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Abstract: Thanks to the success of deep learning, deep hashing has recently evolved as a leading
method for large-scale image retrieval. Most existing hashing methods use the last layer to extract
semantic information from the input image. However, these methods have deficiencies because
semantic features extracted from the last layer lack local information, which might impact the global
system’s performance. To this end, a Deep Feature Pyramid Hashing DFPH is proposed in this study,
which can fully utilize images’ multi-level visual and semantic information. Our architecture applies
a new feature pyramid network designed for deep hashing to the VGG-19 model, so the model
becomes able to learn the hash codes from various feature scales and then fuse them to create final
binary hash codes. The experimental results performed on two widely used image retrieval datasets
demonstrate the superiority of our method.

Keywords: deep learning; deep supervised hashing; content-based image retrieval; feature pyramid;
multi-scale feature

1. Introduction

A vast amount of data, including images and videos, is produced daily as a result of
social media’s fast growth. There have been many methods suggested to retrieve them
effectively [1,2]. Approximate nearest neighbor (ANN) search [3] has recently drawn more
and more interest due to its low computing cost and high retrieval accuracy. Among several
ANN search techniques, the hashing [4] method is one of the more promising techniques
to learn compact binary codes for high-dimensional input data and retrieve it at the
Hamming Space.

For decades, several hashing techniques have been studied and proposed. Due to the
tremendous success of deep learning, deep neural networks have been used in hashing
algorithms for end-to-end learning hash codes and feature representations [5–8]. These
techniques have attained cutting-edge retrieval performance, demonstrating the importance
of concurrently generating similarity-preserving representations and reducing quantization
error while transforming the representations into hash codes [6,9–11].

However, most of the existing deep hashing methods [12–15] used the top-layer feature
to learn binary codes while disregarding down-layer features. The lower ConvLayer is
generally responsible for extracting the image’s visual details, including its edge, color and
texture information [16]. Meanwhile, this visual information is combined in the middle
layers to discover ingrained patterns. The top layer is concerned with using semantic
information to produce discriminated representation [17].

Furthermore, recent research in Feature pyramids [18,19], which boost the performance
by utilizing different ConvLayer in the convolutional network, has demonstrated the
superiority of learning local features in a vast number of visual tasks, such as object
detection [20] and image segmentation [21]. As for deep hashing, it is still full of challenges
in encoding the feature pyramids into efficient binary codes.

Some of the earlier techniques functioned by feeding the network to take an image
pyramid as the input (various sizes of the input image). Doing this improves the feature
extraction process but increases the processing time and is not as efficient.
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Even though Feature Pyramid Network (FPN) was created for object detection, we
offer a novel model that uses FPN for deep hashing in this work. Using FPN makes
extracting the input image’s multi-level visual and semantic information easier. More
specifically, an FPN creates a hierarchy of bottom-up and top-down feature maps with
lateral connections of features produced from the network at various scales. We learn hash
codes from these feature scales, which we fuse to obtain the final hash codes. The main
contributions of this work can be summarized as follows:

1. A Deep Feature Pyramid Hashing is proposed in this work which can fully exploit
the multi-level visual and semantic information of images. Our architecture applies a
new feature pyramid network designed for deep hashing to the VGG-19 model. Thus,
the model becomes able to learn binary hash codes from various feature scales and
then fuse them to obtain the final hash codes.

2. To the best of our knowledge, the proposed DFPH is the first feature pyramid network-
based method which generates hash codes from multiple feature scales for image re-
trieval.

2. Related Works

Thanks to their small storage capacity and quick processing speed, hashing methods
have recently become widespread in image retrieval [22,23]. The primary goal of hashing
is to convert high-dimensional input data into low-dimensional hash codes, with the
Hamming distance reduced in similar pairs and maximizing in dissimilar pairs.

Existing hashing methods can be divided into supervised methods [24,25] and un-
supervised methods [26–30] , depending on whether or not supervised data are used.
Unsupervised hashing approaches [31–34] aim to learn the hash functions with unlabeled
training samples, which convert input images into binary code. LSH [35] has been the most
representative of the approaches. However, several other unsupervised hashing methods,
such as SH [32], and ITQ [33], have been used in subsequent studies.

Unlike unsupervised hashing methods, supervised hashing techniques take super-
vised information from the labeled input data to learn hash code, which outperforms unsu-
pervised approaches in terms of accuracy. Supervised Hashing with Kernels (KSH) [36] is a
suggested supervised hashing method for generating a nonlinear hash function in kernel
space. Unlike previous hashing approaches, Minimal Loss Hashing (MLH) [37] uses struc-
tured SVM to develop an objective function for hash function learning. Supervised Discrete
Hashing (SDH) [27] provides high-quality hash codes without relaxing by reformulating
the goal function.

With the rapid advancement of deep neural networks, several deep hashing algo-
rithms [10,38–44] have recently been presented. Deep hashing can outperform approaches
based on hand-crafted features because of the rich feature representations offered by deep
neural networks. Pairwise and triplet-wise similarity preservation are the most prevalent
ways of utilizing the relationship between labeled data when it comes to the utilization of
label information.

CNNH [38] learns the hashing codes using features obtained from CNN. However,
the hash function and feature representation are learned independently. There are many
literature researching the hashing algorithm that the hash function and feature representa-
tion are learned independently [45,46]. Moreover, in this case, the learning hash function
cannot provide feedback to a feature representation learning. Deep Pairwise-supervised
Hashing (DPSH) [10] uses the Bayesian framework to create a relationship between hash
codes and pairwise labels and then optimizes the relationship to learn hash functions.
HashGAN [39] uses Wasserstein GAN to increase training data by exploiting pairwise
similarity (dissimilarity) information, and hash codes are generated inside a Bayesian
framework. In order to learn the hashing functions, Zhuang et al. [40] developed a binary
CNN classifier that uses triplet-based loss for maintain semantic links. Deep Triplet Quan-
tization (DTQ) [41] combines triplet quantization strategy in a supervised deep learning
framework to enable optimization of quantization and feature learning simultaneously.
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Supervised Learning of Semantics-Preserving Hash (SSDH) [42] involves building hash
functions as a new fully connected layer (FC Layers), and the hash codes are learned
by optimizing the cost function-specified classification error. Wang et al. [43] provided
a general framework for distance-preserving linear hashing containing a deep hashing
approach. In this approach, the features of the fully connected layer (FC Layers) were
used for the learning hashing. Similarity-Adaptive Deep Hashing (SADH), invented by
Shen et al. [44], is a two-step hashing algorithm. The fully connected layer (FC Layers)
output representations aid in updating the similarity graph matrix and are then used to
improve the hash code optimization process.

The approaches above use one type of feature, mostly features from the last FC layer
(high-level features). However, different types of features need to be extracted to create
a more complete description. Many methods have been proposed for multi-level image
retrieval. Lin et al. proposed a DDH [47] method for image retrieving. The authors combine
end-to-end learning, divide-and-encode, and hash code learning into a single framework.
Specifically, the stack of conv-pool (convolution pooling) layers was then used to acquire
multi-scale features. By combining the third pooling layer’s and fourth Conv layer’s
outputs. In [48], Yang et al. proposed a Feature Pyramid Hashing (FPH) as a two-pyramids
(vertical and horizontal) image hashing architecture to learn the subtle appearance details
and the semantic information for fine-grained image retrieval. Ng et al. [49] developed a
novel multi-level supervised hashing (MLSH) technique for image retrieval. The authors
built and trained the tables individually, utilizing different levels of features (semantic and
structural).

3. Proposed Method

This section will detail the suggested Deep Feature Pyramid Hashing for Image
Retrieval. We begin by presenting the problem definition for learning hash codes. Then,
we introduce the model architecture. Finally, we give our proposed method’s objective
function.

3.1. Problem Definition

Let X = {xi}N
i=1 ∈ Rd×N denote the training dataset with N image samples, and d

features sizes. Let Y = {yi}N
i=1 ∈ RK×N represent the ground truth labels of the training

dataset X, where K is the number of classes.
Let S =

{
sij
}

be the matrix to denote the pair-wise labels for training samples,
with sij ∈ {0, 1}, where the element sij = 1 represents that xi and xj samples are se-
mantically similar, sij = 0 represents that xi and xj samples are not semantically similar.
The goal of deep hashing techniques with pair-wise labels is to learn a nonlinear deep
hash function f : x 7→ B ∈ {−1, 1}L, which can encode each sample xi into binary codes
bi ∈ {−1, 1}L, L is the length of hash codes.

3.2. Model Architecture

Feature pyramid network (FPN) was proposed by Lin [19] as a feature extractor design.
FPN generates multiple feature map layers (multi-scale feature maps) with better-quality
information than the regular feature pyramid.

Figure 1 shows the network’s architecture of the proposed deep hashing for image
retrieval. The bottom-up hierarchy uses VGG-19 to construct the bottom-up hierarchy.
Specifically, we use the feature output of the last convolutional layer in each convolutional
block (conv3− 5). We denote the output of these last convolutional layers as C3, C4, C5 for
conv3, conv4, and conv5 outputs, respectively. We omit conv1 and conv2 into the pyramid
due to its large memory footprint. Table 1 details the convolutional layers’ parameters and
feature sizes of different convolutional blocks.
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Table 1. Details of the feature extraction network. Note that we use the features of the layers marked
by “#”. For simplicity, we omit ReLU and Batch Normalization layers.

Conv Block Layers Kernel Size Feature Size

1

MaxPooling
Conv2D #
Conv2D

2× 2
64× 3× 3
64× 3× 3

224× 224

2

MaxPooling
Conv2D #
Conv2D

2× 2
128× 3× 3
128× 3× 3

112× 112

3

MaxPooling
Conv2D #
Conv2D
Conv2D
Conv2D

2× 2
256× 3× 3
256× 3× 3
256× 3× 3
256× 3× 3

56× 56

4

MaxPooling
Conv2D #
Conv2D
Conv2D
Conv2D

2× 2
256× 3× 3
256× 3× 3
256× 3× 3
256× 3× 3

28× 28

5

MaxPooling
Conv2D #
Conv2D
Conv2D
Conv2D

2× 2
256× 3× 3
256× 3× 3
256× 3× 3
256× 3× 3

14× 14

Figure 1. This figure shows our proposed model: Deep Feature Pyramid Hashing (DFPH), which
uses VGG19 as the backbone and uses the feature pyramid network (FPN) and the created layers
for hashing.

As we go down the top-down path, we upsample the previous layer using bilinear
interpolation. Moreover, we apply a 1 × 1 convolution filter (reduce C3, C4, and C5
channels) to the corresponding feature maps in the bottom-up pathway. Then, we add
them element-wise.

FPN extracts four final features (multi-scale feature maps). The bottom and upper
layers are selected to exploit spatial resolution and semantic information because the spatial
resolution decreases as we go up in the layers.
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For the obtained features, we fuse them using a 3× 3 convolutional layer to obtain
a fused feature and apply dropout layers (to avoid overfitting). After that, we attach the
hashing layer on this final set of feature maps to produce the first hashing codes. Note that
we use the Relu activation function for the first hashing layers.

At the end of the architecture, we concatenated the four hashing layers. Then, we
connected this layer to the final hashing layer and connected the latter with the classification
layer (the sum of neurons equals the sum of classes of the dataset). With running this
procedure, the network utilizes different hashing results based on various scale features.
As a result, the network could retrieve the images better.

3.3. Objective Function

To learn similarity-preserving hash codes, we develop the following loss functions:
pairwise similarity loss, pairwise quantization loss, and classification loss. All of them are
merged to train our model.

Pairwise Similarity Loss. We perform our deep hashing model by preserving similari-
ties as possible of all pairwise images in the Hamming space. The pairwise similarity is
computed using the inner product. The inner product 〈., .〉 for two binary codes, bi and bj,
is formulated as follows: distH

(
bi, bj

)
= 1

2 bT
i bj

Given that all of the points’ binary codes are B = {bi}N
i=1 , we can formulate the

likelihood of the pairwise labels S =
{

sij
}

as:

p
(
sij|B

)
=


σ(wij) sij = 1

1− σ(wij) sij = 0

(1)

where σ(wij) =
1

1+e−wij
, and wij =

1
2 bT

i bj

Based on the equation above, we can infer that the larger the inner product 〈bi, bj〉, the
smaller the corresponding distH

(
bi, bj

)
, and the larger p

(
1|bi, bj

)
. This also implies that the

hash codes bi and bj are considered as similar when sij = 1, and vice versa.
By taking the negative log-likelihood of the observed pairwise labels in S, we can

obtain the following optimization problem:

J1 = − log p(S|B) = − ∑
sij∈S

(sijwij − log(1 + ewij)) (2)

The above formula (optimization problem) makes the Hamming distance between
two similar (dissimilar) points to be as small (large) as possible, which is precisely what
pairwise similarity-based hashing techniques aim to achieve.

Pairwise Quantization Loss. Discrete hash codes are utilized in real-world applications
to determine similarity. However, discrete hash coding in CNN is challenging to optimize.
Therefore, the continuous form of hash coding is used to prevent gradient disappearance
during the back-propagation phase. We define the output of the hash layer as ui and make
bi = sgn(ui).

Hence, quantization loss is introduced to minimize the gap between continuous and
discrete hash codes. The second objective is defined as:

J2 =
Q

∑
i=1
‖ bi − ui ‖2

2 (3)

where Q is the size of the mini-batch.
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Classification Loss. To achieve robust representations of multi-scale features during
training of deep network, we apply the classification loss to find the classification of the
classes. The classification loss can be expressed as follows:

J3 = −
Q

∑
i=1

K

∑
k=1

yi,k log(pi,k) (4)

where yi,k is the ground-truth label, pi,k is the softmax output of the i− th training sample,
which belongs to the k− th class.

To sum up, the total loss function can be achieved by combining pairwise similarity
loss, pairwise quantization loss, and classification loss:

min
B,U,P

J = J1 + βJ2 + γJ3

= − ∑
sij∈S

(sijwij − log(1 + ewij))

+ β
Q

∑
i=1
‖ bi − ui ‖2

2

− γ
Q

∑
i=1

K

∑
k=1

yi,k log(pi,k)

(5)

where β, γ are hyper parameters that control importance of the J2 and J3 terms. The final ob-
jective function in Equation (5) is convex and can be optimized by the Adam algorithm [50].
At the training phase, J1 makes similar binary codes as close as possible and places dissimi-
lar binary codes as far away as possible. J2 quantization loss is introduced to minimize the
gap between continuous and discrete hash codes. J3 can use semantic supervision to direct
how discrete hash codes are learned and add more semantic information to the hash codes
that are created to improve hash code discrimination.

4. Experiments

We verify the effectiveness of our method on two public datasets: CIFAR-10 and
NUS-WIDE. We first present these datasets in brief and then explore experimental settings.
Evaluation metrics and baselines are given in Section 4.3. In the last section, we show the
results with validations and comparisons to various state-of-the-art hashing methods.

4.1. Datasets

CIFAR-10 [51] database contains 60,000 images composed of 10 categories, each image
with the size of 32 × 32. Following to [52], we randomly selected 100 images per class
as the queries (1000 testings) and the rest images as the database. Furthermore, we ran-
domly sampled 500 images per category (5000 images) from the retrieval database as the
training set.

NUS-WIDE [53] is a multi-label database that contains nearly 270,000 color images
collected from Flickr, and is composed of 81 labels. We randomly selected 2100 images from
the 21 most frequent concepts as the query set, while the rest as the database, and randomly
selected 10,000 images from the database as a training dataset.

4.2. Experimental Settings

Our implementation of DFPH is based on the Pytorch framework, which is based on
the Torch library. We adopt a VGG-19-convolutional network, pretrained on ImageNet [54].
In all experiments, we used the Adam algorithm [50] to train our network (learning rate
= 1e−5 ). For the hyper-parameter of the loss function, alpha is set to 0.01 and beta to 0.1.
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4.3. Evaluation Metrics and Baselines

To evaluate the retrieval performance of different approaches, we use four evaluation
metrics: (1) Mean Average Precision (MAP); (2) Precision–Recall curves (PR); (3) Preci-
sion curves with respect to the number of top returned results (P@N); (4) and Precision
within Hamming radius 2 (P@H ≤ 2). We compare the proposed DFPH with several of
traditional or state-of-the-art hashing techniques, including five shallow unsupervised
methods, i.e., LSH [3] , SGH [55] , SH [32], PCAH [56], ITQ [33], and two shallow su-
pervised hashing methods, i.e., SDH [27] , KSH [36] , and eight deep supervised hashing
methods, i.e., CNNH [38], DPH [57], DNNH [7], DHN [6], DCH [58], LRH [52], HashNet [9],
DHDW [59]. For the multi-label NUS-WIDE and CIFAR-10 data-sets, if two samples share
the same semantic labels, they are similar. Otherwise, they are not similar.

4.4. Results

The MAP results for all techniques on CIFAR-10 and NUS-WIDE datasets with various
hash code lengths are presented in Tables 2 and 3. The tables show that the proposed
method substantially outperforms all compared techniques. Specifically, compared to SDH,
the best shallow hashing method, DFPH achieves absolute increases of 49.8% and 24.4%
in average mAP scores on CIFAR-10 and NUS-WIDE datasets, respectively. However, we
can see that the performance of deep hashing is better than traditional hashing methods,
mainly due to its ability to create more robust representations of features. For deep hashing
methods, compared to the second-best hashing method LRH, the average mAP of our
method was increased by 11.5% and 8.3% on CIFAR-10 and NUS-WIDE, respectively.

Table 2. Mean Average Precision (MAP) of Hamming ranking for different number of bits on CIFAR-10.

CIFAR-10 (MAP)

Method 12 Bits 24 Bits 32 Bits 48 Bits

DFPH 0.800 0.823 0.838 0.840
DPH [57] 0.698 0.729 0.749 0.755
LRH [52] 0.684 0.700 0.727 0.730
HashNet [9] 0.609 0.644 0.632 0.646
DHN [6] 0.555 0.594 0.603 0.621
DNNH [7] 0.552 0.566 0.558 0.581
CNNH [38] 0.439 0.511 0.509 0.522
SDH [27] 0.285 0.329 0.341 0.356
KSH [36] 0.303 0.337 0.346 0.356
ITQ [33] 0.162 0.169 0.172 0.175
SH [32] 0.127 0.128 0.126 0.129

Figures 2a and 3a show the retrieval performance in terms of precision curves (P@H = 2).
The proposed model significantly outperforms other methods. The precision curves show
that the proposed DFPH method still has the best precision rate when the code length in-
creases.
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Table 3. The MAP of DFPH and other hashing methods on NUS-WIDE dataset, MAP are calculated
within the top 5000 returned images.

NUS-WIDE (MAP)

Method 12 Bits 24 Bits 32 Bits 48 Bits

DFPH 0.826 0.850 0.853 0.859
DPH [57] 0.770 0.784 0.790 0.786
LRH [52] 0.726 0.775 0.774 0.780
DHN [6] 0.708 0.735 0.748 0.758
HashNet [9] 0.643 0.694 0.737 0.750
DNNH [7] 0.674 0.697 0.713 0.715
CNNH [38] 0.611 0.618 0.625 0.608
SDH [27] 0.568 0.600 0.608 0.637
KSH [36] 0.556 0.572 0.581 0.588
ITQ [33] 0.452 0.468 0.472 0.477
SH [32] 0.454 0.406 0.405 0.400

(a) (b)

(c)

Figure 2. The comparison results on the CIFAR-10 dataset under three evaluation metrics.
(a) Precision within hamming radius 2. (b) Precision recall curve on 48 bits. (c) Precision curve
w.r.t top-N @48 bits.
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(a) (b)

(c)

Figure 3. The comparison results on the NUS-WIDE dataset under three evaluation metrics.
(a) Precision within hamming radius 2. (b) Precision Recall Curve on 48 bits. (c) Precision curve w.r.t
top-N @48 bits.

We further demonstrate the efficiency of our method by comparing its precision–recall
and precision with respect to top returned samples with other methods in Figures 2b,c and 3b,c,
respectively. From Figures 2c and 3c, it can be seen that the proposed DFPH method
achieves the best precision with 48 bits when the number of return samples is from 100 to
1000. From Figures 2b and 3b, our DFPH achieves substantially high precision at a low recall
level, which is required for precision-first retrieval, and widely used in practical systems.
Generally speaking, our method DFPH has better performance than the compared methods.

Moreover, the retrieval accuracy for CIFAR-10 dataset is shown for different categories
of images as illustrated in Figure 4. For this example, we have proved that we can remove
the irrelevant images by using our DFPH approach. Figure 4 shows the top 20 retrieved
images from CIFAR-10 dataset by DFPH with 48-bit hash codes. The first column shows
the query images, the retrieval results of DFPH are shown in other columns.



Information 2023, 14, 6 10 of 15

Figure 4. Top 20 retrieved results from CIFAR-10 dataset by DFPH with 48-bit hash codes. The first
column shows the query images, the retrieval results of DFPH are shown at other columns.

4.5. Ablation Studies

(1) Using various fundamental feature extractors: We replace VGG19 with VGG13 and
VGG16, and Table 4 details their performance on the CIFAR-10 dataset. The table
shows that employing deeper networks can enhance image retrieval performance.
We thus employ VGG19 as our fundamental feature extractor.

Table 4. Mean Average Precision (MAP) of Hamming ranking for different number of bits using
VGG13, VGG16 and VGG19 as the fundamental feature extractors on CIFAR-10 dataset. The best
results are highlighted with bold.

Method 12 Bits 24 Bits 32 Bits 48 Bits Conv Layers Num

VGG13 0.759 0.798 0.782 0.796 10

VGG16 0.763 0.824 0.824 0.821 13

VGG19 0.800 0.823 0.838 0.840 16

(2) Pyramid representations efficiency: We compare our DFPH method with its variants
to further explore the effect of different scale features on performance. We use
the single-scale map of C4 and C5 (Conv 4; Conv 5) and remove the top-down
pathway. With this modification, the 3 × 3 convolutions connections followed by
1 × 1 convolutions are attached to the bottom-up pyramid.
Table 5 shows the retrieval performance of single-level and multi-level features
on CIFAR-10. It can be seen that using a feature from ‘Conv 5’ achieves the most
significant average mAP score of 76.5%, while that from ‘Conv 4’ only achieves 58%.
Moreover, our DFPH has achieved the average mAP scores of 82.75%, 6.25% higher
than simply using single-level features. The hash codes achieve the best performance
when all scale features are.
In Figure 5, we display the precision–recall curves of DFPH in the case of various
scale features. Our DFPH retains over 80% precision and nearly identical precision–
recall curves at hash bits 12, 24, 36, and 48. DFPH achieves superior precision and
recall with the same hash code length compared to single-level features. The binary
hash codes perform best when all feature scales are used. It proves that high-level
characteristics are more effective in carrying information when creating hash codes.
While low-level features can contribute supplementary information to the high-level
features information, low-level features cannot entirely take the place of high-level
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characteristics. The information contained in each scale’s features is essential. It
further demonstrates how well DFPH makes use of all scales’ features.

Table 5. Mean Average Precision (MAP) of Hamming ranking of different scales for different number
of bits on CIFAR-10.

CIFAR-10 (MAP)

Method 12 Bits 24 Bits 32 Bits 48 bits

conv5 0.634 0.811 0.801 0.814
conv4 0.540 0.530 0.634 0.619
DFPH 0.800 0.827 0.838 0.845

(3) Ablation studies of the objective function: We evaluate the impact of Pairwise Quan-
tization Loss and Classification Loss constraints, which reflects the effects of hash
coding and classification on CIFAR-10. The experimental configuration is based on
the proposed DFPH method, where β and γ are the relevant parameters for J2 and J3.
The model is designated DFPH-J3 when β = 0 and DFPH-J2 when γ = 0. As seen in
Table 6, if β and γ are not 0, then each term of the suggested loss function constrains
the creation of hash codes, and our method has achieved a 4.5% improvement. J2
and J3 make nearly identical enhancements. The primary reason is that for the
whole model, J2 and J3 play a role in reducing quantization error and semantic
preservation, respectively. The performance of our model as a whole may decrease if
one of them is eliminated.

Figure 5. Precision–recall curve of different scales features on CIFAR-10 with hash bits 12, 24, 32
and 48.
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Table 6. MAP values of different variants of our objective function for CIFAR-10 data set.

CIFAR-10 (MAP)

Method 12 Bits 24 Bits 32 Bits 48 Bits

DFPH-J_2 0.721 0.780 0.809 0.771
DFPH-J_3 0.771 0.766 0.783 0.809
DFPH 0.800 0.827 0.838 0.845

4.6. Parameter Sensitivity Analysis

To analyze the influence of hyper-parameters β and γ on retrieval performance, we
conducted experiments to determine the impact of the choice of β and γ on retrieval
performance. We tested the β and γ from 0.0001 to 0.1 with a multiplicative step-size ten
on the CIFAR-10 dataset in the case of 48− bit code. In Figure 6, we display the changes in
mAP curves of DFPH concerning the variation of β and γ. We can see that MAP initially
increases with the increase of β and γ, while the performances progressively stabilize after
reaching their peak. Additionally, we can always obtain satisfactory performance in a large
range of β and γ, which shows that our method is not sensitive to parameters β and γ and
accordingly proves the robustness of our method.

Figure 6. Parameter sensitivity analysis on CIFAR-10 dataset with 48-bit of the proposed DFPH.

5. Conclusions and Future Work

In this paper, we developed an end-to-end multi-scale deep Hashing method for large-
scale image retrieval. Our architecture applies a new feature hierarchy network designed
for deep hashing to generate multi-scale features. In addition, efficient binary codes are
generated by learning hash codes from different feature scales and then combining them to
create final binary hash codes. The experimental results on two image retrieval datasets
demonstrated that our method outperforms other state-of-the-art hashing methods. This
multi-level visual and semantic information can also be very useful in a non-hashing system
such as detection and segmentation. In this case, to increase the detection performance of
multi-scale information, we can add a novel Multi-Scale Image Fusion layer to the backbone
network. In future work, it is interesting to apply our proposed framework to medical
image data sets. Since medical images contain objects at different scales, especially as many
of them are very small, using our method helps to increase retrieval performance.
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