
Citation: Giannakas, F.; Kouliaridis,

V.; Kambourakis, G. A Closer Look at

Machine Learning Effectiveness in

Android Malware Detection.

Information 2023, 14, 2. https://

doi.org/10.3390/info14010002

Academic Editors: Willy Susilo,

Amjad Gawanmeh and

Vishal Kumar

Received: 19 October 2022

Revised: 12 December 2022

Accepted: 15 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Closer Look at Machine Learning Effectiveness in Android
Malware Detection
Filippos Giannakas * , Vasileios Kouliaridis † and Georgios Kambourakis †

Department of Information and Communication Engineering, University of the Aegean,
83200 Karlovasi, Samos, Greece
* Correspondence: fgiannakas@aegean.gr
† These authors contributed equally to this work.

Abstract: Nowadays, with the increasing usage of Android devices in daily life activities, malware
has been increasing rapidly, putting peoples’ security and privacy at risk. To mitigate this threat,
several researchers have proposed different methods to detect Android malware. Recently, machine
learning based models have been explored by a significant mass of researchers checking for Android
malware. However, selecting the most appropriate model is not straightforward, since there are
several aspects that must be considered. Contributing to this domain, the current paper explores
Android malware detection from diverse perspectives; this is achieved by optimizing and evaluating
various machine learning algorithms. Specifically, we conducted an experiment for training, optimiz-
ing, and evaluating 27 machine learning algorithms, and a Deep Neural Network (DNN). During
the optimization phase, we performed hyperparameter analysis using the Optuna framework. The
evaluation phase includes the measurement of different performance metrics against a contemporary,
rich dataset, to conclude with the most accurate model. The best model was further interpreted
by conducting feature analysis, using the Shapley Additive Explanations (SHAP) framework. Our
experiment results showed that the best model is the DNN consisting of four layers (two hidden),
using the Adamax optimizer, as well as the Binary Cross-Entropy (loss), and the Softsign activation
functions. The model succeeded with 86% prediction accuracy, while the balanced accuracy, the
F1-score, and the ROC-AUC metrics were at 82%.

Keywords: malware detection; security; android; machine learning; neural network; deep learning;
optimization; feature importance

1. Introduction

With the growing development of Android applications and the plethora of services
offered by mobile devices, security threats are on the rise. This trend is further exacerbated
in the context of ongoing crises, including the coronavirus one, which brought along a
sudden need for businesses and their employees to start or increase working from home.
Indeed, as an example, a recent report from McAfee [1] states that cyber criminals have
been exploiting the global interest in the COVID-19 pandemic and vaccines by creating
fake applications masquerading as official health department mobile applications.

In the mobile arena, malware is becoming the most prominent and dangerous threat
that causes various security incidents, and result in a range of financial damage. Especially
for devices based on the Android platform, each year, new and more sophisticated malware
is being detected [1]. In this respect, contemporary malware detection techniques, including
heuristic detection and signature-based detection, are not considered sufficient anymore to
detect new malicious applications [2].

In an effort to detect and confront Android malware, various approaches have been
proposed so far. In general, Android malware detection can be categorized into signature-
based and anomaly-based. The latter usually employs Machine Learning (ML) to dis-

Information 2023, 14, 2. https://doi.org/10.3390/info14010002 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14010002
https://doi.org/10.3390/info14010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9172-8966
https://orcid.org/0000-0002-4233-5998
https://orcid.org/0000-0001-6348-5031
https://doi.org/10.3390/info14010002
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14010002?type=check_update&version=1

Information 2023, 14, 2 2 of 23

tinguish anomalies, i.e., deviations from the trained model, which are regarded as mali-
cious behavior.

Furthermore, malware detection schemes can be classified into two main categories:
static analysis and dynamic analysis. Static analysis uses syntactic features that can be
extracted from each Android Package Kit (APK) file, without executing the application. This
is considered a much safer and quicker process that also reduces the overall computational
overhead. On the other hand, dynamic analysis requires the application to be executed on
either a real device or a simulated environment, e.g., a Virtual Machine (VM). This is an
important factor which makes research on this field lean towards static analysis [3].

In this context, in order to handle the detection of sophisticated, modern mobile
malware, as well as the demand for more accurate predictions, diverse techniques such
as ML algorithms are brought to the foreground [3,4]. Specifically, ML is a sub-set of
Artificial Intelligence (AI) that gains applicability in various domains, while different
mobile applications were developed. Especially in security targeting mobile devices,
legacy ML algorithms such as Support Vector Machine (SVM), Logistic Regression (LR),
and Decision Tree (DT) have been extensively assessed, showing promising results in
classifying Android malware. Overall, ML models can be used to overcome the limitations
of traditional detection methods and provide superior prediction scores [5].

More recently, several researchers have started to employ different Neural Networks
(NN) for anomaly-based malware detection. Specifically, Deep Neural Networks (DNN),
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Feed-
Forward networks (FFN) have been applied to various detection schemes with promis-
ing results.

However, applying ML techniques for predicting malware applications is generally a
cumbersome process, due to various factors that influence their training and prediction
accuracy, and therefore such methods call for careful and thorough exploration. The first
major consideration is the quality and the quantity of the input data used for training
the ML algorithms. Furthermore, it is also crucial to inspect the various ML algorithms
for comparing their detection performance, which in turn will assist in finding the more
suitable one for a given problem. Finally, ML hyperparameter tuning is also key to the pre-
diction performance and may include the enabling of techniques, including early stopping
classifiers, the use of different topologies and activation functions, as well as the selection
of different batches and epochs [6].

Altogether, the current work intends to investigate in a more comprehensive manner
the use of ML algorithms for mobile malware detection, by applying different optimiza-
tion techniques. Specifically, we explored and validated the performance of 28 different
supervised and semi-supervised ML algorithms, including a DNN model, regarding their
capacity in identifying Android malware. We conducted a comparative analysis in terms of
prediction accuracy, and other relevant key metrics. We proceeded with a hyperparameter
tuning of the selected DNN model, by using the Optuna framework, for exploring further
its prediction accuracy. Last but not least, due to the existence of different input data, a
side goal of the current study is to shed light on these input features that significantly
affect the performance of malware prediction. Precisely, we enabled the SHAP frame-
work for scrutinizing the ML algorithms and revealed key classification features that affect
prediction performance.

To summarize, the work at hand contributes to the following goals:

• A large dataset of contemporary malware is collected to extract features using static analysis;
• Twenty seven different ML models were trained, using the aforementioned dataset in

an effort to find the best performer;
• A DNN model is tuned and optimized after conducting hyperparameters importance

analysis, by using the Optuna framework on our benchmark dataset.
• Feature importance analysis is performed using the SHAP framework on the best

performing ML model to reveal the most significant classification features.

Information 2023, 14, 2 3 of 23

The outline of the rest of the paper is as follows: The next section focuses on the
existing work on the field. Section 3 details the methodology used to conduct this study,
including the utilized dataset, the testbed, and the relevant performance metrics. Section 4
focuses on the evaluation of 27 shallow ML models, while Section 5 concentrates on DNN
model evaluation. Section 6 elaborates on feature importance. The final section concludes
and provides future directions.

2. Related Work

As of today, several works in the literature relied on Deep Learning (DL) for malware
detection in the Android platform. This section offers a chronologically ordered review of
recent works on this topic. Specifically, we concentrate on studies published over the last
five years, that is, from 2018 to 2022, considering only contributions that employed static
analysis for feature extraction and DL for classification. Table 1 compares our approach
with the works included in this section based on five criteria, namely number of models
examined and compared, optimization techniques, hyperparameter tuning, feature impor-
tance, and dataset(s) used to train the models. For the latter criterion, we consider a dataset
as contemporary if it comprises malware samples not older than five years. A plus symbol
designates that this subject is addressed by the respective work, while a hyphen denotes
the opposite.

Dongfang et al. [7] proposed a DL-based method for Android malware detection. The
authors employed static analysis to extract features, i.e., permissions and API calls from the
Drebin dataset [8] and used them to train their models. The authors reported an accuracy
of 97.16%.

Karbab et al. [9] contributed an automatic Android malware detection framework
called “MalDozer”. The latter can extract API call sequences from Android applications and
detect malicious patterns using sequences of classification by employing DL techniques.
The authors evaluated their scheme against a large dataset comprising Android applications
from three well-known datasets, namely, MalGenome [10], Drebin [8], as well as their own
dataset called MalDozer. Their results yielded an F1 score between 96% and 99%.

Wenjia et al. [11] proposed a DL-based scheme for Android malware characterization
and identification. The authors extracted various features from the Drebin dataset [8], i.e.,
permissions, intents, IP addresses and URLs, and API calls. Different weights were given
to classification feature combinations. Based on previous work, these weight-adjusted
features were then used to train their model. The experimental results reported an accuracy
of over 90% using 237 features.

Xu et al. [12] presented a DL-based Android malware detection technique, which lever-
ages both XML files and bytecode of Android applications. Firstly, DeepRefiner retrieves
XML values by performing lightweight preprocessing on all XML files included in the
application, to extract information about the required resources. If an application is consid-
ered suspicious, it is further analyzed by looking at the bytecode semantics, which provides
comprehensive information about programming behaviors. The authors evaluated the de-
tection performance of DeepRefiner over 62,915 malicious and 47,525 benign applications
collected from the VirusShare [13] and MassVet datasets and reported an accuracy of
97.74%.

Zegzhda et al. [14] proposed a DL-based approach for Android malware detection,
which uses a CNN to identify malicious Android applications. The authors extracted API
calls from a dataset comprising 7214 benign and 24,439 malicious samples. The benign
applications were collected from third-party libraries and verified using VirusTotal [15],
while malicious samples were collected from the Android Malware Dataset (AMD) [16].
The authors evaluated their results and reported an Accuracy of 93.64%.

Zhiwu et al. [17] proposed CDGDroid, an approach for Android malware detection
based on DL. Their approach relies on the semantics graph representations, i.e., control flow
graph, data flow graph, and their possible combinations, as the features to characterize an
Android application as malware or benign. These graphs are then encoded into matrices,

Information 2023, 14, 2 4 of 23

which are used to train the classification model through CNN. The authors conducted
experiments using various datasets, namely Marvin [18], Drebin [8], VirusShare [13], and
ContagioDump, and reported an F1 score of up to 98.72%.

Kim et al. [19] presented a framework that uses a multimodal DL method to detect
Android malware applications. The proposed framework uses seven types of features
stemming from static analysis, namely strings, method opcodes, API calls, shared library
function opcodes, permissions, components, and environment settings. To evaluate the
performance of their framework, the authors collected 41,260 applications, out of which
20K were benign. Their results showed a precision, recall, F1, and Accuracy rate of 0.98,
0.99, 0.99, and 0.98, respectively.

Masum and Shahriar [20] proposed a DL-based framework for Android malware
classification, called “Droid-NNet”. Droid-NNet’s Neural Network consists of three layers,
namely input, hidden, and output. A threshold is applied to the output layer to classify
the examined application as malware or benign. The input layer comprises 215 neurons,
which is the number of features used during the training phase. The hidden layer contains
25 neurons, while the output layer includes only one neuron since the classification is
binary. Additionally, the authors applied binary cross-entropy as a loss function and an
Adaptive Moment Estimation (Adam) optimizer for calculating error and updating the
relevant parameters. To train the model, the authors used the 215 static features provided
by the Drebin [8] and Malgenome [10] datasets. Their results yielded an F-beta rate of 0.992
and 0.988, on Malgenome and Drebin datasets, respectively.

Niu et al. [21] presented a DL-based approach for Android malware detection based on
OpCode-level Function Call Graph (FCG). The FCG was obtained through static analysis of
Operation Code (OpCode). The authors used the Long Short-Term Memory (LSTM) model
and trained it using 1796 Android malware samples collected from the Virusshare [13] and
AndroZoo [22] datasets, as well as 1K benign Android applications. Their experimental
results showed that their approach was able to achieve an accuracy of 97%.

Pektas and Acarman [23] contributed a malware detection method that relies on a
pseudo-dynamic analysis of Android applications and constructs an API call graph for
each execution path. In other words, the proposed approach focuses on information
extraction related to an application’s execution paths and embedding of graphs into a
low-dimensional feature vector, which is used to train a DNN. According to the authors,
the trained DNN is able to detect API call graph and binary code similarities to determine
whether an application is malicious or not. Finally, the DL parameters are tuned, and
the Tree-structured Parzen Estimator is applied to seek the optimum parameters in the
parameter hyper-plane. Their method achieved an F1 and accuracy score of 98.65% and
98.86%, respectively, on the AMD dataset [16].

Zou et al. [24] proposed ByteDroid, an Android malware detection scheme that an-
alyzes Dalvik bytecode using DL. ByteDroid resizes the raw bytecode and constructs a
learnable vector representation as the input to the neural network. Next, ByteDroid adopts
a CNN to automatically extract the malware features and perform the classification. The
authors tested their method against four datasets, namely FalDroid [25], PRAGuard [26],
Virushare [13], and a dataset from Kang et al. [27], and reported a detection rate of 92.17%.

Karbab et al. [28] proposed a DL-based Android malware detection framework called
“PetaDroid”. This framework analyzes bytecode and an ensemble of CNN to detect An-
droid malware. First, for each sample, the PetaDroid disassembles the DEX bytecode into
Dalvik assembly to create sequences of canonical instructions. Additionally, the framework
utilizes code-fragment randomization during the training phase to render the model more
resilient to common obfuscation techniques. The authors evaluated PetaDroid against
various datasets, namely MalGenome, Drebin, MalDozer, AMD, and VirusShare. PetaDroid
achieved an F1 score of 98% to 99%, under different evaluation settings with high homo-
geneity in the produced clusters (96%).

Millar et al. [29] contributed a DL-based Android malware detector with a CNN-based
approach for analyzing API call sequences. Their approach employs static analysis to

Information 2023, 14, 2 5 of 23

extract opcodes, permissions, and API calls from each Android application. The authors
carried out various experiments, including hyper-parameter tuning for the opcodes CNN
and the APIs CNN and zero-day malware detection. The proposed model achieved an F1
score of 99.2% and 99.6% using the Drebin and AMD datasets, respectively. Additionally,
the authors reported an 81% and 91% detection rate during the zero-day experiments on
the AMD and Drebin datasets, respectively.

Vu et al. [30] contributed an approach that trains a CNN to classify mobile malware. In
addition, their approach converts an application’s source code, i.e., API calls extracted from
APK files, into a two-dimensional adjacency matrix, to improve classification performance.
According to the authors, their approach allows better feature embedding than when
using feature vectors, and can achieve comparable performance to call-graph analysis.
The authors trained their model using samples from the Drebin and AMD datasets, and
achieved a detection and classification rate of 98.26% and over 97%, respectively.

Zhang et al. [31] proposed “TC-Droid”, an automatic Android malware detection
framework that employs text classification. Precisely, TC-Droid feeds on the text sequence
of APIs analysis reports, generated by AndroPyTool and uses CNN to gather significant
information. Specifically, TC-Droid analyzes four types of static features, i.e., permissions,
services, intents, and receivers. The authors evaluated their framework using malware
samples from ContagioDump and MalGenome datasets and reported an accuracy of 96.6%.

Yumlembam et al. [32] proposed the use of a Graph Neural Networks (GNN) based
classifier to generate an API graph embedding fed by permissions and intents to train
multiple ML and DL algorithms for Android malware detection. Their approach achieved
an accuracy of 98.33% and 98.68% with the CICMaldroid2020 [33] and Drebin datasets, re-
spectively.

Musikawan et al. [34] introduced a DL-based Android malware classifier, in which the
predictive output of each of the hidden layers given by a base classifier is combined via a
meta-classifier to produce the final prediction. The authors tested their approach on two
dynamic and one static datasets. On the static dataset, i.e., CICMalDroid2020 [33], their
approach achieved an F1 score of 98.1%.

Table 1. Overview of the related work. A plus sign denotes that the respective work addresses the
criterion of the corresponding column. The figures in the third column denote the number of ML
models examined by each study. A dash in the same column means that the respective work did not
make a comparison between two or more different models.

Work Year Models Model Hyperparameters Feature Contemporary
Compared Optimization Tuning Importance Dataset

[7] 2018 - - - - -
[9] 2018 - - - - -
[11] 2018 - - - - -
[12] 2018 - - - - -
[14] 2018 - - - - -
[17] 2018 - - - - -
[19] 2019 - - - - -
[20] 2020 - - - - -
[21] 2020 8 - - - +
[23] 2020 - - + - -
[24] 2020 - - + - -
[28] 2021 - - + - -
[29] 2021 - - + - -
[30] 2021 - - - + -
[31] 2021 - - - - -
[32] 2022 12 + + + +
[34] 2022 - + + + +

This work 2022 27 + + + +

Information 2023, 14, 2 6 of 23

As observed from Table 1, the relevant recent work on this topic falls short of providing
an adequate, full-fledged view of Android malware detection through ML techniques. That
is, from the third column of the Table, it is obvious that the great majority of works rely
only on a single ML model. In this respect, the current study sees the problem from
multiple viewpoints, namely by examining and comparing the detection performance of
diverse ML models, both shallow and DL. On top of that, the provided analysis includes
hyperparameter tuning and feature importance evaluation. In this regard, the methodology
and outcomes of this work can serve as a guide and reference point for future research in
this rapidly evolving field.

3. Methodology
3.1. Dataset

For the needs of the current work, 1000 malware samples were collected from the most
contemporary benchmark dataset, namely AndroZoo [22], dated from 2017 to 2020. Andro-
Zoo is a well-known and widely used collection of Android applications gathered from
various sources, including the official Google Play application market [35]. It includes new
and more sophisticated malware samples in comparison to older datasets, e.g., Drebin [8].
Each of the chosen applications was cross-examined by several antivirus products. The
(balanced) dataset also contained 1000 benign applications, collected from Google Play.
The latter applications were also dated from 2017 to 2020. The list of malicious and benign
samples (applications) used in the experiments can be found in a publicly accessible GitHub
repository, as given in the “Data Availability Statement” section.

3.2. Data Analysis

Static analysis was performed on all the samples using the open-source tool An-
drotomist [36], which is able to extract various features from an Android application by
decompiling its APK file. This work relies on two feature categories, namely permissions
and intents. This is carried out because the aforementioned feature categories are the
commonest in the relevant research [3], and therefore it allows for easy comparison with
previous or future studies. Precisely, the tool extracted the aforementioned features from
each application’s Manifest.xml file to create a feature vector, i.e., a binary representation of
each distinct feature.

3.3. Research Design and Testbed

In the conducted experiment detailed further down in Section 4, Android malware
detection is shaped as a binary classification problem, for which either an ML or a DNN
model can be utilized. However, choosing the most accurate ML model for predicting
whether or not an Android application is indeed malware is considered a cumbersome
procedure. This is due to the existence of various parameters and biases that influence the
final prediction. These include the different possible ML/DNN models, the input data, the
existence of various activation and loss functions, as well as the many hyperparameters that
the different ML/DNN models enable. All the above issues compose a complex setting that
needs to be carefully explored before recommending the most suitable and accurate model.

In this context, the experiments carried out in the context of the present work were
split into two distinct phases. The main purpose of the first phase is to test and evaluate
a variety of ML algorithms, including a DNN model, for identifying the most suitable
and accurate one. In the second phase, the model that achieved the best score in terms
of prediction was re-trained and re-evaluated using other quality metrics. In this way,
one can draw more accurate conclusions about its prediction performance. During the
above-mentioned phases, GPU support was also enabled for accelerating both the training
and evaluating processes of the ML/DNN models.

The selection of the ML algorithms was based on two criteria. First, its prevalence in
similar works, and second, the implementation of each selected algorithm to be readily
available in well-known ML libraries. Thus, shallow classification on the dataset was

Information 2023, 14, 2 7 of 23

conducted against 27 ML models as shown in the first column of Table 2. DNN classification
on the other hand was based on different structures, as well as on specific optimizers,
activation, and loss functions. Specifically, for implementing and evaluating both shallow
and DNN models, we relied on the NumPy v.1.19.5, scikit-learn v.0.23.1, SHAP v.0.40.0,
TensorFlow v.2.4.0, Keras v.2.4.0, and Optuna v.2.10.0 in Python v3.7.0. Moreover, the
training process was offloaded to a GPU using the NVIDIA GPU v.526.86, CUDA API
v.12.0, and CuDNN SDK 7.6. The implementation of the above mentioned models, as
well as the conducted experiments, were carried out on an MS Windows 10 Pro machine,
incorporating an Intel Core i7-7700HQ processor, 16 GB DDR4-2400 RAM, and an NVIDIA
GeForce GTX 1050 Mobile with 4 GB RAM GPU.

Table 2. Evaluation results per shallow ML algorithm. The classifiers are ordered based on the
accuracy metric.

Algorithm Prediction
Acc.

Balanced
Acc. F1 Score ROC-AUC

XGBClassifier 0.84 0.84 0.84 0.84

LGBMClassifier 0.82 0.82 0.82 0.82

BaggingClassifier 0.82 0.82 0.82 0.82

ExtraTreesClassifier 0.81 0.80 0.80 0.81

DecisionTreeClassifier 0.80 0.80 0.80 0.80

RandomForestClassifier 0.79 0.79 0.79 0.79

AdaBoostClassifier 0.78 0.78 0.78 0.78

KNeighborsClassifier 0.76 0.75 0.75 0.76

LinearDiscriminantAnalysis 0.76 0.75 0.75 0.76

RidgeClassifier 0.76 0.75 0.75 0.76

LinearSVC 0.76 0.75 0.75 0.76

RidgeClassifierCV 0.76 0.75 0.75 0.75

LogisticRegression 0.76 0.75 0.75 0.75

SGDClassifier 0.76 0.75 0.75 0.75

CalibratedClassifierCV 0.75 0.74 0.74 0.75

ExtraTreeClassifier 0.74 0.74 0.74 0.75

NuSVC 0.74 0.73 0.73 0.74

SVC 0.73 0.73 0.73 0.73

Perceptron 0.72 0.71 0.71 0.71

QuadraticDiscriminantAnalysis 0.72 0.71 0.71 0.71

PassiveAggressiveClassifier 0.71 0.70 0.70 0.70

GaussianNB 0.72 0.70 0.70 0.70

NearestCentroid 0.62 0.63 0.63 0.62

LabelSpreading 0.65 0.62 0.62 0.61

LabelPropagation 0.65 0.62 0.62 0.61

BernoulliNB 0.61 0.62 0.62 0.62

DummyClassifier 0.47 0.47 0.47 0.47

3.4. Performance Metrics

In the literature, various performance metrics exist for evaluating the accuracy of an
ML model. For the purposes of the current research, the following metrics were considered:
Prediction Accuracy, Balanced Accuracy, F1 score, and Area Under the Curve-Receiver

Information 2023, 14, 2 8 of 23

Operating Characteristics (AUC-ROC). The latter two metrics are key for assessing the
preciseness and robustness of the model to produce superior predictions. If the dataset is
balanced (as in our case), then accuracy is a valid metric [36]. Otherwise, F1 should be the
prominent metric.

Specifically, the prediction accuracy of the model is calculated by Equation (1), which
denotes the accuracy of the model to make correct predictions:

PredictionAccuracy =
Number of correct predictions

Total number of predictions
× 100 (1)

The F1 score metric is the harmonic mean of precision and recall metrics, which are
discussed in detail below in this subsection. This metric is computed by Equation (2). The
maximum result value for this metric is 1, meaning that both the precision and recall are
perfect, while the minimum is 0:

F1 =
2

1
precision + 1

recall
=

2 ∗ precision ∗ recall
precision + recall

(2)

The accuracy of the model is also measured by the AUC-ROC curve. This metric
shows how capable the model is of making correct predictions between the distinct classes.
Precisely, the ROC is the probability curve, while the AUC represents the degree of sep-
arability. The higher the AUC, the better the model predicts the classes correctly. For
computing the AUC-ROC metric, apart from the necessity to calculate the recall metric, one
also needs to compute both the so-called Specificity (shown in Equation (3)), as well as the
False Positive Rate (FPR), given in Equation (4). Last but not least, for observing any data
imbalance between the two classes (malware or not), meaning that one class of the two
appears more often than the other in the dataset, we also calculated the Balanced Accuracy:

Specificity =
TN

TN + FP
(3)

FPR = 1 − Specificity =
FP

TN + FP
(4)

4. Shallow Classifiers
4.1. Initial Analysis

The current section includes a large-scale evaluation of 27 different shallow ML algo-
rithms against the dataset. At first, all the classifiers were trained and evaluated by keeping
unchanged their default hyperparameter settings. For each algorithm, we extracted the
relevant performance metrics as discussed previously in Section 3.4.

As shown in Table 2, the XGBoost classifier succeeded the best prediction results.
Specifically, its prediction accuracy, balanced accuracy, F1-score, and ROC-AUC metrics
were found to be 82%. Furthermore, for the same classifier, we calculated the log loss
(negative log-likelihood), the classification error, and the confusion matrix. The latter is a
2D table that visualizes the performance of the model by illustrating the actual label values
in columns, and the predicted labels in rows. These values indicate the True Negative (TN),
True Positive (TP), False Positive (FP), and False Negative (FN) predictions of the model.

In more detail, the TP index shows the number of the correct predictions of the model,
meaning that these applications are correctly identified as being malware by the model,
whereas the FP indicates the applications that are falsely identified as being malware. In
the same way, the TN value corresponds to the number of applications that are correctly
predicted as goodware, whereas the FN shows the incorrect predictions of the applications
as not being malware.

Figure 1 depicts the log loss (negative log-likelihood) and the classification error
during the training and testing phase, as well as the ROC-AUC and the confusion matrix
of the XGBoost classifier.

Information 2023, 14, 2 9 of 23

(a) (b)

(c) (d)

Figure 1. Performance curves of the XGBoost classifier: (a) log loss (negative log-likelihood); (b) AUC;
(c) classification error; (d) confusion matrix.

Finally, other related metrics to the confusion matrix were also calculated for assessing
the recall and the precision of the XGBoost model. Both of the latter metrics are useful
for measuring the relevance of the model to make accurate predictions. The recall metric,
which is also known as TP rate or sensitivity, is calculated by Equation (5). This was found
to be 83% for the XGBoost classifier and depicts the proportion of the actual Android
malware (positives values) that were correctly predicted by the model. In other words, this
is the fraction that quantifies the number of malware (positive class) predictions made out
over all Android malware (positive examples) contained in the dataset.

On the other hand, the precision metric designates the portion of the predicted Android
malware (positive classes) that were actually identified correctly by the model (Equation (6)).
This metric actually quantifies the number of positive classes that correctly belong to the
correct prediction class, and in our case was found to be 82%:

Recall =
TP

TP + FN
(5)

Information 2023, 14, 2 10 of 23

Precision =
TP

TP + FP
(6)

4.2. ML Optimization

In the previous section, the considered ML algorithms were trained and evaluated by
keeping their hyperparameter settings unchanged. However, the authors in [37–39] argue
about the importance of fine-tuning the ML hyperparameters for improving the predic-
tion accuracy of an ML algorithm. Among others, this may be achieved by using diverse
methods and techniques, such as applying statistical methods, or using different quantify-
ing measures for applying forward selection for the most important hyperparameters on
different datasets.

Under this mindset, the XGboost algorithm, succeeded in obtaining the best accuracy
results according to Table 2, was further scrutinized by fine-tuning its hyperparameters in
an effort to optimize and improve further its prediction performance. For this purpose, the
“Optuna” open-source framework [40] was used.

By observing the abstract view of the process in Figure 2, the data extracted from
the Android sample were split into the training and validation sets. First off, the model
was trained with the training dataset and produced the training evaluation results. Next,
the model was validated with the validating dataset and the relevant performance results
were extracted. Then, a hyperparameter tuning phase started for altering the parameters
accordingly, and the model was re-trained. The new prediction results were compared
to the previous ones, and if the model succeeded in obtaining better results, the new
hyperparameter settings were kept. The final output of this iterating process is the best
hyperparameter settings of the model that yielded the most accurate prediction results.

Figure 2. Abstract view of the training process and hyperparameter tuning of an ML model.

As shown in Table 3, after fine-tuning the XGBoost classifier, we extracted the op-
timized values for its hyperparameters. Based on these values, the classifier was re-
configured and both the training and evaluation phases were repeated. As observed from
Table 3, the classifier improved its prediction accuracy by 2% and reached 86%. Further-
more, the F1-score and the ROC-AUC metrics were further improved and measured at
86.5% and 86.7%, respectively. The optimization history of the XGBoost classifier across the
epochs is shown in Figure 3. In the figure, the blue dots denote the objective values across
the different epochs, while the red line represents the best ones.

Information 2023, 14, 2 11 of 23

Figure 3. Optimization history of the XGboost classifier.

Table 3. XGboost’s hyperparameters and its default and optimized values.

Parameter Name Description Default
Values

Optimized
Values

n_estimators Number of gradient boosted trees 100 1700

learning_rate Boosting learning rate 0.1 0.37

reg_alpha L1 regularization term on weights 0 2

reg_lambda L2 regularization term on weights 1 4

gamma Minimum loss reduction required to make a
further partition on a leaf node of the tree 0 0

max_delta_step Maximum delta step we allow each leaf output
to be. If the value is set to 0, it means
there is no constraint. If it is set to a
positive value, it can help making the
update step more conservative 0 5

max_depth Maximum tree depth for base learners 3 25

colsample_bytree Subsample ratio of columns when constructing
each tree 1 0.91

colsample_bylevel The subsample ratio of columns for each level 1 0.78

min_child_weight Minimum sum of instance weight (hessian)
needed in a child 1 4

n_iter_no_change Number of repetitions without any change 50 50

Additionally, Figure 4 depicts the percentage that each hyperparameter affects the
objective value (prediction accuracy) of the XGboost classifier. Specifically, the default
value of the “gamma” hyperparameter contributes to the optimal prediction accuracy of the
model by 56%. In the same way, the default value of the colsample_bytree hyperparameter,
after being altered to 0.91, contributes to the optimal prediction by 22%. No less important,
the values of the hyperparameters reg_alpha, reg_lambda, and learning_rate improve
the prediction accuracy of the classifier by 7%, 6%, and 6%, respectively, after changing
correspondingly their default values to 2, 4, and 0.37. The rest of the hyperparameters
contribute to the prediction results of the XGboost classifier less than 1%.

Information 2023, 14, 2 12 of 23

Figure 4. Hyperparameters’ importance for the XGboost classifier.

The empirical distribution function (also known as the Empirical Cumulative Distri-
bution Function) of the XGboost classifier is depicted in Figure 5. Specifically, it shows
the cumulative probability across the objective and best value. Recall that generally the
empirical distribution function describes a sample of observations of a given variable.

Last but not least, Figure 6 illustrates the relation between the multiple values of
the hyperparameters in relation to the best value. Actually, this figure shows clearly the
association of each hyperparameter value with the best score of the XGboost classifier.

Figure 5. Cumulative probability distribution of the XGboost classifier.

Information 2023, 14, 2 13 of 23

Figure 6. Hyperparameters’ parallel coordination view for the XGboost classifier.

Information 2023, 14, 2 14 of 23

5. DNN Analysis
5.1. Preliminaries

There are several differences when comparing a ML model with a DNN. Precisely,
some of them concern the training process of the DNN model and how it learns the way
the weights of each input feature are assigned and automatically changed for improving
the performance of the model, and so on. Furthermore, by comparing their structures,
the DNN architecture is deeper and may comprise a number of hidden layers, in which
various algorithms can be enabled for aiding surpassing some of the shortcomings of
ML techniques. For example, a common problem for ML algorithms is the performance
saturation, where the learning accuracy of the model reaches the maximum, meaning that
it can not be improved further, even if one feeds the model with new input data.

Generally speaking, a DNN architecture that consists of L hidden layers uses Equation (7)
to calculate the output for each layer. This is denoted by the h(L)(x) and indicates the output
of layer L with arguments x:

f (x) = f ([a(L+1)(h(L)(a(L)(...(h(2)(a(2)(h(1)(a(x))))))))]) (7)

Furthermore, during the learning phase, the final output is calculated by Equation (8).
The a(x) input is a vector of arguments, and the result of the Equation (9) is also a vector.
For example, a(2) denotes the argument of layer 2:

fk(x) = fk(ak(x)) (8)

a(x) = Wh(x) + b (9)

As already pointed out, in the current research, Android malware detection is modeled
as a binary classification problem. To find the most accurate DNN model, one should
evaluate diverse architectures that include various numbers of layers and neurons and
choose the most appropriate optimizer, activation, and loss function. Nevertheless, this
is a laborious process due to the large number of combinations that need to be examined
and taken into account during the learning phase. In the literature, several researchers
choose to evaluate their models through a specific DNN structure and by enabling specific
optimizers, activation, and loss functions. Therefore, this option may fail to conclude the
most optimal and accurate model. Therefore, for making a conclusion about the best DNN
model, we also applied the “Optuna” framework.

5.2. DNN Hyperparameter Optimization and Evaluation Results

The DNN hyperparameter tuning is considered an important, but not a straightfor-
ward task. This process is useful for making a conclusion about the most appropriate
selection of an activation and optimization function, as well as for the best structure of the
model. Additionally, one needs to enable an early stopping functionality, configure the
batches-epochs, activate diagnostic procedures such as overfitting-underfitting during the
learning process, etc.

The underfitting phenomenon appears in the NNs when either these have not been
trained for enough time, or the training data are not significant enough to determine a
meaningful relationship between the input and output variables. This phenomenon forces
the prediction results of the neural networks to be poor. On the other hand, overfitting
is a modeling error that occurs when the enabled function is too closely aligned to a
limited set of data points. This means that the model is considered useful only to its
initial dataset, and not to any other ones. Therefore, to avoid the overfitting problem, the
dropout regularization [41] is applied to the NN, in order to skip some neurons’ connections
randomly, while the model is trained.

For this purpose, as pointed out previously, the Optuna open-source framework [40]
was used again for optimizing the performance of the DNN model towards making more
accurate Android malware predictions. Optuna created different structures of DNN models

Information 2023, 14, 2 15 of 23

and evaluated their performance prediction by altering their hyperparameters, as shown
in Table 4. Additionally, we proceeded to further configurations of the model. That is, the
DNN was tuned to use the dataset for 2000 times (epochs), and its internal parameters were
set to be updated after a sample of 25 records (batches). Finally, Optuna was configured to
run the optimization and evaluation process of the DNN model 50 times.

Table 4. DNN’s hyperparameter configuration thresholds.

Parameter Name Description Value(from) Value(to)

n_layers Number of layers 1 6

n_hidden Number of hidden layers 1 4

learning_rate Boosting learning rate e−5 e−1

dropout Dropout regularization to 0.2 0.5
prevent overfitting

optimizer Optimizer function Adadelta, SGD,
Adam,

Adamax, Adagrad,
Nadam,

Nadam, Ftrl,
RMSprop

activationfunc Activation function sigmoid, softsign, elu,
selu

lossfunc Loss function binary_crossentropy,
mean_squared_error

Figure 7 illustrates the way each hyperparameter affects the objective value (prediction
accuracy) of the DNN model. As observed, the Dropout parameter at the input layer affects
the optimal prediction accuracy (best value) of the model by 44%. Moreover, the learning
rate (lr) parameter impacts the optimal prediction of the model by 21%. The number of
units at the input layers and the number of layers contribute to the best value of the model
by 20% and 15%, respectively. Another useful plot is also shown in Figure 8; it visualizes
the relation between the multiple values of the hyperparameters and the best prediction
value. Actually, this figure clarifies the association of the value for each hyperparameter
towards the best value of the DNN model.

Figure 7. Hyperparameters’ importance for the DNN model.

Information 2023, 14, 2 16 of 23

Figure 8. Hyperparameters’ parallel coordination schema of the DNN model.

Information 2023, 14, 2 17 of 23

The empirical distribution function of the DNN model is shown in Figure 9. The
aforementioned performance analysis suggests that the DNN model succeeded with higher
performance results in predicting Android malware, compared to the shallow classifiers
evaluated in Section 4.2.

Figure 9. Cumulative probability distribution of the DNN model.

The rest of the performance metrics for the DNN model are illustrated in Figure 10.
Specifically, the accuracy curves for the learning and prediction phase across the different
epochs are shown in Figure 10a, while the cross-entropy (loss) is depicted in Figure 10b.
Last but not least, the confusion matrix of the model is given in Figure 10c.

By observing the aforementioned evaluation results, the architecture of the DNN
model with the highest accuracy prediction results consists of four layers, with two hidden
ones. The abstract architecture view of the model is illustrated in Figure 11, whereas the
parameters of each layer are recapitulated in Table 5. The optimized model enables the
Adamax optimizer, as well as the Binary Cross-Entropy (loss) and the Softsign activation
functions. The optimization history of the classifier across the epochs is shown in Figure 12.
Specifically, the optimized prediction accuracy of the model reached 86%, which is better
by 2% compared to the XGboost one.

Table 5. Total parameters of the DNN: 300,413. All the parameters are considered trainable.

Layer (Type) Output Shape Params

dense (Dense) (None, 238) 238,952
dense_ 1 (Dense) (None, 91) 21,749
dense_ 2 (Dense) (None, 427) 39,284
dense_ 3 (Dense) (None, 1) 428

Information 2023, 14, 2 18 of 23

(a) (b)

(c)

Figure 10. Performance curves of the DNN model: (a) accuracy; (b) cross entropy (loss); (c) confusion
matrix.

Figure 11. DNN architecture of the best performing model. It comprises four layers with 238 (input),
91 (hidden), 427 (hidden), and 1 (output) nodes, respectively.

Information 2023, 14, 2 19 of 23

Figure 12. Optimization history of the DNN model.

6. SHAP Analysis and Features Importance Assessment

Feature importance is generally considered a very useful step when evaluating ML
models. During this process, the model is further evaluated and interpreted for deducing
which input feature has a positive or negative impact on the model’s prediction. For
assisting this process, i.e., for interpreting further the DNN model, we relied on the SHAP
unified framework [42].

Figures 13 and 14 depict the average impact of the most important input features
(mean Shapley values), as well as their contribution (heatmap) to the model’s classification
output. Precisely, Figure 14 illustrates in descending order the most influencing features
in determining the outcome. The high and low values of each input feature are shown in
red and blue font, respectively. For example, in the same figure, it is perceived that the
com.google.android.c1dm.intent.RECEIVE is the most influencing feature in determining
the outcome. Putting it another way, the high values for this feature decrease the possibility
for a given application to be malware, while low values augment it.

Figure 13 depicts in descending order for each input feature the assessment of the
average magnitude impact on the model’s output. Note that both the aforementioned
figures show only the features that contribute to the model’s prediction, discarding the
rest of them. For instance, by observing both Figures 13 and 14, it is obvious that the
Intent.RECEIVE feature has a major impact, over 0.08 (SHAP value), to the output of
the model. Additionally, low values of this feature positively affect the output of the
model, meaning that the model makes more accurate predictions at about 0.1 (SHAP value).
Similarly, high values of the same feature negatively affect the output, meaning that the
model makes wrong predictions at almost –0.3 (SHAP value). On the other hand, the
category.DEFAULT feature impacts the model output at about 0.06. The low values of this
feature contribute negatively to the mode’s output, whereas high values have a positive
impact, at about 0.1. Finally, it is noteworthy that only 7 out of 20 features are Android
permissions, while the rest are Intents.

Information 2023, 14, 2 20 of 23

Figure 13. Features importance for the DNN model.

Figure 14. Heatmap of the input features for the DNN model.

7. Conclusions

The current paper sheds more light on the capability of using both shallow and deep
ML techniques for predicting malware in the Android platform. This was achieved by
exploring, optimizing, and evaluating the performance of 28 different ML algorithms,
including a DNN model.

The optimization process considered hyperparameter analysis by means of the Op-
tuna framework. The most accurate model was found to be the DNN one, succeeding a
prediction accuracy of 86%. The evaluation process also included the calculation of diverse
performance metrics, such as the balanced accuracy, the F1-score, and the ROC-AUC,
which were found to be 82% for the (superior vis-à-vis shallow classifiers) DNN model.
Overall, the proposed structure of the DNN model consists of four layers (two hidden),
using the Adamax optimizer, as well as the Binary Cross-Entropy (loss), and the Softsign
activation functions.

Furthermore, the DNN model was also interpreted for extracting the most important
input features that contribute positively or negatively to the final prediction of the model.

Information 2023, 14, 2 21 of 23

This was achieved by means of the SHAP unified framework. However, more input data
are needed in order to safely argue about the performance of the DNN model. Finally,
as part of future work, we intend to integrate the DNN model into a malware detection
application for Android users.

Author Contributions: Conceptualization, F.G. and V.K.; Data curation, F.G., V.K. and G.K.; Formal
analysis, F.G., V.K. and G.K.; Investigation, F.G. and V.K.; Methodology, F.G., V.K. and G.K.; Resources,
V.K. and G.K.; Software, F.G. and V.K.; Supervision, F.G., V.K. and G.K.; Validation, F.G., V.K. and
G.K.; Visualization, F.G., V.K. and G.K.; Writing—original draft, F.G., V.K. and G.K.; Writing—review
and editing, F.G., V.K. and G.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Python scripts as well as the list of malicious and benign samples
(applications) used in the experiments can be found in a publicly accessible GitHub repository at
https://github.com/billkoul/AndroidMalwareDL (accessed on 17 December 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligent
AMD Android Malware Dataset
APK Android Package Kit
AUC-ROC Area Under The Curve-Receiver Operating Characteristics
CNN Convolutional Neural Networks
DNN Deep Neural Network
DT Decision Tree
FFN Feed-Forward network
FN False Negative
FPR False Positive Rate
FP False Positive
LR Logistic Regression
LSTM Long Short-Term Memory
ML Machine Learning
NN Neural Networks
RNN Recurrent Neural Network
SHAP Shapley Additive Explanations
SVM Support Vector Machine
TN True Negative
TP True Positive
VM Virtual Machine

References
1. McAfee. Mobile Threat Report 2021. Available online: https://www.mcafee.com/content/dam/global/infographics/

McAfeeMobileThreatReport2021.pdf (accessed on 10 February 2022).
2. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.B.; Wang, Y.; Iqbal, F. Malware classification with deep convolutional neural

networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS),
Paris, France, 26–28 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.

3. Kouliaridis, V.; Kambourakis, G. A Comprehensive Survey on Machine Learning Techniques for Android Malware Detection.
Information 2021, 12, 185. [CrossRef]

4. Qiu, J.; Zhang, J.; Luo, W.; Pan, L.; Nepal, S.; Xiang, Y. A survey of android malware detection with deep neural models. ACM
Comput. Surv. 2020, 53, 1–36. [CrossRef]

https://github.com/billkoul/AndroidMalwareDL
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
http://doi.org/10.3390/info12050185
http://dx.doi.org/10.1145/3417978

Information 2023, 14, 2 22 of 23

5. Gavriluţ, D.; Cimpoeşu, M.; Anton, D.; Ciortuz, L. Malware detection using machine learning. In Proceedings of the 2009
International Multiconference on Computer Science and Information Technology, Mragowo, Poland, 12–14 October 2009;
pp. 735–741.

6. Giannakas, F.; Troussas, C.; Voyiatzis, I.; Sgouropoulou, C. A deep learning classification framework for early prediction of
team-based academic performance. Appl. Soft Comput. 2021, 106, 107355. [CrossRef]

7. Li, D.; Wang, Z.; Xue, Y. Fine-grained Android Malware Detection based on Deep Learning. In Proceedings of the 2018 IEEE
Conference on Communications and Network Security (CNS), Beijing, China, 30 May–1 June 2018; pp. 1–2. [CrossRef]

8. Arp, D.; Spreitzenbarth, M.; Huebner, M.; Gascon, H.; Rieck, K. Drebin: Efficient and Explainable Detection of Android Malware
in Your Pocket. In Proceedings of the 21th Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA,
USA, 23–26 February 2014; Volume 12, p. 1128.

9. Karbab, E.B.; Debbabi, M.; Derhab, A.; Mouheb, D. MalDozer: Automatic framework for android malware detection using deep
learning. Digit. Investig. 2018, 24, S48–S59. [CrossRef]

10. Zhou, Y.; Jiang, X. Dissecting Android Malware: Characterization and Evolution. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 95–109. [CrossRef]

11. Li, W.; Wang, Z.; Cai, J.; Cheng, S. An Android Malware Detection Approach Using Weight-Adjusted Deep Learning. In
Proceedings of the 2018 International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA,
5–8 March 2018; pp. 437–441. [CrossRef]

12. Xu, K.; Li, Y.; Deng, R.H.; Chen, K. DeepRefiner: Multi-layer Android Malware Detection System Applying Deep Neural Networks.
In Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS P), London, UK, 24–26 April 2018;
pp. 473–487. [CrossRef]

13. Virus Share. Available online: https://virusshare.com (accessed on 30 June 2022).
14. Zegzhda, P.; Zegzhda, D.; Pavlenko, E.; Ignatev, G. Applying Deep Learning Techniques for Android Malware Detection. In

Proceedings of the 11th International Conference on Security of Information and Networks, SIN ’18, Amalfi, Italy, 5–7 September
2018. [CrossRef]

15. VirusTotal. Available online: https://www.virustotal.com (accessed on 30 June 2022).
16. Android Malware Dataset (Argus Lab). 2018. Available online: https://www.impactcybertrust.org/dataset_view?idDataset=1275

(accessed on 12 December 2022).
17. Xu, Z.; Ren, K.; Qin, S.; Craciun, F. CDGDroid: Android Malware Detection Based on Deep Learning Using CFG and DFG. In

International Conference on Formal Engineering Methods; Springer: Berlin, Germany, 2018; pp. 177–193.
18. Lindorfer, M.; Neugschwandtner, M.; Platzer, C. MARVIN: Efficient and Comprehensive Mobile App Classification through

Static and Dynamic Analysis. In Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications Conference,
Taichung, Taiwan, 1–5 July 2015; Volume 2, pp. 422–433. [CrossRef]

19. Kim, T.; Kang, B.; Rho, M.; Sezer, S.; Im, E.G. A Multimodal Deep Learning Method for Android Malware Detection Using
Various Features. IEEE Trans. Inf. Forensics Secur. 2019, 14, 773–788. [CrossRef]

20. Masum, M.; Shahriar, H. Droid-NNet: Deep Learning Neural Network for Android Malware Detection. In Proceedings of
the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5789–5793.
[CrossRef]

21. Niu, W.; Cao, R.; Zhang, X.; Ding, K.; Zhang, K.; Li, T. OpCode-Level Function Call Graph Based Android Malware Classification
Using Deep Learning. Sensors 2020, 20, 3645. [CrossRef] [PubMed]

22. Allix, K.; Bissyandé, T.F.; Klein, J.; Traon, Y.L. AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories, MSR ’16, Austin, TX, USA, 14–15 May 2016;
pp. 468–471.

23. Pektas, A.; Acarman, T. Deep learning for effective Android malware detection using API call graph embeddings. Soft Comput.
2020, 24, 1027–1043. [CrossRef]

24. Zou, K.; Luo, X.; Liu, P.; Wang, W.; Wang, H. ByteDroid: Android Malware Detection Using Deep Learning on Bytecode Sequences;
Springer: Berlin, Germany, 2020; pp. 159–176. [CrossRef]

25. Fan, M.; Liu, J.; Luo, X.; Chen, K.; Chen, T.; Tian, Z.; Zhang, X.; Zheng, Q.; Liu, T. Frequent Subgraph Based Familial Classification
of Android Malware. In Proccedings of the 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE),
Ottawa, ON, Canada, 23–27 October 2016; pp. 24–35. [CrossRef]

26. Maiorca, D.; Ariu, D.; Corona, I.; Aresu, M.; Giacinto, G. Stealth Attacks: An Extended Insight into the Obfuscation Effects on
Android Malware. Comput. Secur. 2015, 51, 16–31. [CrossRef]

27. Kang, H.; Wook Jang, J.; Mohaisen, A.; Kim, H.K. Detecting and Classifying Android Malware Using Static Analysis along with
Creator Information. Int. J. Distrib. Sens. Netw. 2015, 11, 479174. [CrossRef]

28. Karbab, E.; Debbabi, M. PetaDroid: Adaptive Android Malware Detection Using Deep Learning. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Berlin, Germany, 2021; pp. 319–340. [CrossRef]

29. Millar, S.; McLaughlin, N.; Martinez del Rincon, J.; Miller, P. Multi-view deep learning for zero-day Android malware detection.
J. Inf. Secur. Appl. 2021, 58, 102718. [CrossRef]

30. Vu, L.N.; Jung, S. AdMat: A CNN-on-Matrix Approach to Android Malware Detection and Classification. IEEE Access 2021,
9, 39680–39694. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2021.107355
http://dx.doi.org/10.1109/CNS.2018.8433204
http://dx.doi.org/10.1016/j.diin.2018.01.007
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/ICCNC.2018.8390391
http://dx.doi.org/10.1109/EuroSP.2018.00040
https://virusshare.com
http://dx.doi.org/10.1145/3264437.3264476
https://www.virustotal.com
https://www.impactcybertrust.org/dataset_view?idDataset=1275
http://dx.doi.org/10.1109/COMPSAC.2015.103
http://dx.doi.org/10.1109/TIFS.2018.2866319
http://dx.doi.org/10.1109/BigData47090.2019.9006053
http://dx.doi.org/10.3390/s20133645
http://www.ncbi.nlm.nih.gov/pubmed/32610606
http://dx.doi.org/10.1007/s00500-019-03940-5
http://dx.doi.org/10.1007/978-981-15-3418-8_12
http://dx.doi.org/10.1109/ISSRE.2016.14.
http://dx.doi.org/10.1016/j.cose.2015.02.007
http://dx.doi.org/10.1155/2015/479174
http://dx.doi.org/10.1007/978-3-030-80825-9_16
http://dx.doi.org/10.1016/j.jisa.2020.102718
http://dx.doi.org/10.1109/ACCESS.2021.3063748

Information 2023, 14, 2 23 of 23

31. Zhang, N.; Tan, Y.A.; Yang, C.; Li, Y. Deep learning feature exploration for Android malware detection. Appl. Soft Comput. 2021,
102, 107069. [CrossRef]

32. Yumlembam, R.; Issac, B.; Jacob, S.M.; Yang, L. IoT-based Android Malware Detection Using Graph Neural Network with
Adversarial Defense. IEEE Internet Things J. 2022. [CrossRef]

33. CICMalDroid. Available online: https://www.unb.ca/cic/datasets/maldroid-2020.html (accessed on 10 February 2022).
34. Musikawan, P.; Kongsorot, Y.; You, I.; So-In, C. An Enhanced Deep Learning Neural Network for the Detection and Identification

of Android Malware. IEEE Internet Things J. 2022, 1. [CrossRef]
35. Google Play. Available online: https://play.google.com/ (accessed on 10 February 2022).
36. Kouliaridis, V.; Kambourakis, G.; Geneiatakis, D.; Potha, N. Two Anatomists Are Better than One-Dual-Level Android Malware

Detection. Symmetry 2020, 12, 1128. [CrossRef]
37. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
38. Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn.

Res. 2019, 20, 1934–1965.
39. Weerts, H.J.; Mueller, A.C.; Vanschoren, J. Importance of tuning hyperparameters of machine learning algorithms. arXiv 2020,

arXiv:2007.07588.
40. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework; Association

for Computing Machinery: New York, NY, USA, 2019. [CrossRef]
41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
42. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural

Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2020.107069
http://dx.doi.org/10.1109/JIOT.2022.3188583
https://www.unb.ca/cic/datasets/maldroid-2020.html
http://dx.doi.org/10.1109/JIOT.2022.3194881
https://play.google.com/
http://dx.doi.org/10.3390/sym12071128
http://dx.doi.org/10.1145/3292500.3330701

	Introduction
	Related Work
	Methodology
	Dataset
	Data Analysis
	Research Design and Testbed
	Performance Metrics

	Shallow Classifiers
	Initial Analysis
	ML Optimization

	DNN Analysis
	Preliminaries
	DNN Hyperparameter Optimization and Evaluation Results

	SHAP Analysis and Features Importance Assessment
	Conclusions
	References

