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Abstract: The rapid global expansion of ChatGPT, which plays a crucial role in interactive knowledge
sharing and translation, underscores the importance of comparative performance assessments in
artificial intelligence (AI) technology. This study concentrated on this crucial issue by exploring
and contrasting the translation performances of large language models (LLMs) and neural machine
translation (NMT) systems. For this aim, the APIs of Google Translate, Microsoft Translator, and
OpenAI’s ChatGPT were utilized, leveraging parallel corpora from the Workshop on Machine
Translation (WMT) 2018 and 2020 benchmarks. By applying recognized evaluation metrics such
as BLEU, chrF, and TER, a comprehensive performance analysis across a variety of language pairs,
translation directions, and reference token sizes was conducted. The findings reveal that while
Google Translate and Microsoft Translator generally surpass ChatGPT in terms of their BLEU, chrF,
and TER scores, ChatGPT exhibits superior performance in specific language pairs. Translations
from non-English to English consistently yielded better results across all three systems compared
with translations from English to non-English. Significantly, an improvement in translation system
performance was observed as the token size increased, hinting at the potential benefits of training
models on larger token sizes.
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1. Introduction

The emergence of LLMs, such as ChatGPT, has recently become the focus point in
the AI industry, prompting the language services sector to explore the implications of
these multifunctional LLMs capable of assisting in various tasks, including text generation,
summarization, translation, and code generation [1]. According to a report published by
Acumen Research and Consulting, the global machine translation market size was USD
812.6 million in 2021 and is expected to reach USD 4069.5 million by 2030, growing at a
CAGR of 19.9% from 2022 to 2030 [2].

The accelerated progress in AI and natural language processing (NLP) has not only
fostered the development of highly sophisticated and adaptable language models [3–5]
but has also exerted a considerable influence on numerous domains, particularly machine
translation, where traditional NMT techniques have achieved remarkable advancements in
recent years [6].

Several key approaches have shaped the evolution of machine translation. Initially,
rule-based machine translation (RBMT) utilized grammar rules and lexicon dictionaries
but faced limitations due to computational power and data scarcity. Statistical machine
translation (SMT) later emerged, leveraging large parallel corpora to improve translation
performance [7]. NMT then incorporated deep learning and artificial neural networks,
with the transformer model becoming particularly notable [8]. Hybrid machine translation
methods have combined rule-based, statistical, and neural techniques to enhance translation
quality [9].
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Pre-trained language models such as GPTs (generative pre-trained transformers) and
BERT (bidirectional encoder representations from transformers) have significantly impacted
NLP and demonstrated excellent performance in diverse NLP tasks, including translation,
due to their self-supervised learning, transfer learning, and adaptability to different con-
texts [10,11]. This progress has led to research focusing on model scalability, efficiency,
domain adaptability, and human-like understanding and translation capabilities. However,
challenges remain, such as data bias, model interpretability, and energy efficiency [12].

As the field of machine translation continues to progress, it is anticipated that sys-
tems will become more accurate, robust, and adaptable to a wider range of languages
and domains, making them even more valuable tools in our interconnected world. This
research aimed to compare the translation performance of LLMs with that of traditional
NMT models from the perspective of real-world users. By conducting a comprehensive
evaluation, this study provides valuable insights into the practicality and effectiveness of
LLMs in translation tasks, highlighting their strengths and weaknesses compared with
NMT approaches.

Considering fast-evolving generative AI services and language-based AI technology
usability, this study presents a range of techniques for language translation requiring accu-
racy, as well as professional experimental results for data usage. This has the significance
of research to look at better language translation problems in different languages from the
different technologies of LLM. Furthermore, given the complexity and rapid changes in the
OpenAI ecosystem, it will be necessary to discuss ecosystem expansion and development
via learning about LLMs and API integration. LLM will also contribute to creating a more
advanced discourse by creating a foundation for global cooperation among experts beyond
the open sourcing of technology and data in the future, as it requires efforts to expand
the ecosystem based on cooperation with global networks rather than specific experts
or organizations.

In light of the aforementioned, the pivotal contributions of this paper unfold in three
dimensions. First, a meticulous exploration of the translation performance of prominent
LLMs and NMT systems is undertaken, providing a comprehensive analysis across var-
ious language pairs and translation directions. Second, an in-depth investigation into
the influence of token size on translation quality is conducted, elucidating the potential
advantages of training models with larger token sizes. Lastly, the translation capabilities of
ChatGPT in specific language pairs are scrutinized, uncovering its competitive performance
in certain contexts.

The remainder of this paper is organized as follows: Section 2 provides a theoretical
background on machine translation, emphasizing the metrics used for evaluating trans-
lation performance. Section 3 describes the experimental setup, detailing the selection of
test subjects and data. Section 4 presents and analyzes the experimental results. Section 5
offers conclusions, summarizing the main findings and suggesting potential avenues for
future research.

2. Theoretical Background
2.1. Machine Translation Approaches and Evolution

Machine translation refers to the process of automatically translating text from one
natural language to another using computer algorithms [13]. Numerous approaches have
been developed to tackle the inherent challenges in translating complex and diverse hu-
man languages [14]. Depending on the subject, translation can be classified into human
translation, human-assisted translation (HAMT), and computer-assisted translation (CAT)
according to the degree of human intervention [7,15,16]. With the development of AI
technology, interest in artificial neural network machine translation has increased. How-
ever, although the quality of machine translation has significantly improved, the quality of
human translation remains superior [17].

Three machine translation technologies have been developed so far. First, RMBT relies
on manually created linguistic rules and dictionaries to map the source language’s grammar,
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syntax, and semantics onto the target language [7,18]. RBMT systems can be further divided
into transfer-based, interlingua-based, and direct translation models. However, due to the
inherent complexity of languages and the labor-intensive process of rule creation, RBMT
has limitations in scalability and adaptability.

Second, SMT builds probabilistic models based on large-scale parallel corpora to
perform translations [19]. SMT models learn the most probable translation of a source
sentence by finding the best alignment of words or phrases between the source and target
languages. Although SMT has shown significant improvements compared with RBMT
and example-based machine translation (EBMT), it still faces issues in handling long-range
dependencies and capturing context.

Third, EBMT generates translations by searching for matching patterns in a database
of previously translated sentences or phrases [20]. EBMT systems then apply various
algorithms to combine and adapt the matched examples to produce the target translation.
While EBMT can produce more fluent translations than RBMT, it is still limited by the
availability of suitable examples in the database.

However, with the advent of deep learning techniques, research on NMT has gained
prominence. NMT models, such as the encoder–decoder architecture and the attention
mechanism, have demonstrated significant improvements in translation quality by captur-
ing long-range dependencies and handling context better than previous approaches. More-
over, the transformer model has significantly enhanced NMT performance and strength-
ened parallel processing and interlayer communication [8,21].

Hybrid systems that integrate NMT, SMT, or RBMT methods have also been investi-
gated. These hybrid systems leverage the strengths of both approaches to address some
of the limitations of individual methods, resulting in higher-quality translations. Each
approach has its strengths and weaknesses, and ongoing research aims to address these
limitations to improve translation quality and applicability across diverse languages and
domains. Traditional NMT models primarily translate sentences in isolation, neglecting
the broader document context. However, recent research has emphasized document-level
machine translation that considers the overall document context. This burgeoning field
involves novel modeling, architectures, training, and decoding strategies and introduces
evaluation metrics and discourse-focused test sets to measure improvements in document-
level machine translation [22,23].

The development and success of LLMs in recent years have led to a surge in interest
in their application to machine translation tasks. LLMs have demonstrated their ability
to generalize across various NLP tasks, thanks to self-supervised learning and transfer
learning, which have resulted in improved translation performance. In addition, BERT has
been incorporated into NMT models as a pre-training mechanism, leading to improved
translation quality in various settings [24]. Moreover, several BERT-based models, such as
mBERT (multilingual BERT) and XLM-R (Cross-lingual Language Model—RoBERTa), have
been developed to handle multilingual and cross-lingual tasks [25,26].

OpenAI’s GPT-2, GPT-3, and GPT-4 are examples of LLMs that have significantly
impacted the NLP field, including machine translation [27–29]. GPT-3, in particular, has
demonstrated remarkable performance in zero-shot machine translation tasks, where the
model translates text without being specifically fine-tuned for translation [28]. GPT-4 is
the latest iteration of GPT, and is said to be even more powerful and capable than its
predecessors. It has been trained on a massive dataset of text and code, and can generate
text, translate languages, write different kinds of creative content, and answer questions in
an informative way [30].

The utilization of LLMs in machine translation has received significant attention in
recent years, and research has aimed to compare the performance of LLMs and traditional
NMT systems. LLMs such as GPT and BERT have exhibited notable enhancements in
translation performance compared with traditional NMT systems [27].
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2.2. Metrics for Evaluating Machine Translation Performance

The concept of machine translation has existed since the 1950s and was initially
predicated on a rule-based approach using linguistic rules and bilingual dictionaries for
translation [13]. Nevertheless, evaluating these systems was a challenging task due to the
absence of standard measures [31]. The introduction of the BLEU (bilingual evaluation
understudy) metric marked a significant advancement in addressing this challenge and
a landmark breakthrough in the evaluation of machine translation systems [32]. Various
metrics have been proposed to assess the quality of machine translation output, including
BLEU, chrF (character n-gram F-score), and TER (translation edit rate). These metrics are
widely used in research and industry due to their effectiveness and ease of use.

Papineni et al. [32] first proposed the BLEU metric as a corpus-based metric for
evaluating the quality of machine translation output against human reference translations.
The BLEU metric is computed as follows:

BLEU = BP × exp
(

∑N
n=1 ωnlogPn

)
(1)

{
1 i f c > r

e(1−
r
c ) i f c ≤ r

(2)

where Pn represents the precision of n-grams, ωn is the weight of the precision (often set to
1
N for uniformity), BP is the brevity penalty, c is the length of the candidate translation, and
r is the length of the closest reference translation.

BLEU measures the n-gram overlap between the machine-generated translation and
reference translations, where a higher score indicates greater similarity to the human
reference. BLEU has become one of the most widely used metrics for evaluating machine
translation performance and has been shown to correlate well with human judgments of
translation quality. Although the BLEU metric introduced a simple and effective way to
evaluate machine translation output using reference translations [32], it is not without its
limitations, as identified in subsequent research. Among these limitations is the lack of
consideration for morphological and syntactic variations, which are significant aspects of
certain languages, as well as the absence of recall measurement [33].

In response to these challenges, Popović [34] introduced the chrF metric. This metric
computes the character n-gram precision and recall, typically defined as

chrF = β2 × Precision × Recall
β2 × Precision + Recall

(3)

where β weighs the emphasis of recall over precision, and is defined as

Precision =
Number o f correct character n − grams

Total number o f character n − grams in the generated text
(4)

Recall =
Number o f correct character n − grams

Total number o f character n − grams in the re f erence text
(5)

This makes chrF adept at considering the morphological richness of languages, thereby
rendering it an effective evaluation tool, especially for languages with complex morpholo-
gies and syntax.

TER was first proposed by Snover et al. [35] as a measure of the edit distance between
the machine-generated translation and the human reference translation. Mathematically,
the TER metric is defined as

TER =
Number o f Edits

Average Length o f Re f erence Translation
(6)
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It quantifies the number of edits required to transform the machine translation into the
reference translation, providing insights into the fluency and adequacy of the translation.
The TER metric has been widely adopted and provides a complementary perspective on
the quality of machine translation systems, considering the specific edits made during
the translation process. It offers valuable information, particularly in cases where the
translations may differ significantly from the reference translations, helping to assess the
overall accuracy and fidelity of the machine-generated output.

While metrics such as BLEU, chrF, and TER significantly contribute to the aim of
quantifying machine translation quality, crucially, they do not fully capture all the aspects
of translation quality [36]. They tend to primarily focus on surface-level linguistic matches
between the machine output and human reference translations, while elements such as
fluency, idiomaticity, and cultural appropriateness, among others, are not directly mea-
sured [37]. Consequently, these metrics should be used in conjunction with other evaluation
approaches, including human judgment, to provide a more comprehensive evaluation of
machine translation systems [38].

3. Method
3.1. Selection of Test Subjects
3.1.1. Selection of Test Systems

To evaluate a diverse range of language pairs and translation directions, encompassing
various linguistic families and language complexities, Google Translate and Microsoft
Translator were selected as representative NMT systems to assess and compare their
performance with that of OpenAI’s ChatGPT, a prominent large language model (LLM).

As shown in Table 1, Google Translate and Microsoft Translator are state-of-the-art
NMT systems adopted by users worldwide [39,40]. These systems leverage advanced deep
learning techniques, such as the encoder–decoder architecture and attention mechanisms,
which enable them to improve translation quality by effectively capturing long-range
dependencies and more accurately handling context compared with earlier methods [41].
The encoder–decoder architecture is the foundation of these NMT systems, with the encoder
processing the input text in the source language and the decoder generating the output text
in the target language [42].

Table 1. Selected evaluation systems.

Section System Characteristics

Google Translate
Google Translate is a widely used NMT system that leverages Google’s extensive research in the

field of machine translation. It supports a vast number of languages and has been continually
improved over the years, resulting in high-quality translations across various language pairs.

Microsoft Translator

Developed by Microsoft Azure Cognitive Services, Microsoft Translator is another leading NMT
system that offers translation capabilities for numerous languages. It employs advanced neural

network techniques and benefits from Microsoft’s extensive research on machine translation,
providing accurate translations for a diverse set of language pairs.

ChatGPT
ChatGPT is a family of advanced LLMs developed by OpenAI to excel in tasks such as

conversation, question answering, and content generation. ChatGPT has also shown remarkable
efficacy in translation applications despite not being initially designed for this purpose.

Attention mechanisms play a crucial role in the translation process by allowing the
model to weigh the importance of different parts of the input text when generating the
output. This approach addresses the limitations of previous models that struggled to main-
tain context and coherence in longer sentences [8]. ChatGPT is built upon the advanced
GPT architecture, which has shown exceptional performance across a wide range of NLP
tasks, including translation [43]. The accuracy of this model in providing information or an-
swers has been considerably enhanced via key innovations such as large-scale pre-training,
instruction fine-tuning, and reinforcement learning from human feedback (RLHF) [44].
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The model’s capacity to generalize and adapt to diverse contexts stems from its
use of self-supervised learning and transfer learning techniques. These features have
garnered significant attention, highlighting ChatGPT’s potential as a powerful translation
tool [45]. The underlying GPT architecture utilizes a transformer-based design, enabling
it to capture long-range dependencies and contextual information more effectively than
previous models. Furthermore, ChatGPT benefits from the vast amount of training data and
extensive pre-training, which allow it to generate highly accurate and fluent translations,
even for complex sentences and specialized domains [29].

Hence, this study utilized the APIs of Google Translate, Microsoft Translator, and
OpenAI’s ChatGPT to conduct translation tests on large-scale data across various paral-
lel corpora. The use of these APIs enabled the efficient and accurate evaluation of the
translation performance of each system under consideration.

3.1.2. Selection of Metrics and Libraries

Various evaluation metrics were utilized to thoroughly assess the translation perfor-
mance of ChatGPT, Google Translate, and Microsoft Translator. These metrics comprised
BLEU, chrF, and TER scores. The BLEU, chrF, and TER scores for translations generated by
ChatGPT, Google Translate, and Microsoft Translator were calculated using the ‘SacreBLEU
library’. To maintain consistency across all experiments, we used the default parameters
provided by the library. The greatest advantage of SacreBLEU is its ability to mitigate
the impact of preprocessing variations on score calculations, which can vary with minor
changes, such as via tokenizers, the segmentation of compound nouns, the handling of
unknown tokens for rare words, or casing. By incorporating text normalization stages in
the architecture, this automated metric can provide more reliable evaluation scores [46].

To enable a more straightforward comparison of translation performance across all
metrics, the scores were standardized on a consistent 0–100 scale. This facilitates the
interpretation and evaluation of the results. For the TER metric, which is originally ex-
pressed as an edit rate, the scores were reversed to align with the other evaluation metrics,
whereby higher values now indicate better translation quality. This standardization ensures
that all metrics provide a unified representation of translation quality and facilitates a
comprehensive assessment of the performance of different translation results.

3.2. Experimental Design
3.2.1. Experimental Process

Ensuring consistency in the parameters employed across all three systems was essen-
tial for achieving accurate and reliable outcomes. Each API was employed with similar
parameter settings throughout the experimental process, and the best practices and rec-
ommendations provided by their respective documentation were strictly adhered to. The
translation systems operated under equivalent conditions, effectively minimizing potential
discrepancies that could have arisen from differing configurations. After the experiments,
maintaining consistent parameter settings across all APIs, a framework was established for
evaluating and comparing the translation capabilities of ChatGPT, Google Translate, and
Microsoft Translator, ensuring a reliable assessment of their performance (see Figure 1).

3.2.2. Evaluation Dataset

To evaluate the translation performance of ChatGPT, Google Translate, and Microsoft
Translator, parallel corpora from the Workshop on Machine Translation (WMT) 2018 and
2020 benchmarks were utilized [47,48]. The Workshop on Machine Translation (WMT),
initiated in 2006, holds substantial influence in the machine translation field by facilitating
innovation and progress via annual evaluations of machine translation systems [49]. This
study utilized a parallel corpus consisting of documents in two languages aligned at the sen-
tence level provided by WMT [50], which is considered a high-quality machine translation
system. Datasets include various areas of content, such as news articles and reports.
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Figure 1. Research design and process.

ChatGPT, Google Translate, and Microsoft Translator then translated the texts between
the chosen parallel corpora using these samples, and their performance was measured.
In the performance evaluation of the ChatGPT models, four pre-trained models released
by OpenAI were compared: GPT-3 (text-curie-001), GPT-3.5 (text-davinci-003), GPT-3.5
(gpt-3.5-turbo), and GPT-4 (limited beta).

We downloaded the language-specific parallel corpora from WMT18 and WMT20 and
selected several target languages for our evaluation. The chosen languages represented a
diverse range of linguistic families and complexities to ensure a comprehensive assessment
of the models’ translation capabilities. For this evaluation, 3600 samples were created, with
200 test items selected from each of the 18 language pairs. The translation performance of
the GPT models was evaluated on multiple language pairs, including English–Estonian (en-
et), Estonian–English (et-en), English–German (en-de), German–English (de-en), English–
Finnish (en-fi), Finnish–English (fi-en), English–Russian (en-ru), and Russian–English
(ru-en). Each GPT model was utilized to perform translations for these language pairs, and
the results were compared with reference translations.

The test dataset was curated to maintain a balance of various text types and domains,
ensuring that the models were evaluated on a wide range of translation tasks. The aim
of utilizing the WMT18 and WMT20 parallel corpora and making the test dataset was to
provide a fair basis for comparing the translation performance of the three models under
consideration. In this evaluation, the average scores of the selected parallel corpora were
compared for each metric, and the performance was analyzed based on translation direction
and sentence length.

Furthermore, the translation performance for each language pair was scored individu-
ally, enabling a comparison of translation performance across different language pairs. This
test also provides an evaluation of LLMs’ ability on discourse based on taking document-
level machine translation as a testbed. Because LLMs can produce coherent and relevant
answers for various natural language processing (NLP) tasks.
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3.2.3. Data Preprocessing and Translation Using API

The parallel corpora were procured from WMT18 and WMT20 and accessed directly
from the respective online repositories [47,48]. The downloaded data were in SGML
(Standard Generalized Markup Language) format. SGML is a text format used to encode
structured text documents, such as those employed in NLP tasks like machine translation.
SGML files contain markup tags that indicate the structure of the text, including the begin-
nings and ends of sentences, paragraphs, and other elements. This format is commonly
used for NLP datasets to ensure the consistency and standardization of the data. The
SGML files provided by WMT were converted into a CSV format, and the source text was
used to call the API of each service to perform translations. The translated results were
preprocessed and saved in a CSV format for performance comparison. A large volume of
datasets was translated simultaneously by employing Python for automation.

While calling the Google Translation API, it was observed that the text was being
escaped using HTML character entities. Consequently, special characters such as quotation
marks and apostrophes appeared as HTML character entities in the stored results. To
resolve this issue, preprocessing was performed on the translated text using ‘Python’s
html.unescape’ method. This method decoded the text by replacing HTML character
entities with the corresponding special characters, effectively restoring the original text.
The preprocessed text was then saved for subsequent evaluation and analysis (see Figure 2).
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Figure 2. Examples of preprocessing Google Translation results by removing HTML entities.

This research explored the impact of the reference token size, categorized into quartiles
as the average numbers of tokens in a reference text, on the performance of different trans-
lation models: GPT-3.5, GPT-4, Google Translate, and Microsoft Translator. By classifying
reference texts based on their average token size quartiles, this study shows how token
size influences the translation performance of each model. However, in the process of
comparing language analysis, unlike many other languages, the Japanese and Chinese
languages do not have explicit word boundaries such as spaces, which makes the identifi-
cation of individual words or tokens crucial for accurate translation evaluation. To address
this issue, tokenization was applied to both source and target texts in the Japanese and
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Chinese languages before calculating translation quality metrics. Specialized tokenizers
were used for each language to handle their intricacies, enabling a more accurate translation
quality evaluation. The tokenization process for Japanese and Chinese languages involved
segmenting the text into individual tokens or words by analyzing the linguistic structure
of the input text, considering elements such as part-of-speech and morphological features.
This approach ensured that the translation quality assessment accurately reflected the
performance of the respective translation systems for these languages.

4. Results
4.1. Translation Performance Results by chatGPT Models

The performance comparison between the different ChatGPT models on the evaluation
dataset is presented in Table 2. The results show a clear progression in the performance of
these models, from GPT-3 to the more powerful GPT-3.5 generation models and, ultimately,
the GPT-4 model. GPT-4’s broader general knowledge and advanced reasoning capabilities
contribute to its superior performance in translation tasks, as demonstrated by obtaining
the highest BLEU (30.16), chrF (60.84), and TER (42.20) scores. This indicates that as OpenAI
continues to develop and refine its models, there is potential for further advancements in
translation capabilities. The results obtained from the evaluation led to the selection of
GPT-3.5-turbo and GPT-4 as the primary ChatGPT models for comparisons with Google
Translate and Microsoft Translator.

Table 2. Performance comparison between ChatGPT models on the evaluation dataset.

Metric GPT-3
(Text-Curie-001)

GPT-3.5
(Text-Davinci-003)

GPT-3.5
(gpt-3.5-Turbo)

GPT-4
(Limited Beta)

BLEU 13.51 25.33 28.35 30.16
chrF 39.32 56.69 56.67 60.84

TER 1 19.37 37.14 40.60 42.20
1 All TER scores throughout this paper are reversed for consistency; higher values represent better quality.

4.2. Translation Performance Results of the Systems

To determine the statistical significance of the observed differences in the translation
performance of the systems, the Kruskal–Wallis H test was utilized. This non-parametric
method of fitting for the comparison of more than two independent groups was conducted
on the BLEU, CHRF, and TER scores. The results of this test are presented in Table 3. H
test results were significant as BLEU 149.07, chrF 96.34, and TER 225.45. In basic statis-
tics, df was 3 for all metrics, and the p-Value for all metrics were significant as less than
0.001, implying that the differences in translation performance between the systems are
statistically significant.

Table 3. Results of the Kruskal–Wallis H test for translation performance metrics.

Metric H * df ** p-Value ***

BLEU 149.07 3 <0.001
chrF 96.34 3 <0.001
TER 225.45 3 <0.001

* H denotes the Kruskal-Wallis H statistic ** df denotes the degrees of freedom *** p-Value indicates the
significance level.

The translation performance of Google Translate, Microsoft Translator, and ChatGPT
was analyzed across 18 language pairs, translating 3600 pieces of data. The performances
of the systems on the evaluation dataset are reflected in their respective scores measured
with the applied metrics, as presented in Table 4.
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Table 4. Performance comparison between the different systems.

Metric ChatGPT
(GPT-3.5)

ChatGPT
(GPT-4) Google Microsoft

BLEU 24.79 26.86 29.47 29.05
chrF 53.62 55.54 57.38 57.03
TER 36.76 39.10 43.96 43.32

Google Translate and Microsoft Translator outperformed ChatGPT in all the evaluation
metrics. Both systems demonstrated higher BLEU, chrF, and TER scores than ChatGPT,
indicating better translation qualities. Google Translate demonstrated slightly better per-
formance than Microsoft Translator, but the difference was marginal. Although ChatGPT
showed lower performance than the other two systems, it is important to note that Chat-
GPT is primarily designed as a conversational AI model rather than a translation system.
The results suggest that ChatGPT’s performance is not on par with that of specialized
translation systems such as Google Translate and Microsoft Translator. These findings
serve as a valuable reference for users who decide to use translation systems for specific
purposes, such that those who prioritize translation quality may opt for Google Translate
or Microsoft Translator.

4.3. Translation Performance Comparison for English and Non-English

The translation performance between the English and non-English languages was
evaluated in both directions. The results show that translations from non-English to English
surpassed those from English to non-English in terms of BLEU, chrF, and TER scores (see
Table 5, Figure 3).

Table 5. The comparison results for English and non-English.

Section ChatGPT
(GPT-3.5)

ChatGPT
(GPT-4) Google Microsoft

BLEU
Non-English–English 26.77 28.71 31.07 29.64
English–non-English 22.05 24.16 27.54 27.49

chrF
Non-English–English 56.10 57.86 59.35 57.90
English–non-English 49.52 51.61 54.56 54.81

TER
Non-English–English 38.38 40.62 45.11 43.61
English–non-English 34.56 36.85 42.61 42.63Information 2023, 14, x FOR PEER REVIEW  3  of  5 
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Figure 3. The comparison of scores by translation direction across different metrics.
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The average BLEU scores for English–non-English and non-English–English trans-
lations show that Google Translate outperforms the other models. In translations from
non-English to English, Google Translate achieved the highest average BLEU score of
31.07, surpassing GPT-3.5 with 26.77, GPT-4 with 28.71, and Microsoft Translator with
29.64. Similarly, in translations from English to non-English, Google Translate led with a
score of 27.54, followed by Microsoft Translator with 27.49, GPT-4 with 24.16, and GPT-3.5
with 22.05.

Google Translate also excelled in the average chrF scores for both translation directions.
In non-English–English translations, Google Translate achieved an average chrF score of
59.35, outperforming GPT-3.5 with 56.10, GPT-4 with 57.86, and Microsoft Translator with
57.90. In English–non-English translations, Microsoft Translator achieved the highest score
of 54.81, followed by Google Translate with 54.56, GPT-4 with 51.61, and GPT-3.5 with 49.52.
These scores demonstrate Google Translate’s superior character-level precision and recall.

Regarding TER scores, Microsoft Translator and Google Translate outperformed Chat-
GPT in both translation directions. In non-English–English translations, Google Trans-
late achieved the highest average TER score of 45.11, followed by Microsoft Translator
with 43.61, GPT-4 with 40.62, and GPT-3.5 with 38.38. Similarly, in English–non-English
translations, Microsoft Translator achieved the highest average TER score of 42.63, fol-
lowed by Google Translate with 42.61, GPT-4 with 36.85, and GPT-3.5 with 34.56. These
scores provide valuable insights into the dissimilarity between the translations and the
reference translations.

4.4. Translation Performance Comparison by Language Pairs

The results of the evaluation and comparison of GPT-3.5, GPT-4, Google Translate,
and Microsoft Translator in terms of their BLEU, chrF, and TER scores for selected language
pairs are outlined herein. As seen in Table 6 and Figure 4, the mean BLEU scores of the
translation systems reveal a pattern, with performance fluctuating across different language
pairs. For instance, in the case of German–English (de-en) translation, GPT-4 exceeded the
other systems with a score of 41.23, followed by Microsoft Translator with 40.98, Google
Translate with 40.39, and then GPT-3.5 with 37.65.

Table 6. The comparison results by language pairs.

Target ChatGPT
(GPT-3.5)

ChatGPT
(GPT-4) Google Microsoft

BLEU chrF TER BLEU chrF TER BLEU chrF TER BLEU chrF TER

de-en 37.65 66.57 52.93 41.23 68.43 56.39 40.39 67.06 56.07 40.98 67.89 56.16
ru-en 32.91 63.7 46.97 34.67 63.63 48.41 36.41 65.76 51.85 36.5 64.76 51.39
et-en 31.52 63.46 44.76 32.18 64.39 45.52 36.76 65.50 51.40 31.87 66.64 46.28
zh-en 31.48 61.35 43.43 32.13 62.17 43.84 35.13 62.08 47.53 34.97 62.65 48.02
en-de 31.21 61.06 45.70 33.26 62.07 47.46 36.11 64.19 50.51 37.24 60.52 51.27
de-fr 30.52 60.17 45.02 32.51 61.91 47.27 32.23 60.46 47.39 35.41 62.44 48.13
cs-en 29.00 59.98 44.97 30.65 61.96 46.49 29.08 61.12 45.78 28.45 62.30 46.22
en-zh 26.93 59.41 46.23 27.99 60.69 46.08 32.28 58.77 51.39 30.35 58.17 50.36
en-ru 25.84 58.16 38.07 26.76 58.54 37.95 33.40 63.22 47.11 31.55 62.65 46.25
fi-en 25.40 57.11 35.23 25.73 59.51 35.05 25.99 60.03 35.95 27.29 59.80 37.09
fr-de 25.07 55.57 33.20 28.03 58.19 36.88 29.33 60.81 42.12 30.40 61.63 41.71
en-cs 24.92 55.51 38.7 28.63 55.54 42.40 32.01 54.95 47.77 33.53 55.34 48.48
en-et 23.47 54.16 34.46 26.38 56.05 37.73 27.80 56.26 42.83 27.95 57.15 41.21
en-ja 19.85 51.30 35.33 22.15 51.45 37.66 23.84 50.41 40.15 23.84 51.02 41.51
ja-en 19.25 37.47 27.81 20.89 38.37 29.7 20.77 41.87 30.98 22.01 40.37 32.20
en-fi 18.79 37.46 26.70 21.05 43.34 29.07 22.09 54.01 32.33 23.09 54.39 33.76

km-en 6.97 32.78 10.95 12.20 34.51 19.56 24.03 34.82 41.28 15.07 35.86 31.53
en-ta 5.38 29.87 11.28 7.09 38.93 16.44 12.82 51.57 28.81 12.36 42.88 28.22
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The chrF scores, which assess the quality of translations considering both the precision
and recall of character sequences, reflect the pattern observed in the BLEU scores. Tak-
ing German–English (de-en) translation as an example, GPT-4 achieved a score of 68.43,
followed by Microsoft Translator with 67.89, Google Translate with 67.06, and GPT-3.5
with 66.57. The TER scores of the translation systems continue to showcase a similar trend.
For German–English (de-en) translation, GPT-4 took the lead with a score of 56.39, closely
followed by Microsoft Translator with 56.16, Google Translate with 56.07, and GPT-3.5
with 52.93.

Examining the scores for diverse language pairs reveals a clear difference in perfor-
mance among the translation systems. For example, when inspecting Russian–English
(ru-en) translations, Google Translate takes the lead with a BLEU score of 36.41. Yet, in
the same language pair, Microsoft Translator marginally surpasses others with a chrF
score of 62.65, while Google Translate maintains its dominance with a TER score of 51.85.
This observation suggests that a translation system’s excellence in one metric does not
necessarily secure its superiority in all metrics.

As we delve into lower-resource language pairs, the situation grows more complex. For
example, in the translation from Khmer to English (km-en), Google Translate significantly
outperforms others with a BLEU score of 24.03, a chrF score of 51.57, and a TER score of
41.28. In contrast, GPT-4 shows a diminished performance, attaining a BLEU score of 12.20,
a chrF score of 38.93, and a TER score of 19.56. These differences underscore the challenges
encountered and highlight the continuing need for advancements in machine translation
for languages with fewer resources.

In conclusion, the performance of machine translation systems remains varied across
different languages and evaluation metrics. While GPT-4 shows significant improvements
over GPT-3.5 in many situations, other platforms, such as Google Translate and Microsoft
Translator, continue to exhibit robust performance, especially with certain language pairs
and metrics. These findings emphasize the ongoing need for development and refinement
in the field of machine translation, with the aim of enhancing both the breadth and quality
of translations across all language pairs.
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4.5. The Impact of Reference Text Token Size

Table 7 presents the average BLEU, chrF, and TER scores grouped by the token size
quartiles of the reference texts. The patterns observed indicate that the average token
size in each quartile significantly impacts the performance of different models in varied
ways. In the case of BLEU scores, an increase in the average token size corresponds to
an improvement in scores across all models. This trend is demonstrated with Microsoft
and Google Translate reaching a score of 32.18 when the average token size is at its largest
(58.62), followed closely by GPT-4 with 30.75 and GPT-3.5 with 28.95.

Table 7. The results by quartiles of reference token size.

Section Token Size
(Mean)

ChatGPT
(GPT-3.5)

ChatGPT
(GPT-4) Google Microsoft

BLEU

10.59 22.90 25.35 27.89 27.97
19.37 22.65 25.27 28.06 27.10
29.14 24.70 26.15 29.82 28.90
58.62 28.95 30.75 32.18 32.18

chrF

10.59 53.23 55.14 57.19 57.04
19.37 52.24 54.90 57.05 56.40
29.14 53.17 54.86 57.49 56.70
58.62 55.75 57.26 57.80 57.90

TER

10.59 32.80 35.91 41.60 41.24
19.37 33.72 36.77 42.60 41.31
29.14 37.28 38.96 44.64 43.57
58.62 43.48 45.00 47.17 47.25

In the case of TER scores, a pattern akin to the BLEU scores is observable, with scores
escalating alongside an increase in the average token size. Upon reaching the largest
average token size, 58.62, Microsoft Translator prevails with a score of 47.25, followed
closely by Google Translate with 47.17, GPT-4 with 45.00, and GPT-3.5 with 43.48.

Meanwhile, the variation in chrF scores is relatively modest as the average token size
increases. When the mean token size is at its largest at 58.62, the scores range between 55.75
for GPT-3.5 and 57.90 for Microsoft Translator. This implies that the impact of token size on
character-level translation accuracy is considerably less.

According to the BLEU and TER metrics, these findings suggest that larger token
sizes contribute to improved translation performance. However, the effect is less pro-
nounced when considering the chrF metric. These observations underscore the intricate
relationship between the characteristics of the reference text, such as token size, and the
translation performance, thus highlighting the necessity for translation models to balance
diverse factors.

Figure 5 illustrates the mean values of BLEU, chrF, and TER scores categorized by
quartiles of the reference token size. Echoing the findings in the table, the graphical
depiction illustrates an upward trend in BLEU and TER scores as the average token size
increases. This trend strengthens the premise that texts with larger token sizes might
provide more substantial context, thereby enhancing the performance of the translation
models. However, the impact on chrF scores is less pronounced, emphasizing the unique
ways in which different metrics respond to variations in token size.
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5. Conclusions
5.1. Findings and Discussion

This study analyzed the translation performances of LLMs and NMT systems, consid-
ering various factors such as the systems used, languages, and reference token size. Among
the key findings, we observed that for translations from English to non-English, Google
Translate and Microsoft Translator demonstrated superior performance, while GPT-3.5 and
GPT-4 exhibited comparatively less robust results. These insights indicate the ongoing
competitiveness of traditional translation services such as Google Translate and Microsoft
Translator when dealing with translations from English to other languages.

In summary, across BLEU, chrF, and TER scores, Google Translate consistently out-
performs ChatGPT and Microsoft Translator, highlighting its overall superior translation
quality in the assessed aspects. The performance improvement observed between GPT-3.5
and GPT-4 in translation quality can be attributed to advancements in the underlying ar-
chitecture, training data, and optimization techniques. GPT-4’s increased capacity enables
it to handle more complex language structures and provide more accurate translations.
As ChatGPT continues to evolve, incorporating novel approaches and leveraging state-
of-the-art research, it is anticipated that further enhancements may bring its performance
closer to, or surpass, that of other leading translation services such as Google Translate and
Microsoft Translator.

Furthermore, the performance gap between the translation systems is more substantial
for certain language pairs, such as English–Tamil (en-ta) and Khmer–English (km-en),
suggesting potential areas for improvement in these specific translation tasks. Conversely,
for language pairs such as Czech–English (cs-en), German–English (de-en), and Estonian–
English (et-en), the performances of the translation systems are relatively close, implying
that these systems are more evenly matched for these translation tasks. Interestingly, GPT-4
surpasses the performance of both Google and Microsoft in specific language pairs. For
instance, in the German–English (de-en) language pair, GPT-4 achieves higher scores in all
metrics. This notable performance improvement suggests promising potential for future
enhancements of the GPT model, even in challenging translation tasks.

While the BLEU, chrF, and TER scores provide valuable insights into the translation
qualities of these systems, they are not the sole indicators of translation performance.
Other factors, such as fluency, adequacy, and the preservation of meaning, should also
be considered when evaluating translation systems. Despite this, these results offer a
valuable foundation for understanding and comparing the performance of GPT-3.5, GPT-4,
Google Translate, and Microsoft Translator across various language pairs and highlight the
promising potential of next-generation GPT models.

In addition, the results indicate a potential boundary condition pertaining to the
evaluated NMT systems and LLMs, including Google Translate, Microsoft Translator,
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and ChatGPT. These systems may have been previously trained on WMT data or similar
datasets. If this is the case, our experimental approach, which heavily relies on WMT
datasets, might have introduced certain biases, which could influence the broad applica-
bility of our conclusions when these systems encounter novel linguistic contexts. Future
research should consider this factor and incorporate more diverse datasets to ensure a more
comprehensive and robust evaluation of both NMT systems and LLMs.

Lastly, the data indicated a general enhancement in the performance of machine trans-
lation models as the token size in the reference texts increased. Particularly, reference texts
with the largest token sizes led to the highest performances across all three models in terms
of BLEU, chrF, and TER scores. Conversely, reference texts with the smallest token sizes
resulted in the lowest performances. This suggests that translation models may excel more
when processing texts with larger tokens, as they can capture more contextual nuances and
produce translations that are more closely aligned with the reference translations in terms
of lexical similarity, character-level precision and recall, and overall translation quality.

Additionally, this finding suggests larger tokens rich in unique details enable models
to generate more precise translations. Conversely, fewer tokens may limit context, thus
challenging translation quality. These results highlight token size’s role in translation
performance, suggesting that future research focuses on improving the handling of smaller
tokens and expanding their context to enhance accuracy across varying token sizes. In
conclusion, these findings contribute to our understanding of the translation performances
of LLMs and NMT systems, providing insights for researchers and developers to further
enhance translation quality and explore the potential of next-generation models.

5.2. Research Implications

This study highlights the importance of conducting direct comparisons between the
performances of LLMs and machine translation systems from a user’s perspective and
emphasizes the potential of utilizing LLMs as translation tools. Based on these research
findings, several practical implications can be suggested.

The performance of LLMs’ translation capabilities varied across different language
pairs, with some pairs demonstrating larger performance gaps than others. This find-
ing highlights the need for researchers and developers to focus on enhancing translation
models for underperforming language pairs. The analysis results indicate that longer
reference texts positively influence machine translation performance, implying that incor-
porating longer reference texts during the training process could result in better-performing
translation models. Building on these observations, future efforts should emphasize the
following areas.

First, one approach is to enhance the fine-tuning process for underperforming lan-
guage pairs with a diverse and comprehensive dataset, which could considerably improve
their performance. Prioritizing the inclusion of longer reference texts during training is
another important step. This strategy could heighten a model’s proficiency in complex
translations and significantly improve the overall translation performance. Such concerted
efforts may guide the ongoing advancement of LLMs toward more accurate and efficient
translation systems.

Second, since ChatGPT is primarily designed as a conversational AI model, its transla-
tion performance might not match specialized translation systems. However, its potential
for more natural, conversation-like interactions could still be valuable in specific use cases.
In this regard, one promising avenue could be to leverage ChatGPT’s conversational capa-
bilities in areas such as real-time customer service or community management on social
platforms. In these instances, the model’s ability to deliver more organic and interactive
translations could significantly enhance the quality and fluidity of cross-language commu-
nications, thereby fostering more engaging and meaningful interactions. This exemplifies a
practical scenario where the unique strengths of ChatGPT could be effectively harnessed,
including in the NMT field.
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Third, investigating domain-specific translation performance is encouraged. Transla-
tion systems might perform differently when handling domain-specific content, such as
scientific articles, legal documents, or news articles. Future research could examine how
the performance of machine translation systems varies across different domains. Addi-
tionally, exploring the impact of data scarcity and low-resource languages on translation
performance is suggested. The performance of LLMs might be significantly influenced by
the availability of training data for particular languages.

To address this challenge, companies should expand their training data to specific
domains and low-resource languages. This could be achieved using techniques such as
web scraping, the collection of specialized documents, or crowdsourcing. Furthermore,
developing new algorithms and technologies that aid in understanding the specific require-
ments and context of a given domain in collaboration with domain experts is crucial for
enhancing translation quality for specific domains and low-resource languages. Thus, the
usefulness and diversity of machine translation systems could be improved, leading to an
enhanced user experience.

5.3. Research Limitations and Future Plans

Despite the significance and implications of this research, this study has the following
limitations. First, our research focused on a select set of language pairs, potentially not
reflecting the performance of translation systems across all languages. It also has a weak
data size of 200 sentence pairs per language pair. Therefore, future research could expand
this analysis to include a more diverse range of languages and language pairs to obtain a
comprehensive understanding of translation systems’ performance.

Second, this study primarily relied on BLEU, chrF, and TER scores to assess translation
quality. While these metrics are widely used and standard, they may not capture all
aspects of translation performance. Notably, this study did not include state-of-the-art
metrics such as COMET and BLEURT, which utilize trained models for evaluation, due to
potential bias concerns in providing an objective performance evaluation. Future research,
particularly studies building on transformer models, may consider these metrics. Moreover,
incorporating human evaluations or alternative translation quality assessment methods
would give a more nuanced understanding of translation system performance. In addition,
the exploration of other factors, such as fluency, adequacy, and preservation of meaning,
could provide a more comprehensive evaluation of machine translation systems.

Third, this study used a single evaluation dataset from 2018–2020, which may not
reflect the dynamic nature of real-world translation tasks. Investigating the performance
of translation systems using multiple evaluation datasets and covering various domains,
genres, and text types could provide better insights into how these systems perform in
different contexts.

Fourth, this study focused on commercially available translation models without
including open-source models. This requires future performance exploration of NMT
models such as Opus and decoder-only LLMs such as Bloom and Llama. In addition,
research that can draw statistical conclusions that verify researchers’ differentiated hy-
potheses or research problems based on the open-source model should be conducted to
verify effectiveness or influence beyond simple trends or comparisons.

Lastly, this study assessed ChatGPT’s performance as a representative of LLMs. With
the continuous fine-tuning and advancement of machine learning models, ChatGPT is
expected to undergo regular updates, and new LLMs may emerge that potentially surpass
ChatGPT or offer alternative language model options. Future research should evaluate
the performance of updated ChatGPT models and emerging LLMs to track their progress,
identify trends in their development, and enable more comprehensive comparisons between
different models.
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