band, one
LSTM network per channel was used to predict their future evolution, then a decision block
used the predicted signals to dynamically select the best band while tuning the receiver
filter for that frequency.
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Another application involves spatiotemporal modelling for traffic prediction. In this
example [40], a dataset was collected from a large mobile network in a Chinese city that
used nearly 3000 Base Stations. This dataset was then used to analyze the temporal and
spatial correlations among neighboring Base Stations. A hybrid neural network model was
proposed for spatiotemporal prediction, including an autoencoder-based model and LSTM
networks for temporal modelling. The autoencoder model consisted of a Global Stacked
Autoencoder and multiple Local Stacked Autoencoders, which was found to offer a good
representation of input data, reduced model size, and support for parallel training.

One more example illustrates the use of a supervised Deep Neural Network (DNN)
system for optimization of routing strategy in heterogeneous networks. This case [41]
involved a heterogeneous network including both wireless and wired connections. The
routing strategy was formulated as a combinatorial optimization problem, that is, a shortest-
path routing problem in terms of graphs. In this work, the authors proposed a DNN that
receives the input traffic pattern of the router and provides the desired output for network
traffic control, i.e., the routing paths, showing very good performance.

Finally, one last application of neural networks to CR deals with modulation classifi-
cation. In this example [18], a convolutional architecture consisting of two convolutional
layers and two dense fully connected layers was proposed, for which several synthetic
datasets were generated. The most difficult dataset included up to 24 different modulations,
with different noise levels and over-the-air (OTA) transmission channels. These labeled
signals were used to train different CNNs, and their performance was characterized for dif-
ferent values of Signal-to-Noise Ratio (SNR). This application is used further as a reference
to describe the proposed Case Study 2 below.

2.3. Case Study 1: Communication System

In the framework of a ‘Communication Systems’ course, we have first proposed a
practical methodology to acquire a basic knowledge about radio transmitters and receivers
while performing practical experiments using commercial SDR modules specially suited
to implement CR applications. This course is part of a Degree in Telecommunications
Engineering, and is taught to fourth-year undergraduate students who have previously
acquired a background in telecommunications and modulation schemes. Initially, we
propose a case study which deals with the implementation of a communications system
based on QPSK (Quadrature Phase-Shift Keying) modulation using two ADALM-Pluto
SDR boards [42] controlled by MATLAB Simulink, as described in a Simulink example
published on the MathWorks website [43]. The students are expected to reproduce this
example using the available models, modify the parameters as needed, and characterize
the quality of the communication. This experiment was designed to be performed in the
lab with the available Pluto boards, with the students working in groups of two. The setup
illustrated in Figure 4 is to be followed by each group, as follows:

• Student A implements the QPSK Transmitter module from a PC connected to the
Pluto board.

• Student B implements the QPSK Receiver module from a PC connected to the other
Pluto board.

The experiment’s ultimate objective is to establish a communication link between the
two students, send fixed configuration messages that the receiver can use to assess the
quality of the communication, and adjust the transmission frequency to avoid busy fre-
quency bands, thereby imitating a straightforward CR strategy. The subsequent subsections
provide further details.

2.3.1. QPSK Modulation

In this case study, we asked the students to reproduce a Simulink example [43] to
implement a QPSK modulator and demodulator in the transmitter and receiver blocks,
respectively, despite the fact that this setup can be used to study and characterize various
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modulation schemes. Utilizing a variety of characteristics of the carrier signal, it is possible
to encode the transmitted bits using several kinds of digital modulation techniques:

• ASK methods (Amplitude-Shift Keying) rely on the amplitude.
• FSK methods (Frequency-Shift Keying) rely on the frequency.
• PSK methods (Phase-Shift Keying) use the phase.

Figure 4. Description of the proposed experimental setup for Case Study 1.

In this work, we consider a particular kind of PSK modulation scheme, namely, QPSK
(Quadrature Phase-Shift Keying), with four distinct phases equispaced, providing the
chance to encode two bits for transmitted symbol. However, any other modulation can
be used in the setup that is being proposed. In the years to come, we intend to introduce
various modulations for use in the lab.

For the proposed modulation, the general expression for a QPSK signal is
s(t) = I(t)cos(wct) + Q(t)sin(wct), where I(t) and Q(t) represent the in-phase and quadra-
ture components of the modulated signal. Figure 5 shows an illustration of an ideal con-
stellation diagram with all four different transmitted symbols, with the I and Q signals
represented on x and y axis, respectively. The figure shows that there is a 90◦ shift between
adjacent symbols [44].

Figure 5. Typical constellation diagram for QPSK modulation.

2.3.2. Transmitter

MATLAB Simulink, which includes blocks designed to communicate with the ADALM-
Pluto board, is used to physically implement both the transmitter and receiver modules.



Information 2023, 14, 599 8 of 23

The block diagram of the transmitter module available in this Simulink example [43] is
shown in Figure 6. First, the “Bits Generation” block uses a ‘Hello world’ message as input
and encodes it in bits. These bits are handled by the ‘QPSK Modulator’ in baseband utiliz-
ing Gray mapping. The block labeled ‘ADALM-Pluto Transmitter’ receives this baseband
signal after it has been filtered and oversampled.

The main parameters which must be controlled by the students are:

• Radio ID: used to identify each Pluto board.
• Center frequency: the signal is modulated in baseband and afterwards translated to a

certain transmission frequency, which must be within the range of 70 MHz to 6 GHz.
This parameter should have the same value at both the transmitter and receiver in
order to obtain the best possible quality of the communication.

• Gain: the attenuation of the signal while being transmitted, which must be with the
range of −50 to 0 dB.

• Constellation ordering: the way in which the input bits are mapped into the QPSK
constellation diagram.

• Phase offset: the phase associated with the first symbol in the constellation.

Constellation Diagrams for observing the transmitted symbols, Spectrum Analyzers
for observing the frequency spectrum of the signals, and Time Scopes for observing the
corresponding signals in time domain are among of the visualization blocks included in
the module to enhance comprehension of the system, as depicted in Figure 6.

Figure 6. Transmitter block diagram implemented in Simulink.

2.3.3. Receiver

The ‘ADALM-Pluto Receiver’ block available in this Simulink example [43] is directly
connected to the board Rx (receiver) antenna, while the ‘QPSK Receiver’ demodulates the
obtained signal and calculates the Bit Error Rate (BER). This is shown in the block diagram
of the receiver module in Figure 7. The red dashed rectangle below shows the complexity
of the ‘QPSK Receiver’ block.

First, an AGC (Automatic Gain Control) is included in the proposed receiver block
to maintain a constant phase gain and timing error and to stabilize the amplitude of the
received signal. Next, the estimation quality is improved using an oversampling filter
applied to the signal. Using correlation algorithms, the ‘Coarse Frequency Compensation’
system estimates and compensates for the frequency offset. The ‘Image Synchronizer’ then
utilizes a PLL (Phase-Locked Loop) to reduce the mismatch related to the sampling rate
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between transmitter and receiver. Using a different PLL, the ’Carrier Synchronizer’ creates
a frequency compensation that is more precise. The ‘Preamble Locator’ is then utilized to
recognize the header included in the transmitted message, and the ‘Data Decoding’ block
demodulates the message.

As in the transmitter framework, this module incorporates various types of visual-
ization blocks (Constellation Diagrams, Time Scopes, and Spectrum Analyzers) to assist
students in fine-tuning the demodulator, debugging it, and better better understanding its
behavior, which is of course the primary goal of this learning experience.

Figure 7. Receiver block diagram implemented in Simulink.

2.4. Case Study 2: Modulation Recognition

In the same framework described before, we define a second case study based on the
combination of the proposed SDR boards with the implementation of neural networks
capable of identifying the modulation of the received signal [18]. Although the targeted
students may not necessarily have a deep background in neural networks, we consider
this case study to be a good opportunity for them to become familiar with the main basic
concepts from a practical point of view just by following certain guidelines. The goal of
this experiment is to transmit signals using different modulation schemes and implement a
neural network at the receiver that performs a classification task to identify the modulation.
From a teaching perspective, this experiment can be very useful to illustrate an important
aspect of CR systems, namely, that the receiver has to re-configure automatically in real time
in order to be able to demodulate signals using different modulation schemes (although a
deeper analysis of these modulation schemes is beyond the scope of this work). Thus, we
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propose the lab setup indicated in Figure 8, where two PCs are used for different purpose
to implement the whole communication system:

• One PC, denoted Tx, is responsible for loading a dataset consisting of a group of
signals modulated using different schemes (available at [45]) and transmitting these
signals using a Pluto board configured as transmitter.

• Several PCs (one for each student), denoted Rx, are responsible for receiving the trans-
mitted signals using a Pluto board configured as a receiver; they implement a neural
network in the form of software that can process the received signals and identify
the modulation used for each signal. Initially, the neural network is characterized
by processing the dataset locally (i.e., without using the Pluto board), and finally the
whole system is characterized using Tx and Rx i (where i represents each student)
through the corresponding Pluto boards.

Figure 8. Illustration of the experimental lab setup used in Case Study 2.

Both Tx and Rx use MATLAB, which provides with Simulink blocks for interfacing
with the Pluto board (as shown before) as well as with a visual tool called deepNet-
workdesign, which allows Deep Neural Networks (DNNs) to be implemented on Rx using
predefined available blocks. This case study can be described from two different perspec-
tives, namely, the dataset transmitted through the SDR boards, and the Convolutional
Neural Network used to identify the modulation scheme, which is the main goal of this
case study.

2.4.1. Dataset

For the dataset transmitted in this experiment, we used the random data modulated for
transmission made available by O’Shea et al. [45]. Initially, we considered eleven different
modulation schemes while making a distinction between analog and digital modulations.
Analog modulation involves continuous carrier signal with the ability to modify a number
of its properties over time to represent the information signal. In digital modulation, a
discrete carrier signal carries binary information related to the information signal. Here, we
briefly describe the eight digital and three analog modulations considered in the dataset.

Digital modulations:

• QPSK, BPSK, and 8PSK.
These three modulation schemes belong to the PSK category, in which the phase of
the carrier can take several different values from a given discrete subset, making for a
limited number of available states. Depending on the number of available phases, it is
possible to obtain BPSK (two phases), QPSK (four phases), or 8PSK (eight phases).



Information 2023, 14, 599 11 of 23

• GFSK and CPFSK.
The second category of digital modulation is FSK, in which two or more frequencies are
used to encode each symbol. Here, we consider two different types: GFSK (Gaussian
Frequency Shift Keying), where data pulses are first filtered by a Gaussian filter after
which a logic 1 is represented by an increment of the carrier frequency and a logic 0
by a decrement of the carrier frequency; and CPFSK (Continuous Phase Frequency
Shift Keying), where the phase is continuous, which is desirable for transmission over
band-limited channels.

• 16QAM and 64QAM.
These schemes belong to the category of Quadrature Amplitude Modulation (QAM),
in which two carrier waves are used with the same frequency while being out of phase
with each other by 90º in a condition known as quadrature. The transmitted signal is
obtained by adding the two carrier waves together. The input flow of the digital bit
streams can be divided into groups of bits needed to generate N different modulation
states. In this case, we consider two possible values of N: 16QAM and 64QAM.

• PAM4.
The last category of digital modulation is Pulse Amplitude Modulation (PAM), in
which the phase and frequency are fixed and the amplitude changes. Different PAM
schemes can be obtained depending on the number of possible values for the ampli-
tude that the carrier wave can take. In this case, we use N = 4 (PAM4).

Analog modulations:

• B-FM.
The first category of analog modulation considered in this dataset is Frequency Modu-
lation (FM), in which the information is encoded in the carrier wave by varying its
instantaneous frequency.

• AM-SSB.
In a second analog category, we consider Amplitude Modulation (AM), in which the
information is encoded in the carrier wave by varying its instantaneous amplitude.
In particular, we first focus on Single-Sideband Modulation (SSB), which reduces
transmission power and bandwidth by sending only half of the bandwith originally
generated by AM modulation.

• AM-DSB.
Finally, an additional case of AM modulation is Double-Sideband, which does not
implement the power and bandwidth reduction, as the whole modulated signal is
transmitted. The main difference from basic AM is that AM-DSB does not include
carrier re-insertion.

A visualization of the signals generated using these eleven modulation schemes is
presented in Figure 9, where they are represented in the time domain, and in Figure 10,
where they are represented in the frequency domain.

Although it would be very interesting to implement all these different modulation
schemes in the setup proposed in Case Study 1, that would be beyond the scope of this
work in light of the limited time available in our lab sessions.

2.4.2. Convolutional Neural Network

As mentioned before, the goal of this case study is to implement a neural network
in MATLAB that can process the signals received from the Pluto board and identify its
modulation scheme. As a starting point, we considered the CNN proposed by O’Shea [45]
represented in Figure 11a. This is a four-layer network with two convolutional layers
followed by two dense fully-connected layers. All of the layers use rectified linear (ReLU)
activation functions, with the exception of a SoftMax activation function in the one-hot
output layer, which is the last layer and implements the classification task by activating
one of the eleven outputs corresponding to the eleven modulation schemes.
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Figure 9. Representation of the eleven signals generated using all different modulation schemes in
the time domain, as provided by O’Shea [45].

Figure 10. Spectrograms corresponding to the eleven different modulation schemes used in this case
study, as provided by O’Shea [45].
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Taking this CNN as a reference, we propose the implementation of similar networks
in MATLAB using the deepNetworkdesign visual tool, with flexible parameters that can
be modified by the students in order to find a way to maximize the performance in the
experiment. Inspired by the network in Figure 11a, in order to include more flexibility
in the lab experiment we implemented the CNN shown in Figure 11b, made up of six
convolutional layers followed by a dense fully-connected layer and a SoftMax activation
function in the final output classification layer. The main network parameters we propose
for experimentation are as follows:

• Learning rate: this parameter represents the step of variation in the network weights
in each iteration while training the network. A very small step makes the training
process too slow, while a very large step leads to less optimal values for the weights.

• Number of layers: this parameter represents the number of convolutional layers in the
network. In principle, deeper networks possess more powerful ability to learn more
complex features, although an excessive number of layers can lead to an overfitting
scenarios that reduce the performance of the network. Overfitting is an undesirable
behavior that occurs when the network model provides accurate predictions for
training data but not for new data, and can happen for several reasons, including
insufficient training data, excessively noisy data (including irrelevant information),
the model being trained for too long, or the model complexity being too high (learning
the noise in the data).

• Number of filters: this parameter represents the number of neurons in the convo-
lutional layers. To reduce the complexity of this case study, we propose using the
same size in all convolutional layers and reducing the dimension directly in the last
dense layers.

• Communication distance: this parameter does not modify the CNN, only the distance
between both Pluto boards (i.e., the transmitter and receiver). The goal is to character-
ize the performance of the network when the communication distance increases.

Figure 11. (a) Proposed neural network architecture for recognizing the eleven different modulations
and (b) Simulink implementation of the network.
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3. Results
3.1. Case Study 1

Several experiments were carried out with the setup depicted in Figure 4.

3.1.1. Spectrum Visualization

In a first experiment, Universal Radio Hacker (URH) programming was utilized [46].
URH is a complete suite for wireless protocol analysis with native support for many
common SDR systems, including ADALM-Pluto. By configuring this platform, the imple-
mented system environment’s radioelectric spectrum can be visualized and recorded. A
message was continuously transmitted from the transmitter to the receiver using QPSK
modulation at a center frequency of 1.66 GHz in the proposed setup (different bands were
studied as well). The spectrum captured by the receiver is depicted in Figure 12 by a
red trace, while the spectrum captured by the transmitter is depicted in black. While the
desired signal has a distinct peak in its center frequency in the transmitter spectrum, the
receiver spectrum contains a number of signals from other sources with distinct center
frequencies that act as interference in this experiment. CR strategies that dynamically adjust
the transmission frequency to compensate for this degradation are proposed, with the aim
of examining how interference can lower communication quality.

3.1.2. Frequency Deviation

In order to evaluate the significance of the various system parameters, a second exper-
iment involves continuously transmitting ‘Hello world’ messages using QPSK modulation
and configuring both the transmitter and receiver with MATLAB Simulink, as described in
the preceding section. In particular, we focus on the center frequency of the transmitter ( fTx)
and receiver ( fRx) modules in order to demonstrate the deterioration of communication
brought on by even comparatively insignificant shifts in either frequency. Initially, the
baseband spectrum of the transmitted signal in Figure 13a is obtained by configuring an
ideal case with fTx = fRx = 1.66 GHz. After receiving and demodulating this signal,
the constellation diagram in Figure 13b is produced. In all instances, the four distinct
symbols (00, 01, 10, 11) are easily discernible. Afterwards, ∆ f = 1 kHz is added to the
receiver frequency fRx. The receiver constellation diagram in Figure 13c is the result of this
minor misalignment between the transmitter and the receiver. Although the four symbols
continue to be recognizable, certain measured points are assigned to the incorrect symbol,
resulting in bit errors and incorrect message reconstruction.

The results shown in Table 1 were obtained by repeating the experiment with various
frequency deviations and measuring the Bit Error Rate for each. While a perfect alignment
has BER = 0%, a small ∆ f = 1 kHz has BER = 6.58%. Errors greater than 30% are
caused by deviations greater than 2 kHz, indicating that even very small deviations make
it impossible to demodulate the transmitted message correctly.

Table 1. Measured BER vs. frequency deviation.

∆ f (kHz) BER (%)

0 0
1 6.58
2 31.69
3 33.73

3.2. Case Study 2

Using the setup described in Section 2.4, several experiments were performed to
analyze the effect of different parameters on the performance of the implemented neural
network for modulation classification. Initially, the CNN was trained and tested directly
with the dataset described before without using the Pluto board in order to optimize the
parameters, then the whole system was tested with the data sent through the SDR boards.
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In each experiment, all modulated signals were processed to obtain classification results
and evaluated using the accuracy of the classification.

Figure 12. Representation of the measured frequency spectrum on the transmitter and receiver sides.

Figure 13. Measurements obtained from Simulink: (a) frequency spectrum of the transmitted signal in
baseband, (b) constellation diagram obtained by the receiver when both boards are correctly aligned
in frequency, and (c) constellation diagram when a small frequency deviation is introduced.
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3.2.1. Effect of Learning Rate

For a first experiment, the CNN described in Section 2.4.2 was implemented in MAT-
LAB with six layers and sixteen filters. The first parameter to be characterized was the
learning rate, which defines the magnitude of change applied to the network weights
during the training stage. If the learning rate is too small, the training algorithm evolves
very slowly and requires a long time to converge to an efficient solution. If the learning
rate is too large, the algorithm evolves faster; however, it might converge to an incorrect
solution. In order to find an optimum value, the students were asked to train the network
with different values of the learning rate and evaluate the performance of the CNN. Two
measurements were used to characterize the performance:

• Training time: how long it takes the algorithm to converge.
• Accuracy: the percentage of input samples which are correctly classified by the network.

Table 2 includes the results obtained when applying different values for the learning
rate; it can be seen that 0.01 provides the best accuracy (although very similar to 0.02)
without leading to an important difference in the training time. Therefore, this is the value
used in the other experiments. Although it might be expected that a larger training time
would be obtained for lower learning rates, there are no important differences in the applied
values. This might be due to the implementation of the training algorithm provided by
MATLAB, which probably limits the training time even when it does not converge properly.
For this reason, the accuracy degrades with a learning rate of 0.001 while having a very
similar training time. However, the limited available time in the lab made it impossible to
carry out any deeper analysis of the obtained results, as the main objective of this work
was to help students develop their experimental skills while improving their knowledge
of basic concepts, not to obtain the most precise results. Figure 14 illustrates the training
progress for a learning rate of 0.01, where the horizontal axis represents the number of
training iterations and the blue line indicates the accuracy. As can be seen, the network
converges in less than 1200 iterations.

Figure 14. Training progress of the neural network with a learning rate of 0.01.

Table 2. Characterization of the effect of the learning rate for six layers and sixteen filters.

Learning Rate Accuracy Training Time

0.001 57.27% 4 min 55 s
0.01 84.09% 5 min 36 s
0.02 83.18% 5 min 31 s
0.1 70.45% 4 min 55 s
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A very common way to represent the accuracy of a network on classification tasks in
greater detail is the confusion matrix; each row in the matrix indicates the true class for
each input, while each column indicates the predicted class, as shown in Figure 15. Ideally,
this matrix should only present non-zero values on the principal diagonal, meaning that the
predicted class is always the same as the true one. However, in practice we always obtain
an error, resulting in a total accuracy lower than 100%. Figure 15a depicts the confusion
matrix for a learning rate of 0.1, showing poor classification results for the 16QAM, 64QAM,
8PSK, B-FM, and QPSK modulations. Figure 15b shows the confusion matrix for a learning
rate of 0.01, showing poor classification results for only the 16QAM and QPSK modulations.

Figure 15. Confusion matrices obtained when classifying nine types of modulation with learning
rates of 0.1 (a) and 0.01 (b).

3.2.2. Effect of Number of Layers

In a second experiment, we changed the number of layers in the network in order to
obtain the best accuracy. Table 3 presents the characterization of this effect, where four
layers results in the best performance in terms of accuracy (the training time is not as
critical here, as the network has to be trained only once at the beginning, and the obtained
values are all considered reasonable). These results show that increasing the number of
layers is not always the best way to improve performance, as too many layers can produce
an overfitting effect. Figure 16 shows the confusion matrix obtained when the number of
layers is four, with only two of modulations presenting a recognition rate lower than 70%.

Table 3. Characterization of the effect of the number of layers for sixteen filters and a learning rate
of 0.01.

Number of Layers Accuracy Training Time

6 84.09% 5 min 36 s
5 90.00% 10 min 30 s
4 92.73% 10 min 8 s
3 89.41% 9 min 54 s

3.2.3. Effect of Number of Filters

In a similar way, we proposed optimizing the number of filters in the convolutional
layers while keeping a total of four layers, obtaining the results presented in Table 4. In
this case, it can be seen that a larger number of filters results in higher accuracy. However,
when the number of filters is increased up to 64, we observe an important increment in
the training time (>20 min); thus, it was considered impractical to continue increasing the
number of filters.

Figure 17 presents the confusion matrix obtained for 64 filters, which provides the
best performance. As can be seen, we obtain a recognition rate larger than 80% for all
modulation types, and six of them reach 100%.
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Figure 16. Confusion matrix obtained when classifying nine types of modulation with a neural
network consisting of four layers.

Table 4. Characterization of the effect of the number of filters for four layers and a learning rate
of 0.01.

Number of Filters Accuracy Training Time

16 92.73% 10 min 8 s
32 93.64% 10 min 20 s
64 96.82% 21 min 11 s

Figure 17. Confusion matrix obtained when classifying eleven types of modulation with a neural
network consisting of four layers with 64 filters.

3.2.4. Effect of Communication Distance

As a final experiment, we proposed implementing the CNN together with the SDR
platform in order to validate the complete setup proposed in Figure 8. For this experiment,
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we used the original network model with six layers and sixteen filters; even though this
network presents slightly lower accuracy, it can be trained faster, which is convenient for a
repetitive experiment. We implemented the model on the receiver side, while the input
dataset was sent from the transmitter side. The goal of this experiment was to measure
the effect of the communication distance, i.e., the distance between the transmitting and
receiving Pluto boards. For this, we established five different separations: 0 cm, 10 cm,
20 cm, 1 m, and 3 m. Larger distances could not be tested in the lab environment. For
each separation, we repeated the experiment ten times in order to obtain more statistics.
The results are depicted in Figure 18, where the error bars represent the dispersion of
the measured accuracy. As can be seen, there is no clear influence of the distance on the
mean accuracy, which is always around 85%, though larger separations produce a higher
dispersion in the behavior of the system.

Figure 18. Effect of the distance between SDR boards on classification of the modulation type.

4. Discussion

In this paper, we propose two different experimental setups based on commercial
SDR boards for use in practical lessons in the framework of a ‘Communication Systems’
course. These setups were especially appropriate for implementing basic approaches to CR
systems, establishing radio connections between two users with dynamic parameters, and
experimenting with important concepts associated with the software implementation of
neural networks.

As a first case study, we implemented a transmitter–receiver system using QPSK
modulation and characterized the quality of the communication. The results include
observing the critical effect of interference when working in saturated frequency bands
and the degradation in quality produced by misalignment between the transmitter and
receiver frequencies.

In a second case study, we implemented a transmitter–receiver system with a CNN on
the receiver side used to identify the modulation of the transmitted signal. This application
is specially suited for CR, as it allows for dynamic reconfiguration in order to adapt to the
specific modulation used by each signal.

The lessons learned from the presented education experience are that students become
more motivated and satisfied than when following a traditional lab course, translating
into higher grades on the part of a majority of students. From the limited experience
obtained thus far, we have compared the average grades of students over the last five
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years previous to implementing the proposed experiments to the one year completed
incorporating the program presented in this paper. In previous years, the average grade in
the ‘Communication Sytems’ course was 6.84, while the average grade when implementing
the proposed methodology was 7.91, both on a scale from 0 to 10. We intend to continue
monitoring these results in the coming years. At the end of each year, we collect anonymous
surveys in which students can provide feedback about their perception of the course along
with a final evaluation between 0 and 5. In the five previous years, the average evaluation
was 4.1, while in the year after implementing the practical sessions we obtained an average
evaluation of 4.7. We have found that as students keep working on the same project for
several lab sessions, they develop a deeper interest in the topic and improve their ability
to connect different theoretical concepts, especially those related to the implementation of
both neural networks and communication systems.
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5G Fifth Generation
6G Sixth Generation
8PSK Eight Phase-Shift Keying
A/D Analog-to-Digital
ADC Analog-to-Digital Converter
ADALM Advanced Active Learning Module
AGC Automatic Gain Control
AI Artificial Intelligence
AM Amplitude Modulation
AM-SSB Amplitude Modulation with Single-Sideband
AM-DSB Amplitude Modulation with Double-Sideband
ASK Amplitude-Shift Keying
BER Bit Error Rate
BPSK Binary Phase-Shift Keying
CNN Convolutional Neural Network
COVID-19 Coronavirus Disease 2019
CPFSK Continuous-Phase Frequency-Shift Keying
CR Cognitive Radio
DAC Digital-to-Analog Converter
dB Decibel
DL Deep Learning
DNN Deep Neural Network
DSP Digital Signal Processor
FM Frequency Modulation
FPGA Field-Programmable Gate Array
FSK Frequency-Shift Keying
GFSK Gaussian Frequency-Shift Keying
GHz GigaHertz
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ID Identification
IoT Internet of Things
LSTM Long Short-Term Memory
MHz MegaHertz
ML Machine Learning
mm-Wave Millimeter-Wavelength
NN Neural Network
OTA Over-The-Air
PAM Pulse Amplitude Modulation
PLL Phase-Locked Loop
PSK Phase-Shift Keying
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
ReLU Rectified Linear Unit
RF Radio Frequency
Rx Receiver
SDR Software-Defined Radio
SNR Signal-to-Noise Ratio
SoC System-on-Chip
Tx Transmitter
URH Universal Radio Hacker
USRP Universal Software Radio Peripheral

References
1. Loh, K. Fertilizing AIoT from Roots to Leaves. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference-

(ISSCC), San Francisco, CA, USA, 16–20 February 2020.
2. Liu, M. Unleashing the Future of Innovation. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference

(ISSCC), San Francisco, CA, USA, 13–22 February 2021; pp. 9–16.
3. Park, S.M.; Kim, Y.G. A Metaverse: Taxonomy, Components, Applications, and Open Challenges. IEEE Access 2022, 10, 4209–4251.

[CrossRef]
4. Cisco Systems. Cisco Annual Internet Report (2018–2023); Cisco Systems: Hong Kong, 2020.
5. Vitturi, S.; Zunino, C.; Sauter, T. Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet, IIoT,

and 5G. Proc. IEEE 2019, 107, 944–961. [CrossRef]
6. Zhang, C.; Ueng, Y.L.; Studer, C.; Burg, A. Artificial Intelligence for 5G and Beyond 5G: Implementations, Algorithms, and

Optimizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 149–163. [CrossRef]
7. Kanhere, O.; Rappaport, T.S. Position Location for Futuristic Cellular Communications: 5G and Beyond. IEEE Commun. Mag.

2021, 59, 70–75. [CrossRef]
8. Matthaiou, M.; Yurduseven, O.; Ngo, H.Q.; Morales-Jimenez, D.; Cotton, S.L.; Fusco, V.F. The Road to 6G: Ten Physical Layer

Challenges for Communications Engineers. IEEE Commun. Mag. 2021, 59, 64–69. [CrossRef]
9. Peng, V. Adaptive Intelligence in The New Computing Era. In Proceedings of the 2021 IEEE International Solid-State Circuits

Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; pp. 17–21
10. She, C.; Sun, C.; Gu, Z.; Li, Y.; Yang, C.; Poor, H.V.; Vucetic, B. A Tutorial on Ultrareliable and Low-Latency Communications in

6G: Integrating Domain Knowledge Into Deep Learning. Proc. IEEE 2021, 109, 204–246. [CrossRef]
11. Mitola, J.; Maguire, G.Q. Cognitive Radio: Making Software Radios More Personal. IEEE Pers. Commun. 1999, 6, 13–18. [CrossRef]
12. Akyildiz, I.F.; Lee, W.Y.; Vuran, M.C.; Mohanty, S. A Survey on Spectrum Management in Cognitive Radio Networks. IEEE

Commun. Mag. 2008, 46, 40–48. [CrossRef]
13. Khan, A.A.; Rehmani, M.H.; Rachedi, A. Cognitive-Radio-Based Internet of Things: Applications, Architectures, Spectrum

Related Functionalities, and Future Research Directions. IEEE Wirel. Commun. 2017, 24, 17–25. [CrossRef]
14. Hu, F.; Chen, B.; Zhu, K. Full Spectrum Sharing in Cognitive Radio Networks Toward 5G: A Survey. IEEE Access 2018, 6, 15754–15776.

[CrossRef]
15. Restuccia, F.; Melodia, T. Deep Learning at the Physical Layer: System Challenges and Applications to 5G and Beyond. IEEE

Commun. Mag. 2020, 58, 58–64. [CrossRef]
16. Han, S.; Xie, T.; Chih-Lin, I.; Chai, L.; Liu, Z.; Yuan, Y.; Cui, C. Artificial-Intelligence-Enabled Air Interface for 6G: Solutions,

Challenges, and Standardization Impacts. IEEE Commun. Mag. 2020, 58, 73–79. [CrossRef]
17. Mao, Q.; Hu, F.; Hao, Q. Deep Learning for Intelligent Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv.

Tutorials 2018, 20, 2595–2621. [CrossRef]
18. O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-Air Deep Learning Based Radio Signal Classification. IEEE J. Emerg. Sel. Top. Signal

Process. 2018, 12, 168–179. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3140175
http://dx.doi.org/10.1109/JPROC.2019.2913443
http://dx.doi.org/10.1109/JETCAS.2020.3000103
http://dx.doi.org/10.1109/MCOM.001.2000150
http://dx.doi.org/10.1109/MCOM.001.2000208
http://dx.doi.org/10.1109/JPROC.2021.3053601
http://dx.doi.org/10.1109/98.788210
http://dx.doi.org/10.1109/MCOM.2008.4481339
http://dx.doi.org/10.1109/MWC.2017.1600404
http://dx.doi.org/10.1109/ACCESS.2018.2802450
http://dx.doi.org/10.1109/MCOM.001.2000243
http://dx.doi.org/10.1109/MCOM.001.2000218
http://dx.doi.org/10.1109/COMST.2018.2846401
http://dx.doi.org/10.1109/JSTSP.2018.2797022


Information 2023, 14, 599 22 of 23

19. Zúñiga, V.; Camuñas-Mesa, L.; Linares-Barranco, B.; Serrano-Gotarredona, T.; de la Rosa, J.M. Using Neural Networks for
Optimum band selection in Cognitive-Radio Systems. In Proceedings of the 2020 27th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020.

20. Newman, T.R.; Bose, T. A Cognitive Radio Network Testbed for Wireless Communication and Signal Processing Education. In
Proceedings of the 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop,
Marco Island, FL, USA, 4–7 January 2009; pp. 757–761.

21. Dietrich, C.; Goff, R.; Dessources, D.; Gomez, X.; Garcia-Sheridan, J.; Polys, N.; Buehrer, R.M.; Kim, S.; Marojevic, V.; Hearn, C.
Remote laboratory exercises and tutorials for spectrum-agile radio frequency systems. In Proceedings of the 2018 IEEE Frontiers
in Education Conference (FIE), San Jose, CA, USA, 3–6 October 2018; pp. 1–2.

22. Nagurney, L.S. Software defined radio in the electrical and computer engineering curriculum. In Proceedings of the 2009 39th
IEEE Frontiers in Education Conference, San Antonio, TX, USA, 18–21 October 2009; pp. 1–6.

23. Katz, S.; Flynn, J. Using software defined radio (SDR) to demonstrate concepts in communications and signal processing courses.
In Proceedings of the 2009 39th IEEE Frontiers in Education Conference, San Antonio, TX, USA, 18–21 October 2009; pp. 1–6.

24. Vajdic, S.; Jiang, F. A hands-on approach to the teaching of electronic communications using GNU radio companion and the
universal software radio peripheral. In Proceedings of the 2016 IEEE Integrated STEM Education Conference (ISEC), Princeton,
NJ, USA, 5 March 2016; pp. 19–21.

25. Martoyo, I.; Setiasabda, P.; Kanalebe, H.Y.; Uranus, H.P.; Pardede, M. Software Defined Radio for Education: Spectrum Analyzer,
FM Receiver/Transmitter and GSM Sniffer with HackRF One. In Proceedings of the 2018 2nd Borneo International Conference on
Applied Mathematics and Engineering (BICAME), Balikpapan, Indonesia, 10 December 2018; pp. 188–192.

26. Varela Ferrando, R. Digitalizadores Basados en Radio Cognitiva para Aplicaciones IoT/5G: Etapa Transmisora. (Trabajo Fin de Grado
Inédito); Universidad de Sevilla: Sevilla, Spain, 2021. Available online: https://idus.us.es/handle/11441/141819 (accessed on 1
September 2023).

27. Romero Amor, J. Aplicaciones de Redes Neuronales Artificiales al Paradigma de Radio Cognitiva. (Trabajo Fin de Grado Inédito); Universidad
de Sevilla: Sevilla, Spain, 2021. Available online: https://idus.us.es/handle/11441/141775 (accessed on 1 September 2023).

28. Onoe, S. Evolution of 5G Mobile Technology Toward 2020 and Beyond. In Proceedings of the 2016 IEEE International Solid-State
Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2016; pp. 23–28.

29. Katabi, D. Working at the Intersection of Machine Learning, Signal Processing, Sensors, and Circuits. In Proceedings of the 2021
IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; pp. 26–29.

30. Mitola, J. The Software Radio Architecture. IEEE Commun. Mag. 1995, 33, 26–38. [CrossRef]
31. Machado, R.G.; Wyglinski, A.M. Software-Defined Radio: Bridging the Analog-Digital Divide. Proc. IEEE 2015, 103, 409–423.

[CrossRef]
32. GNURadio, Commercially Available SDR Platforms. Hardware. 2022. Available online: https://wiki.gnuradio.org/index.php/

(accessed on 1 September 2023).
33. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
34. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65,

386–408. [CrossRef]
35. Werbos, P.; John, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard

University, Cambridge, MA, USA, 1974.
36. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to

Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
37. Guerra, E.O.; Reguera, V.A.; Duran-Faundez, C.; Nguyen, T.M.T. Channel hopping for blind rendezvous in cognitive radio

networks: A review. Comput. Commun. 2022, 195, 82–98. [CrossRef]
38. Kwong, W.C.; Arthur, A.W.; Lo, F.W.; Yang, G.C. A Cognitive-Radio Experimental Testbed For Shift-Invariant, Asynchronous

Channel-Hopping Sequences with Modern Software-Defined Radios. In Proceedings of the 2022 IEEE Long Island Systems,
Applications and Technology Conference (LISAT), New York, NY, USA, 6 May 2022; pp. 1–6.

39. Enwere, P.I.; Cervantes-Requena, E.; Camuñas-Mesa, L.A.; de la Rosa, J.M. Using ANNs to predict the evolution of spectrum
occupancy in cognitive-radio systems. Integration 2023, 93, 102070. [CrossRef]

40. Wang, J.; Tang, J.; Xu, Z.; Wang, Y.; Xue, G.; Zhang, X.; Yang, D. Spatiotemporal modeling and prediction in cellular networks:
A big data enabled deep learning approach. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9.

41. Kato, N.; Fadlullah, Z.M.; Mao, B.; Tang, F.; Akashi, O.; Inoue, T.; Mizutani, K. The deep learning vision for heterogeneous
network traffic control: Proposal, challenges, and future perspective. IEEE Wirel. Commun. 2017, 24, 146–153. [CrossRef]

42. Introduction to ADALM-PLUTO. 2022. Available online: https://wiki.analog.com/university/tools/pluto/users/intro (accessed
on 1 September 2023).

43. Matlab Example. 2023. Available online: https://es.mathworks.com/help/supportpkg/plutoradio/ug/qpsk-transmitter-with-
adalm-pluto-radio.html (accessed on 1 September 2023).

44. Yogitha, S.; Raju, D. Design and Implementation of QPSK Modulation System. 2017. Available online: https://api.semanticscholar.
org/CorpusID:128355114 (accessed on 1 September 2023).

https://idus.us.es/handle/11441/141819
https://idus.us.es/handle/11441/141775
http://dx.doi.org/10.1109/35.393001
http://dx.doi.org/10.1109/JPROC.2015.2399173
https://wiki.gnuradio.org/index.php/
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1016/j.comcom.2022.08.011
http://dx.doi.org/10.1016/j.vlsi.2023.102070
http://dx.doi.org/10.1109/MWC.2016.1600317WC
https://wiki.analog.com/university/tools/pluto/users/intro
https://es.mathworks.com/help/supportpkg/plutoradio/ug/qpsk-transmitter-with-adalm-pluto-radio.html
https://es.mathworks.com/help/supportpkg/plutoradio/ug/qpsk-transmitter-with-adalm-pluto-radio.html
https://api.semanticscholar.org/CorpusID:128355114
https://api.semanticscholar.org/CorpusID:128355114


Information 2023, 14, 599 23 of 23

45. O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional Radio Modulation Recognition Networks. In Engineering Applications of
Neural Networks: 17th International Conference, EANN 2016, Aberdeen, UK, 2–5 September 2016; Communications in Computer and
Information Science; Jayne, C., Iliadis, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 629.

46. Universal Radio Hacker. 2022. Available online: https://github.com/jopohl/urh (accessed on 1 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/jopohl/urh

	Introduction
	Materials and Methods
	SDR-Based Learning Methodology
	Towards Software Defined Radio
	Commercial SDR Boards as Learning Tools

	Neural Networks for Cognitive Radio
	Neural Networks
	Applications to Cognitive Radio

	Case Study 1: Communication System
	QPSK Modulation
	Transmitter
	Receiver

	Case Study 2: Modulation Recognition
	Dataset
	Convolutional Neural Network


	Results
	Case Study 1
	Spectrum Visualization
	Frequency Deviation

	Case Study 2
	Effect of Learning Rate
	Effect of Number of Layers
	Effect of Number of Filters
	Effect of Communication Distance


	Discussion
	References

