
Citation: Chlup, S.; Christl, K.;

Schmittner, C.; Shaaban, A.M.;

Schauer, S.; Latzenhofer, M.

THREATGET: Towards Automated

Attack Tree Analysis for Automotive

Cybersecurity. Information 2023, 14,

14. https://doi.org/10.3390/

info14010014

Academic Editor: Giedre

Sabaliauskaite

Received: 30 September 2022

Revised: 20 December 2022

Accepted: 21 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

THREATGET: Towards Automated Attack Tree Analysis for
Automotive Cybersecurity
Sebastian Chlup * , Korbinian Christl , Christoph Schmittner , Abdelkader Magdy Shaaban ,
Stefan Schauer and Martin Latzenhofer

Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
* Correspondence: sebastian.chlup@ait.ac.at; Tel.: +43-664-88390701

Abstract: The automotive domain is moving away from simple isolated vehicles to interconnected
networks of heterogeneous systems forming a complex transportation infrastructure. The additional
means of communication result in increased attack surfaces which can be exploited by physical as well
as remote attackers if not secured thoroughly. Thus, the automotive sector is exposed to new cyber risk
factors. Consequently, joint approaches targeting securing vehicles and infrastructure by identifying
and mitigating potential threats for the automotive domain have been developed in several research
projects. This paper builds on developments originating from these projects and correlated standards
and regulations. Moreover, the extension of an existing threat modeling tool—THREATGET—with a
novel automated approach toward attack propagation will be introduced. Therefore, we will conduct
an analysis of a real-world example from the automotive domain. Furthermore, we will identify and
analyze potential threats and discuss their accumulation to automatically generate an attack tree.

Keywords: automotive cybersecurity; threat modeling; attack trees; risk management

1. Introduction

The road vehicle domain is undergoing a transformation, from singular and isolated
vehicles to an interconnected transportation network. This so-called CCAM (cooperative,
connected, and automated mobility) or C-ITS (cooperative intelligent transport system)
refers to a transportation system where the cooperation between two or more systems (per-
sonal device, vehicle, roadside, and central) enables and provides a transportation system
that offers better quality and an enhanced service level. Cooperation and communication
enable an enlarged awareness, increased efficiency, and novel safety features compared
to isolated vehicle systems. Considering that standard vehicles already possess up to
150 electric control units (ECU), this will increase the overall complexity and introduce a
new level of interdependency between vehicles and infrastructure.

While in the current implementations the cooperative aspect is mainly on the level
of an additional information source for the driver to interpret and react to, there is a par-
allel transformation on the level of the vehicle, from a manually controlled system to an
automated system. With the convergence of both transformations, vehicles will communi-
cate and cooperate within themselves and with the larger transportation infrastructure to
autonomously react to the received and exchanged information.

While this has the potential to increase the efficiency and safety of transportation, it
also introduces more significant risks in regard to cybersecurity attacks. The increased
exposure of vehicles due to increased connectivity opens up new vulnerabilities. Within
three years, from 2018 to 2021, the number of cyberattacks on cars increased by 225% [1,2].
In the past, attacks were carried out physically or in the proximity of the vehicle. However,
this trend is changing, as in 2021 85% of attacks originated from remote sources [1,2].
Attackers can send manipulated information to automated vehicles and cause malfunctions
or remotely control an automated vehicle. These additional safety risks extend the already

Information 2023, 14, 14. https://doi.org/10.3390/info14010014 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14010014
https://doi.org/10.3390/info14010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-3332-1671
https://orcid.org/0000-0001-8873-9122
https://orcid.org/0000-0003-4430-6813
https://orcid.org/0000-0002-9159-8436
https://orcid.org/0000-0003-4446-9081
https://orcid.org/0000-0001-7412-2826
https://doi.org/10.3390/info14010014
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14010014?type=check_update&version=2

Information 2023, 14, 14 2 of 28

existing dangers for cybersecurity to cause and facilitate vehicle thefts, manipulate and
steal personal data or restrict the operation and availability of the vehicle. As far as recent
statistics for attack categories are concerned, almost 40% of attacks result in a data or
privacy breach, while nearly 28% target car-theft or break-ins, and around 20% are aimed
at manipulating control systems [2,3]. When it comes to electric mobility, the number
of cybersecurity risks increases, especially when considering software-driven charging
infrastructure which could potentially be hacked.

This increased risk and potential to cause not only disturbances on the level of singular
vehicles but on the overall road transportation level led to the introduction of novel
automotive security standards [4] and automotive security regulations [5]. Both are based
on the concepts of risk and security management.

2. Materials and Methods

In order to avoid incidents as depicted in Section 1 as best as possible, OEMs (original
equipment manufacturers), as well as infrastructure manufacturers and operators must
ensure that their systems are secure against cyber attacks. It is a well-known fact that almost
every hardware or software component has inherent security vulnerabilities. While some
weaknesses are known and can be treated, others may go undetected and be exploited for
more extended periods. However, it is not only about the components themselves, the
configuration also plays an important role. Authentication, authorization, encryption, or
DDoS (distributed denial of service) mitigation measures can already filter out multiple
threats so that potentially vulnerable components cannot be reached. This is represented
by the so-called defense-in-depth approach, where multiple layers of security and defense
are staggered to ensure that if one layer fails, additional layers will restrict further steps.

Moreover, in order to decide on the placement of functions (e.g., where in the layered
defense system a function or data are stored) it is necessary to evaluate potential risks
and decide on suitable treatments. As such, cybersecurity management starts with the
beginning of the system lifecycle and influences the complete system engineering. However,
cybersecurity management is not an approach that is conducted only once. As mitigation
measures evolve, so do potential threats. Cybersecurity should be considered throughout
all system lifecycle phases, whether design, development, or maintenance. There is a need
to be able to react to new kinds of threats. Throughout the years, multiple strategies to
counter threats and reinforce technological systems against threats have been developed.
The following sections elaborate on the history of methods developed.

2.1. Generic Cybersecurity Management

Cybersecurity management relies on the knowledge of potential risks in order to
manage them. A widespread approach for this is threat modeling. Threat modeling
represents an iterative approach to identifying potential threats to a technological system.
It consists mainly of two parts: Firstly, a system model that holds all information of the
system under consideration (SuC) throughout its lifecycle phases (design, development,
maintenance). In most iterations of threat modeling, it is represented by a data-flow
diagram (DFD) depicting components, connections, and security properties. Secondly,
a threat model that is based on known weaknesses and vulnerabilities. By comparing
both, the system model and the threat model, potential threats within the system can be
identified. Figure 1 shows a procedural illustration of the threat modeling process.

The iterative process of threat modeling is described by the following six steps (based
on [6]):

1. Gather information on components that should be used during the design/development
phase, or for productive systems, information on existing components.

2. Model the system with all communication channels and security assumptions as
precisely as possible.

3. Define a threat model with information from experts, and known threats and derive
them from available sources (e.g., threat intelligence).

Information 2023, 14, 14 3 of 28

4. Compare the threat model to the system model to identify potential threats and system
weaknesses.

5. Evaluate the risks of identified threats and decide on the risk treatment options based
on impact and likelihood.

6. Update the system model with mitigation strategies and security countermeasures.
7. Go back to step 4 to identify newly introduced threats or threats that remained

untreated.

Figure 1. An illustration of the threat modeling process based on [6].

Throughout the years, various threat modeling techniques have been developed
(STRIDE, PASTA, LINDDUN, etc.) [7]. The threat modeling approach presented in this
work is based on the STRIDE methodology developed by Microsoft. STRIDE extends
the CIA (confidentiality, integrity, availability) model and allows it to relate threats with
security attributes [8], thus allowing a view of threats from the perspective of an attacker.
The STRIDE method is not only targeted at the automotive sector; it is a generic method that
can be applied in any sector. STRIDE is an acronym for Spoofing, Tampering, Repudiation,
Information disclosure, Denial of service and Elevation of privileges. It started as a brain-
storming methodology to identify what can potentially go wrong in the system under
consideration and was later extended to include a formal and automatically applicable
description of weaknesses of elements and interactions [9,10]. STRIDE intends to ease
the identification of potential threats. The purpose of STRIDE is to find and enumerate
potential flaws within a system. Mitigation measures or attack patterns are not its focus.
Furthermore, STRIDE helps to analyze vulnerabilities that could be exploited by an attacker;
however, it has no standardized methodology of how it should be applied [11].

Simply identifying a potential threat is only one side of the medal. Another aspect that
needs to be considered in threat modeling is the derivation of a risk rating for the identified
threats. Consequently, a risk assessment model called DREAD has been developed by

Information 2023, 14, 14 4 of 28

Microsoft. DREAD stands for Damage potential, Reproducibility, Exploitability, Affected
users and Discoverability. Besides DREAD there are also other rating schemes in usage.

A list of common threat modeling methods as well as rating schemes is shown in
Table 1.

Table 1. Other available threat modeling methods and risk rating schemes [7,12–14].

Method Short Description Discussion

PASTA

• For identification of countermeasures
• Eases prioritization of threats
• Multi-stage process
• Attacker-centric

PASTA requires a strict and weighty process while
STRIDE is mainly used for the identification of

threats and countermeasures as part of a process.
The approach that will be presented remains flexible

and can be used in all development phases, even
when new objectives or requirements

are introduced.

LINDDUN

• Focuses mainly on privacy
• Based on DFD
• Related to STRIDE

LINDDUN is targeted at privacy. For our use case, a
more generic approach also including operational,

safety, and financial aspects is required.

OCTAVE
• Targeted at organizational risks
• Does not consider technological risks

Technological risks represent the main focus of our
methodology. However, organizational risks may

be deduced.

TRIKE

• Security audit framework
• Based on DFD
• Two categories—elevation of privilege and

denial of service

This method focuses mainly on IT and auditing and
is, therefore, not suitable for our application field.

VAST

• Automated tool for threat identification
• Requires specific software
• Scalable process

In contrast to a generic approach, VAST is targeted
at processes on the organizational level and

large-scale IT systems.

Persona non Grata

• Focuses on human attackers
• Describes characteristics and skills
• Helps understand attacker perspective

Persona non Grata is a manual method and does not
include potential automated propagation of attacks

throughout the system.

CVSS

• Represents a scoring system based on multi-
ple attributes

• Can be used by threat modeling methods to
rate risks

Represents a method for rating potential risks but
not for the identification of threats or mitigation
measures. However, it incorporates a detailed

scheme for assigning a score to certain threats and
will, therefore, be considered for integration with

our method in the future.

DREAD

• Is a risk rating method
• Used for risk evaluation
• Helps prioritization of risks

Like CVSS, DREAD represents a scoring system to
classify the criticality of threats. However, when it

comes to impact and likelihood it lacks a
standardized definition of factors. Therefore, it is

rarely used.

2.2. Automotive Cybersecurity Management

As vehicles become increasingly complicated and interconnected [15,16] they can be
classified as cyber–physical systems (CPS) [17,18].

This means that they are a potential target for remote attacks. This new security threat
and the interconnected world require new approaches to cybersecurity. Therefore, all stages
in the automotive lifecycle need to incorporate cybersecurity management [16,19].

2.2.1. Research Projects

Multiple European Union research projects such as EVITA, OVERSEE, and HEAVENS
investigated multiple directions for securing the automotive sector. They focused on

Information 2023, 14, 14 5 of 28

analysis, engineering, testing, and developing technology related to the security of vehicles
and mobility services. They also paved the way for implementing state-of-the-art security
solutions by introducing new concepts, integrating security components from different
domains, and creating expertise-sharing platforms.

E-safety vehicle intrusion protected applications, also known as the EVITA project
(https://www.evita-project.org/index.html (accessed on: 24 August 2022)), was initiated
in 2008 to design, verify, and prototype security building blocks for onboard automotive
networks. A novel method for conducting onboard automotive risk assessments was
developed during the research. As discussed in [20], EVITA was responsible for defining the
onboard vehicle security requirements. In accordance with these criteria, the organization
built a secure architecture and protocols of communication for the automotive onboard
network [16].

The Open VEhiculaR SEcurE platform (OVERSEE) project was launched in 2010 to
provide internal and external vehicle interactions for automotive applications. OVERSEE
created a software and communication infrastructure that is open and standardized. The
idea is to be able to execute external apps without negatively affecting one another or any
of the internal vehicle parts and components. The security frameworks that were observed
in the OVERSEE platform had the goal of managing inferences that could have been caused
by applications, human mistakes, or malicious activities [16,21]. The fact that external
applications often consume the same resources as internal applications is one of the most
important challenges. As a result, it is of the utmost importance to ensure that applications
downloaded from the internet do not compromise the assets of the car or have a negative
impact on the safety of the vehicle [16].

The HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS)
project was initiated in 2013 with the objective of building new techniques for assessing
security and locating security vulnerabilities in the automotive sector. The fundamental
objective of the project is to create a collection of security procedures that the system
developer must follow in order to provide a protective measure for the car’s critical assets.
This reduces the risk that is associated with these security gaps, which are susceptible to
being exploited by attacks. HEAVENS presented primary concepts about trustworthiness
and security, including security characteristics and goals [22]. As an extension of the
CIA triad (i.e., confidentiality, integrity, availability), the project utilized eight security
attributes, including confidentiality, integrity, availability, authenticity, authorization, non-
repudiation, privacy, and freshness. In addition, the HEAVENS system incorporated several
security goals to counteract the detected risks to conform to the security procedures, and
assumptions [8,16] and developed a security analysis methodology.

2.2.2. ISO/SAE 21434

Based on the publication of SAE J3061 “Cybersecurity Guidebook for Cyber-Physical
Vehicle Systems” [23] and multiple identified potential weaknesses and vulnerabilities
in existing automotive systems, the automotive domain decided to develop best-practice
guidance in the form of an international standard for the topic of automotive cybersecurity
engineering. ISO/SAE 21434 [24] took the experience from the research and industrial
approaches towards cybersecurity and developed a risk-management-based approach to
automotive cybersecurity.

The standard focuses on the engineering of automotive systems, from concept to
development, implementation, production, and operation. In addition, a set of supporting
or continuous processes on organizational and project levels are defined that support the
achievement of cybersecurity. During development, UN WP29 started the development of
automotive cybersecurity regulation, and here the topic of compliance was also treated.

Risk management according to ISO/SAE 21434 is based on a set of approaches that
can be combined to define a suitable TARA process. Summarized, the TARA starts during
the definition of the item, e.g., the definition of the function on the vehicle level for which a

https://www.evita-project.org/index.html

Information 2023, 14, 14 6 of 28

system or combination of systems is developed and results in the definition of risk treatment
decisions for the item. Steps include [24]:

• asset identification: identifies assets, including their relevant cybersecurity property
(CIA), which leads to one or more damage scenarios if the cybersecurity property
is violated.

• threat scenario identification: describe a potential threat that could cause the violation
of a cybersecurity property of an asset.

• impact rating: rates the impact on different categories (safety, financial, operational,
privacy) of a damage scenario. In the automotive domain, safety is normally rated in
four levels adapted from ASIL. A detailed definition of the terms can be found in the
ISO/SAE 21434.

• attack path analysis: identifies a potential attack path or if multiple attack paths
are possible an attack tree that could enable an attacker to execute an identified
threat scenario.

• attack feasibility rating: rates the feasibility, e.g., the likelihood of an attack path
based on a rating scheme and subfactors.

• risk value determination: uses a risk matrix to combine impact rating and attack
feasibility rating to derive the risk for each combination of impact and attack feasibility.

• risk treatment decision: decides on the suggested course of action, e.g., if a risk is
accepted or additional measures are needed.

While there are some dependencies between the steps, the order of activities is not defined.

2.2.3. ETSI TVRA

The European Telecommunications Standards Institute (ETSI) worked on the develop-
ment of automotive-related standards as part of their task to develop standards for C-ITS.
In one of these activities, the ETSI TVRA (ETSI threat, vulnerability, and risk assessment)
system was introduced as a systematic method for prioritizing and assessing risks to a
system [25]. Figure 2 illustrates the steps of the TVRA method.

The diagram represents seven steps of the TVRA method as follows [25]:

1. Establish the objectives that need to be met in terms of security goals.
2. Establish what level of security requirements are required.
3. Create a checklist of all the system’s assets.
4. Identify the system vulnerabilities and potential cyber threats.
5. Determine how likely an attack is and the extent of its impact.
6. Determine the risk’s scope by combining the likelihood and impact calculation results.
7. Provide detailed guidance on the proper precautions against existing security issues.

Figure 2. ETSI TVRA method steps.

Information 2023, 14, 14 7 of 28

2.2.4. UNECE WP29

The UNECE (United Nations Economic Commission for Europe) regulation (UN
R155) [26] on the cybersecurity-related requirements for the type approval of vehicles
describes a set of requirements concerning the cybersecurity management at the complete
lifecycle and risk management for a vehicle type [26]. In order to approve a vehicle
type, compliance with the cybersecurity management system (CSMS) and the risk-based
approach to the vehicle type have to be demonstrated. For risk-based engineering, an
example list of current threats is given. Risks must be identified and evaluated and if
they are considered as not acceptable, a risk treatment has to be designed, implemented,
and tested. For vehicle type approval, these decisions have to be demonstrated, e.g., the
complete traceability from analysis to tested risk treatment. UN R155 is in force since July
2022 for all new vehicle types and will be required from July 2024 for all new vehicles.

3. THREATGET—Cybersecurity by Design

Current vehicles with up to 150 ECUs, a high number of interfaces, and external
connections, and multiple vehicle networks challenge the manual conduction of risk analy-
sis, work product generation, and traceability. While existing risk management and risk
analysis tools are only partially usable, in recent years and with the increased focus on
automotive cybersecurity, domain-specific tools have started to get more usage. We present
here THREATGET as a tool built for the automotive domain.

3.1. THREATGET’s Approach towards Threat Modeling

THREATGET is a threat modeling tool that incorporates developments from previous
research projects, standards, and regulations. As described in Section 2.1, threat modeling is
based on two main components: the system model and the threat model. In THREATGET,
the system model is a digital twin of the system under consideration. This digital twin is
represented by a model of software and hardware components, assets, security attributes,
and communication channels. It can be created at the start of the concept phase. The threat
model represents the knowledge about known vulnerabilities and threats [9]. These two
components form the basis of THREATGET. In contrast to the Microsoft Threat Modeling
Tool, which relies on a data-flow diagram without hierarchies [9], we decided to adapt the
basic modeling to better fit the automotive domain, developing an extended data-flow dia-
gram (EDFD) to model an automotive system. We classify individual system components
as “elements”, “connectors”, and “assets”. Elements describe both physical and logical
components, such as an ECU, server, or software running on a device. Connectors depict
data flows between components. Assets are used to show where valuable data, information,
or functions are located. Moreover, the EDFD allows hierarchical modeling and, therefore, a
deeper analysis of a real-world system. Figure 3 displays the differences between a regular
DFD and our EDFD.

For further distinguishing between components, they can be assigned a type (e.g.,
ECU, server, sensor, actuator). Furthermore, all these types can be assigned safety and
security properties. This type-based concept facilitates reusable component types.

One of the core features of THREATGET is the automatic threat identification and anal-
ysis of the modeled system. To extract all relevant semantic information from the system
model and evaluate it in the context of a threat analysis, we have created a domain-specific
language (DSL). This DSL allows us to define threat and vulnerability information in a for-
mat that is readable by both humans, and machines and enables the formulation of threats
in a uniform format. The result is, what we call, an “anti-pattern”—a pattern that describes
a configuration that cyber-resilient systems should not include (i.e., a vulnerability). In case
an anti-pattern matches the system model, a potential threat is detected and added to a
resulting threat catalog. The example in Figure 4 describes such a threat in the form of an
anti-pattern.

Information 2023, 14, 14 8 of 28

Figure 3. Data Flow Diagram (DFD) (left) vs. Extended Data Flow Diagram (EDFD) (right).

ELEMENT: “SERVER”
{

“AUTHENTICATION” = “NO” &
“AUTHORIZATION” = “NO”

}

Figure 4. An example for an anti-pattern.

An element with the assigned type “Server” that has neither an “Authentication” nor
“Authorization” mechanism would make the described server component vulnerable, as
an attacker may gain access to this server if it is accessible. For demonstration purposes, a
simple example of a threat rule was chosen above. AIT’s knowledge database contains a
large number of more sophisticated anti-patterns which form the threat model based on
configurations of elements connections.

THREATGET’s automatic analysis exceeds the potential of approaches by previously
existing analysis tools such as the Microsoft Threat Modeling Tool [27–29] and the OWASP
Threat Dragon [30,31]. In these tools, the analysis results can vary greatly if the overall
same system is modeled only slightly differently. Consider including a gateway between
two connected components. Although there is another component in between, most of
the detected threats should remain the same as the gateway is simply propagating the
communication flow further in case no mitigation measures are defined. However, this is
not possible in other tools, as they depend on a rather static approach, where an analysis
result is only generated if the described patterns are exactly represented in the diagram. As
a consequence, certain threats will not be triggered, as the patterns do not exactly match the
system model. This means that threats will not be detected in case the components are not
directly connected. For this reason, THREATGET offers a “flow-based” analysis that allows
wildcards when defining an anti-pattern. This means that if a connection between elements
of the system is to be examined, they allow for multiple different approaches to modeling,
and elements do not necessarily have to be directly connected to fit the pattern [32]. In
case a gateway is introduced between two connected components THREATGET will still
consider these components as connected. An example is illustrated in Figure 5.

Information 2023, 14, 14 9 of 28

Figure 5. Example model to demonstrate attack flows.

Figure 5 displays an excerpt of elements involved in V2X communication. The telemat-
ics module is used as means to communicate via wireless (Bluetooth and cellular) interfaces
with an update server, a telematics server as well as the phone of the car owner. The
Telematics module then communicates with the brake control ECU via a gateway and
wired interfaces located within the car.

Current methods only evaluate an element by itself as shown in the anti-pattern
from before. Another approach is the evaluation of the connection between two elements.
These approaches are called STRIDE per element and STRIDE per interaction. However,
this does not include potential attack paths throughout a system. It depends only on the
configuration of single elements or the connection of two specific elements. This is also
possible in THREATGET. However, our approach is more dynamic and thus more powerful
when it comes to the analysis of a system model. Consider the following anti-pattern
displayed in Figure 6 describing a potential attack on remote wireless interfaces.

FLOW
{

SOURCE ELEMENT: “Wireless Interface” &
TARGET ELEMENT: “ECU” &
INCLUDES NO ELEMENT
{

“AUTHENTICATION” = “YES” &
“AUTHORIZATION” = “YES”

}
}

Figure 6. An example for a flow anti-pattern.

The anti-pattern describes a flow from a wireless interface to an ECU. When taking a
closer look at the model represented in Figure 5, we can see that the threat defined by the
anti-patterns will trigger multiple times as the telematics module provides three wireless
interfaces. One of these results is shown in Figure 7.

Information 2023, 14, 14 10 of 28

Figure 7. STRIDE per interaction example.

To this point, we cover the functionality on the same level as the Microsoft Threat
Modeling Tool and the OWASP Threat Dragon. However, a flow is more than simply
checking for the direct interaction between two elements. As mentioned before, it allows
wildcarding elements. Therefore, it does not matter which elements are in between two
components for an anti-pattern to trigger as long as there is a connection. However, it
is possible to define additional constraints such as “INCLUDES NO ELEMENT” which
check whether any element path has certain security properties such as authentication
and authorization in the example. Additionally, other constraints are feasible such as
“INCLUDES ONLY” which would be the opposite of the previous example, or “CROSSES
BOUNDARY” which enables the detection of a flow crossing a trust boundary. Figure 8
displays one of the attack paths resulting from the flow anti-pattern.

Figure 8. Attack path derived from flow anti-pattern.

As can be seen, the flow not only detects the interaction between the cellular interface
and the telematics module, it detects complete attack paths that a remote attacker might
take, in this case, to compromise the brake control.

As far as the analysis process is concerned, the system model is passed to THREAT-
GET’s threat analysis engine, where the diagram is transferred into a data model. Then the
predefined anti-patterns located in the database are compared with the system model. For a
better understanding of the detected threat, the relation between the involved components
is visualized.

A definition of the language, its semantic evaluation, and a description of the relation-
ship between the system model and the threat model can be found in [33].

THREATGET is able to provide a more in-depth analysis of the system model than
other existing tools by using the extended data flow diagram and the integration of attack
paths. However, these are only the first steps toward automatically generating attack
trees. The following section will explain the concept of attack graphs and emphasize the
algorithm behind automatically building an attack graph and deriving attack trees.

Information 2023, 14, 14 11 of 28

3.2. Automated Attack Tree Analysis

So far, developments and extensions to the existing threat modeling method have been
discussed. This section will show how we have extended our previous approach to not
only examine individual threats but also to include relationships and interdependencies
between threats in the analysis result. The motivation behind this extension is to better
understand, predict, and prevent complex attacks including multiple steps. With the
increasing complexity and size of systems, the security measures that protect the system also
need to improve. One example is here the defense-in-depth strategy, which increases the
number of hurdles an attacker must overcome to successfully infiltrate a system. However,
this increasing complexity and additional communication channels also increase the attack
surface of our systems.

Through our work in several IT domains and in various research projects, we have
come to realize that an attack usually consists of several complex interrelated steps and
not just a single vulnerability that can be exploited. In most cases, the target component
cannot be directly accessed [34,35]. Therefore, existing approaches that have already been
used for similar problems were investigated. We found that the approach of fault trees and
fault graphs had already been used in the field of vehicle safety to determine the effect
of an individual failing system and how this might affect the remaining components of
the vehicle [36] and was even adapted in security as attack trees. Moreover, the concept of
prerequisites and postconditions is very well suited to describe the dependencies between
threats in a system. On the one hand, a prerequisite describes one or more conditions that
must be fulfilled for an event to occur. On the other hand, a postcondition describes one or
possibly several states that are gained after the occurrence of an event [37].

Figure 9 shows a simplified attack tree with three different paths how to infiltrate an
ECU. The example within the tree is intended to illustrate that security-related aspects
can also be mapped with this concept. Each of the paths stands for itself and leads to the
desired target and is, therefore, connected with a logical OR. The orange path shows how,
in the concept of attack trees, several actions have to be connected with each other in order
to reach a goal and thus represent a logical AND. The purple path shows how several
individual steps are necessary one after the other to achieve a goal. Attack trees support
properties in addition to individual steps, such as the likelihood or attack feasibility. In
the given example, it is easier to infiltrate the ECU through the green path, i.e., via direct
physical access, but it is less likely because physical access is often not available [38].

Attack trees describe attack steps an attacker might undertake to achieve an attack
goal. They summarize multiple attack paths. This means that one must first identify the
goal and then figure out what steps would lead to this goal. Current approaches rely on
the manual generation of attack trees, which has two major drawbacks:

1. Manual generation, like all manual threat analyses, depends on expertise and ex-
perience. Analysis conducted by an expert in hardware security will look different
from an analysis done by an expert in cryptography. Consequently, completeness is
difficult to argue, and paths might be overlooked.

2. If an attacker can choose between different goals, or if multiple potential attackers
need to be considered, generation, maintenance, and evaluation of the resulting trees
are time-consuming. They need to be updated, depending on new vulnerability
information or changes in the system architecture and larger system models result in
an increased number of attack trees, which makes them grow in size.

To address these challenges, we rely on automated generation, based on a threat
database resulting from inputs covering multiple security sub-disciplines and the concept
of attack graphs. With this, we combine threat modeling and attack tree analysis and
automate the combined process. Figure 10 illustrates the difference between a tree and a
directed attack graph.

Information 2023, 14, 14 12 of 28

Figure 9. An exemplary attack tree showing how to infiltrate an ECU.

Figure 10. Concept of an attack tree vs. attack graph.

A directed graph is very similar to the structure of a modeled system. The only differ-
ence is that, while the individual vertices of the graph represent the system components,
the edges represent the respective connectors as well as implicit relations provided by the
hierarchical structure within the system. Consequently, we concluded that it is possible
to convert a system model represented by an EDFD into a directed attack graph without
losing any semantic information. To define the prerequisites and postconditions of a threat,
THREATGET was extended by the concept of capabilities. A capability describes a state
that a component has or can take after a threat has occurred.

The following anti-pattern example refers to the attack tree in Figure 9. An ECU is
checked for the “Authentication” and “Authorization” mechanisms. If it does not have
either of these security measures, the attacker gains the capability of “Infiltrated” on
the server.

ELEMENT: “ECU”
{

“AUTHENTICATION” = “NO” &
“AUTHORIZATION” = “NO” &
PROVIDES CAPABILITY “Infiltrated” := “true”

}

The above example describes the infiltration of an ECU. In this case, the attacker
requires no means of authentication or authorization which allows them to infiltrate the
ECU. Therefore, a variety of consequent attack steps become possible. An example going
one step further is shown below.

Information 2023, 14, 14 13 of 28

ELEMENT: “ECU”
{

“Anomaly Detection” = “NO” &
“DoS Mitigation” = “NO” &
“Malware Protection” = “NO” &
REQUIRES CAPABILITY “Infiltrated” >= “true” &
PROVIDES CAPABILITY “Control” := “true”

}

The above anti-pattern illustrates an attack step if an attacker has previously infiltrated
the ECU. In case there are no measures such as anomaly detection, DoS mitigation, or
malware protection in place, they can gain the capability “Control” over this ECU.

We have already described how we can use the concept of anti-patterns to automat-
ically analyze a system model to detect potential threats. What makes THREATGET’s
analysis unique is that it extends this concept by using capabilities to define threat de-
pendencies. A defined capability in an anti-pattern can be both a precondition and a
postcondition to a threat. Required or gained capabilities are dynamically queried, added,
or modified during the analysis process. This means that for every component in the
system model, applicable preconditions and security properties are checked. In case the
anti-pattern is fulfilled a new postcondition may be achieved, thus forming a new precon-
dition for a subsequent iteration of the analysis. Moreover, an existing capability can be
updated to a higher level on the respective or following components, leading to consequent
attack steps. Based on these results, an attack graph is progressively built step by step until
the final state (when no more changes are made to the graph) is reached. In the following,
we will explain the algorithm used to create the attack graph. Figure 11 shows the graph
generation in a simplified form.

Figure 11. Attack graph generation algorithm.

A total of three inputs are required for the analysis:

1. The system model to be analyzed;
2. The set of anti-patterns to be used for the analysis;
3. (Optional) A set of initial capabilities defined by the user before the analysis to model

assumptions of attacker capabilities.

Initially, the attack graph is empty. If the user has defined a set of initial capabilities,
these are transferred to the graph. Whereby, each capability is one initial vertex inside the
graph. Subsequently, the algorithm enters the analysis phase. In this phase, the algorithm
applies each rule from the given set to the system model. The results are stored temporarily.
A result contains the affected system components and the resulting postconditions. After
the analysis is completed, the results are compared with the attack graph. If the attack
graph has changed after one iteration of the analysis, the analysis is repeated. If not, the
graph is returned as the result. A change in the graph is triggered in the following cases:

1. A new component has been affected and is, therefore, inserted into the graph as
a vertex;

Information 2023, 14, 14 14 of 28

2. A capability has changed because a rule has increased the assigned value;
3. A new rule is valid, which leads to a new edge inside the graph.

We are aware that the repeated application of all rules leads to an increased workload.
However, this is the only way we can ensure that the analysis is complete, as capabilities
expand during iterations and the number of affected components can increase steadily.
To prevent the algorithm from running into an infinite loop, we have specified that the
assigned capability value can never decrease but only increase. Thus, we have an additional
termination strategy that the algorithm must terminate at the latest when the attack graph
contains all components as vertex and each vertex contains the highest value of each
defined capability.

However, the attack graph also has a downside compared to the attack tree. When
the system under investigation reaches a certain size and the number of threat data in the
threat model increases, the view of the graph becomes complex.

For this reason, we decided to utilize attack graphs as an internal representation and
use their provided data to generate attack trees. Each tree ends in a target representing the
asset or element that is affected by the threat. This gives a structured view of the individual
steps that the attacker could take at each level of the attack path. The attack trees are then
derived from the attack graph at runtime. The extraction of the attack trees from the attack
graph is done by a recursive query. The user selects a vertex within the attack graph for
which the attack tree should be generated. The algorithm then extracts this vertex from
the graph and defines it as the root of the tree. Then the algorithm follows all incoming
edges to their source vertices and adds them to the attack tree. The algorithm is repeated
until all paths in the graph reach an initial vertex. Now that the origin and the relevant
aspects of the existing and novel methods have been discussed we present an example of
their application within THREATGET.

4. Evaluation Example
4.1. THREATGET and TARA

THREATGET follows an approach similar to the TARA process proposed by the
ISO/SAE 21434 standard. Therefore, it supports the definition of potential assets and the
identification of damage scenarios. Furthermore, assets contain relevant cybersecurity
property, impact type, and impact rating. By bringing threats and assets into relation
the impact can be automatically assessed. This becomes possible through the integration
of valuable assets into the system architecture and linking them with components and
connectors in order to depict the asset’s location(s). Moreover, its threat model works based
on a representation of known vulnerabilities and threats. Based on an underlying set of anti-
patterns, potential threats and attack scenarios posed to the SuC can be detected. Alongside
impact assessment, THREATGET offers automated suggestions for attack feasibility. Risk
can then be calculated by applying a risk matrix scheme based on attack feasibility and
impact ratings which is fully compatible with the one proposed in ISO/SAE 21434. As
far as countermeasures are concerned, the iterative nature of threat modeling serves as
means to reduce risks. Consequently, detected threats serve as input for a revised system
model. However, as THREATGET may already be applied during the system design phase
or integrated later on into the development process, the order of steps as depicted in the
ISO/SAE 21434 may vary slightly. The attentive reader might have noticed some similarities
with the TVRA shown in Figure 2. The two methods are related, and THREATGET can
also follow the TVRA; however, the TARA process by ISO/SAE 21434 is our preferred way
of analyzing threats and assessing risk. In the following sections, the results of a TARA
process executed with THREATGET based on an automotive use case will be discussed.

4.1.1. A Typical Automotive Architecture

Before getting into details about the execution of the TARA process, we would like
to explain a typical automotive architecture. As mentioned before, a modern vehicle
contains up to 150 electronic controls units, various wired and wireless communication

Information 2023, 14, 14 15 of 28

interfaces, actuators, and busses. These components are used for communication with
the infrastructure, the OEM (e.g., in terms of software updates), the key fob, internal
communication and control of the car, and with devices (e.g., phones) carried by the driver.
Figure 12 provides an excerpt of a reference architecture for a vehicle network.

Figure 12. An automotive reference architecture as presented in [39].

Figure 12 describes a complex system of interconnected components controlling the
vehicle. The head unit manages the information presented to the user (e.g., navigation)
and takes care of the entertainment (e.g., connection to phone and audio). It is also known
as the infotainment system. The communication control takes care of the communication
interfaces with the outside, such as cellular interfaces, GPS, and wired interfaces for onboard
diagnostics. In the meantime, the body module controls the windows as well as the air
conditioning in the different sections of the car. Moreover, it controls the headlamp. The
powertrain control is relevant for lane keeping and controls the engine based on a set of
sensors. Finally, the lower right part of the diagram displays controls related to the chassis,
steering, and braking. The diagram shows an architecture connected by multiple bus
systems through which data is transferred to other components. As this example represents
the general architecture of a real vehicle precisely we based our analysis example on this
reference network.

4.1.2. Definition of Assets and Damage Scenarios

In terms of impact rating, THREATGET currently supports four possible values which
are derived from ISO/SAE 21434. These are “Negligible”, “Moderate”, Major”, and “Se-
vere”. For demonstration purposes, we defined two types of assets with regard to differ-
ent aspects.

1. Asset: Availability of the Brake depicts that if an attacker gains control over the
component holding the asset, they can disrupt the availability of the brake. It refers to
the brake control becoming unavailable. This becomes relevant when the vehicle does
a self-check at startup to verify that all vehicle control units are reachable. With regard
to the availability of the brake, if e.g., the brake is not reachable the vehicle does not
start. This could happen in case a trojan was placed within the vehicle network, thus,
flooding the CAN Bus with messages. It is not required to take over a control unit, a
simple blocking of the CAN Bus is sufficient. The availability of the brake was rated
with an impact value of “Major”.

2. Asset: Safety of the Brake describes an asset that may be affected by integrity
breaches. In case an attacker disrupts the correct functionality of the brake, even
for a short time, this might result in an accident. The attacker could wait until the

Information 2023, 14, 14 16 of 28

driver intends to do an emergency braking and prohibit the action or they could wait
until the car reaches a certain velocity and force an emergency braking. Both ways
most likely result in an accident. Therefore, this asset was rated with the maximum
impact level “Severe” which represents the maximum impact.

Of course, a TARA of a real-world architecture of a modern vehicle needs to consider
more than two assets. However, for demonstration purposes, we limited the number of
assets to reduce complexity.

4.1.3. System Architecture

Based on the reference architecture from Figure 12 a system model for the braking
control was designed with THREATGET. It contains all relevant components that are
potentially involved in a remote attack targeted at the availability and safety of the brake
assets as described above. This system model is shown in Figure 13.

Figure 13. Diagram of the automotive system architecture including assets.

The model shows a vehicle system that provides a cellular (UMTS) interface to com-
municate with other vehicles and the infrastructure as well as a Bluetooth interface to
pair with a phone. As the phone, as well as the external interactor, are not part of the
vehicle they are modeled as external components. The interfaces are connected to ECUs, the
communication control takes care of managing communication with components from the
outside, and the infotainment system is connected to a display for presenting information
to the driver. Behind the ECUs lies a CAN Bus (Vehicle CAN) which is used for distributing
information to various other components inside the vehicle. Please note that the CAN Bus
is usually connected to more components than are displayed here. They were left out in
order to reduce complexity, as they are not relevant to the excerpt of the analysis presented
in this paper. Behind the CAN Bus lies the driver assistant ECU, which processes sensor
data, and brings it in relation to data from the CAN Bus informing the brake control. Finally,
the brake control which is responsible for the brake actuator represents the component
holding the assets that need to be protected. The presented example serves as the basis for
the analysis conducted with THREATGET. The following section elaborates on the results
of the automated analysis process of THREATGET.

4.1.4. Identification of Threats

As described in Section 3, THREATGET’s analysis process compares the system model
as well as the threat model to identify threats posed to the SuC. In case a pattern described

Information 2023, 14, 14 17 of 28

in the threat model is found within the system model, a new entry is added to the threat
catalog which is the result of the analysis process. The threat model itself is created
beforehand. It is based on expert knowledge from the automotive domain as well as inputs
from e.g., UNECE WP29, ETSI, and the Automotive Information Sharing Analysis Center
(Auto-ISAC) with regard to community available threat information. This basis was also
used to analyze the system model described in the previous section. Figure 14 displays an
excerpt of the resulting threat catalog.

Figure 14. Automatically assessed threats based on the system architecture.

In total, 372 threats were identified. They range from attacks against wireless interfaces,
towards tampering of ECUs, compromised or malicious updates to man-in-the-middle
attacks. For demonstration purposes, no dedicated security measures were implemented
into the system model. Countermeasures such as authentication, authorization, tamper
protection, or input sanitization can be added to the system model, thus reducing the
number of threats detected. In case a pattern defined in the threat model is found multiple
times within the system model (e.g., multiple ECUs or multiple connections to a CAN Bus)
this threat is added multiple times to inform the user about all potential weak spots.

All threats in the threat catalog possess their own automated impact and likelihood
suggestions. While the impact is derived from attributes in the asset, the likelihood is
currently based on expert knowledge. However, in case the cybersecurity expert considers
them more or less critical, they can override these suggestions. The calculated risk is based
on the standard matrix from ISO/SAE 21434 and can be deduced from the impact and
likelihood levels. Categorization threats have a STRIDE category assigned to them. Finally,
threats that involve an asset (i.e., damage scenarios) also have an impact category assigned
to them.

Besides listing threats, THREATGET is capable of associating the threats with the
system model. Examples are shown in Figures 15 and 16.

Figure 15. Threat over cellular interface.

Information 2023, 14, 14 18 of 28

The first threat is the wide-area wireless interfaces that enable an attacker to access the
vehicle system. It is a threat that is based on the connection between two elements. Wireless
interfaces and networks in the vehicle should be protected by strong authentication and
authorization mechanisms. This would prevent an attacker from spoofing the identity
of external communication partners and chaining a number of vulnerabilities together in
order to gain remote access. As this threat is not associated with an asset, its THREATGET
considers its impact as negligible. However, a wide area wireless interface is open for
communication with the outside and can be easily reached. Therefore, the likelihood is
considered high.

Figure 16. Threat regarding brake control.

The second threat considers malicious updates to the target. It is about spoofing the
source in order to send malicious updates. Therefore, updates should be secured and the
component should be managed. Moreover, malware protection measures should be taken
into account. This threat is associated with an asset and may lead to a damage scenario.
The safety of the brake is rather critical. Consequently, an impact level of severe is assigned.
Due to the fact that updates are not an uncommon attack vector, the likelihood is considered
high. This leads to a maximum risk level and presents a risk that must be treated.

The same threat also applies to another asset mentioned before—the availability of the
brake. However, the impact is somewhat lower as it does not necessarily lead to accidents.
Therefore, the impact is considered major and the risk remains lower.

In order to reduce the overall risk, countermeasures can be assigned to the components
as well as the connectors. Therefore, we applied authentication, authorization, input
validation, and input sanitization measures to the wireless interfaces (UMTS and Bluetooth)
which already reduces the amount of the highest-rated threats. Moreover, the total amount
of threats is reduced by 20. These simple measures already have a potent effect on overall
security. A small expert of the resulting threat catalog is displayed in Figure 17.

Figure 17. Excerpt of the threat catalog after updating security measures.

This section presented a selection of a few threats detected by THREATGET. Knowing
about potential threats and being able to mitigate them is only one part of the problem.

Information 2023, 14, 14 19 of 28

Chaining threats together is the next step in understanding attack patterns and making our
systems more resilient.

4.1.5. Identification of Attack Scenarios—Attack Trees

As explained in Section 3.2, our approach towards automatically generating attack
trees involves the combination of individual attack steps. Therefore, we demonstrate a
cyberattack scenario affecting the assets of the brake controls. The attack is based on a
remote access scenario that starts from the external interactor with the vehicle via the UMTS
Interface. Please note that full-featured attack trees can get very large in size, therefore,
this paper focuses on two sub-trees to explain the concept behind generating them. The
involved rules (anti-patterns) are defined in Appendix A.1.

The tree shown in Figure 18 describes the initial intrusion into the vehicle. The
UMTS interface serves as the entry point as it has neither authentication nor authorization
mechanisms applied. Furthermore, the fact that it is a wide area wireless interface makes
it a potential target for remote attacks. Consequently, an attacker gains access to the
communication control unit which is also the postcondition for this attack step. In the
following, the access capability serves as means to intrude further into the system, therefore,
it becomes our precondition or prerequisite for the subsequent attack step. As before the
conditions for the next anti-patterns are fulfilled as there is no input validation or encrypted
storage implemented. Thus, the attacker gains modify capabilities on the communication
control. Rule 1 and Rule 2 and the following rule numbers refer to the number of the
applied anti-patterns described in Appendix A.1. (Please note that Rule 4 is not described
here, as it is not present in the excerpts of the attack trees that we show here. However, its
description is contained in Appendix A.1.)

Figure 18. Sub-tree for gaining modification capability.

Rule 3 describes even higher capabilities on the communication control that can be
gained by the attacker if modify rights have already been achieved. If the element allows
updates, is not managed, and does not support secure boot, an attacker may gain full
control over this component by uploading software.

Rule 5 describes another possible way to reach an asset and uses the manipulation of
ECUs by malicious updates. The driver assistant ECU can be reached via the CAN Bus
and the brake control may be reached if no anomaly detection is present. Consequently, a
malicious update can be installed as the security properties as depicted in Rule 5 are not
satisfied. Therefore, the attacker gains control over the driver assistant ECU.

Information 2023, 14, 14 20 of 28

Finally, Rule 6 ends in the control of the brake control unit, and, therefore, the integrity
of the brake and consequently, the safety of the brake is compromised. The sub-tree
involved in Rule 5 and Rule 6 is illustrated in Figure 19. Control over the communication
unit has been gained via Rule 3.

Figure 19. Sub-tree for reaching the safety of the brake asset.

5. Results

As demonstrated in Section 4, chaining together results from rules alongside the
concept of prerequisites and postconditions enables the generation of attack trees. We also
demonstrated how we are able to automate an ISO/SAE 21434-compliant TARA process
with our methodology. This extends the automation above existing threat modeling tools
and methods and represents the first automated generation of attack trees and attack
paths based on a conceptual model. Therefore, our approach is applicable during design
and concept time and individual attack steps towards reaching the attack target can be
thoroughly analyzed. Consequently, informed decisions on risk treatment can be made and
countermeasures may be applied to the system. The proper listing of security attributes
in relation to the affected components within the tree allows for the identification of
vulnerabilities within the system. Thus, THREATGET provides a vital contribution to
the risk management process and gives information on which security measures need to
be applied in the SuC. Moreover, these security measures can also be configured within
the system model which leads to different results for the attack tree, as well as the threat
analysis. This way, improved resilience can be achieved. In the automotive domain, with
an increasing trend toward security regulation, automated approaches are required to
achieve sufficient risk management and repeatable results. We compared the results of
the THREATGET application in various real-world projects and while we did not achieve
100% coverage, this was the case in both directions. In six parallel applications on different
automotive systems (e.g., experts analyzed the system and THREATGET analyzed the
system) each part did detect 4–5% additional weaknesses. In the case of THREATGET,
these additional results were used to add or extend rules to ensure coverage in the future.
Regarding efficiency and timing, automation did offer a benefit and produced results that
were easier to maintain and reuse.

6. Discussion

In this article, we highlighted cybersecurity as a core aspect of interconnected cars
and infrastructures. We investigated various threat modeling methods and explored
the origin of attack trees and attack graphs which come from research projects such as

Information 2023, 14, 14 21 of 28

EVITA, OVERSEE, and HEAVENS. Furthermore, future vehicles need to fulfill cybersecurity
standards and regulations (ISO/SAE 21434 and UNECE WP29) which enforce cybersecurity
by design approaches. We described how AIT’s THREATGET tool can support the secure
development of the various ECUs and their connections within a car by applying security
by design principles but also how it can be used to support the threat identification and
threat analysis of existing systems in order to fulfill the requirements from standards
and regulations. Furthermore, THREATGET provides superior analysis capabilities to
common threat modeling tools. By using its flow pattern it can identify complete attack
paths within a system model in contrast to current STRIDE per element and STRIDE per
interaction approaches which focus on single elements or the direct connection between
only two elements. With the application of attack trees and attack graphs, THREATGET
has even more advanced capabilities to identify the most likely and most dangerous (in
terms of their potential consequences) paths an attacker could take in the system as well
as to estimate the potential damage that can be done to the car (and, of course, the people
inside it). Past approaches rely on a manual derival of attack trees based on the system
architecture. Therefore, we introduced the first approach towards an automated generation
of attack graphs on the system level. By incorporating anti-patterns for threat identification
alongside the concept of pre- and postconditions to model attacker capabilities, we can
describe a chain of attacks and concatenate them into attack paths which are stored within
an attack graph. By specifying the target node, all identified attack paths can be extracted
from this attack graph and arranged within an attack tree. Finally, we demonstrated this in
a real-world use case.

These aspects analyzed by THREATGET can directly be integrated into a full risk
assessment and risk management approach such as TVRA or TARA as mentioned in
Sections 2.2.2 and 2.2.3. In this way, THREATGET supports Step 3 to Step 6 of TVRA and
all steps of TARA, as we showed in our small example in Section 4. Hence, THREATGET
is particularly useful when implementing TARA, since the modeling component on the
one hand covers the first three steps of TARA, i.e., the identification of assets together with
their impacts, and on the other hand provides the system architecture as a direct output.
Furthermore, THREATGET delivers a complete set of potential threats and consequently
also attack scenarios due to its automated threat assessment. Moreover, the automated
attack tree analysis then paves the way for an attack feasibility estimation by showing the
most probable attack paths (and the ones with the highest impact on various assets); this
information is then used to calculate the risk, i.e., the final step in the TARA process. As
part of our future work, we will focus on a more intuitive procedural integration of the
THREATGET tool and also strengthen the relations to TVRA.

Another aspect that we will be looking at in the future is targeted towards a more
holistic analysis and is even going beyond attack graphs, rather focusing on potential
cascading effects that can occur in the system as a consequence of a specific attack. In
this context, the main focus is not the valuable asset that has been defined in the model
or the activities taken by the adversary to reach that asset (i.e., the attack graph) but the
elements and assets that are connected to—and thus depending on—the attacked asset.
We will inspect how a compromise or a malfunction of the attacked asset will affect the
other parts of the system. Hence, this analysis does not only take into account the direct
impact an attack has on the asset but provides a more holistic overview. In other words, by
analyzing all the elements and assets affected by the cascading effects, the impact on the
overall system can be evaluated in a more suitable way. This will then further support the
risk assessment and risk management approaches such as TVRA and TARA and give the
security experts a more detailed overview.

7. Patents

A European patent “VERFAHREN ZUR ERMITTLUNG VON KRITISCHEN SCHWAC
HSTELLENKETTEN” on automated attack tree generation was submitted and is currently
undergoing evaluation.

Information 2023, 14, 14 22 of 28

Author Contributions: Conceptualization, S.C., C.S. and A.M.S.; methodology, all; software, S.C.
and K.C.; validation, S.C., K.C. and C.S.; formal analysis, K.C. and S.S.; investigation, S.C. and
C.S.; resources, all.; writing—original draft preparation, S.C., K.C. and A.M.S.; writing—review and
editing, C.S., S.S. and M.L.; visualization, S.C.; supervision, C.S. All authors have read and agreed to
the published version of the manuscript.

Funding: Part of this work has been performed in the VALU3S project, which has received funding
from the ECSEL Joint Undertaking (JU) program under Grant Agreement No. 876852.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Thorsten Tarrach, who substantially contributed
to the development of attack trees during his time at AIT.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AIT Austrian Institute of Technology
CCAM Cooperative Connected and Automated Mobility
CAN Controller Area Network
CIA Confidentiality, Integrity, Availability
C-ITS Cooperative Intelligent Transport System
CPS Cyber–Physical System
CSMS Cybersecurity Management System
DDoS Distributed Denial of Service
DFD Data-Flow Diagram
DSL Domain Specific Language
DREAD Damage Potential, Reproducibility, Exploitability, Affected Users, and Discoverability
ECU Electronic Control Unit
EDFD Extended Data-Flow Diagram
ETSI European Telecommunications Standards Institute
EVITA E-safety vehicle intrusion protected applications
OBD On-Board Diagnostics
GPS Global Positioning System
HEAVENS HEAling Vulnerabilities to ENhance Software Security and Safety

ISO International Standardization Organization
OEM Original Equipment Manufacturer
OVERSEE Open VEhiculaR SEcurE platform
SAE Society of Automotive Engineers
SuC System Under Consideration
STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,

and Elevation of Privilege
TARA Threat Analysis and Risk Assessment
TVRA Threat, Vulnerability, and Risk Assessment
UMTS Universal Mobile Telecommunications System
UNECE United Nations Economic Commission for Europe

Appendix A

Appendix A.1. Attack Tree Rules

In this section, we present the identified threats for the system described above. We
will use the example from the international standard ISO/SAE 21434. The respective threats
are briefly described in each case and then we go into detail on how the threats can be
represented as anti-patterns in order to be able to use them for the automatic analysis.

Information 2023, 14, 14 23 of 28

Each rule builds on the previous one, as together they describe multiple attack paths
to affect the brake actuator, its controlling ECU, and the associated assets. The relationship
between the rules is established through the requires capability and provides capability
filters, as described earlier.

A capability describes one or more “abilities” of an attacker on a particular component
of the system.

For this example, we have identified three capabilities: “Access”, “Modify” and
“Control”. Each of these capabilities can take the following three values: “undefined”,
“false”, or “true”.

The “Access” capability describes that the attacker has access to a component, i.e., that
data can be exchanged with the component.

With the “Modify” capability, we describe that data can not only be exchanged but
also that data of the component can be changed within the system.

Finally, the “Control” capability shows that an attacker has achieved full control over
a component and can thus influence the system through it.

Since the anti-patterns are more complex and longer than the previous simple exam-
ples, the individual lines are numbered. Within the description, we refer to the respective
lines of the anti-pattern with numbering. Since some parts of the anti-patterns are repetitive,
we refrain from explaining them repeatedly.

The first anti-pattern in Figure A1 checks whether there is an ECU within the system
that receives input from a wireless interface, which could give the attacker access to
this ECU.

(1) Element : “ECU” {
(2) HAS CONNECTOR {
(3) Source Element “Wireless Interface” {
(4) “Network Technology” = “Wide Area Wireless Network” &
(5) “Authorization” NOT IN [“Yes”, “Strong”] &
(6) “Authentication” NOT IN [“Yes”, “Strong”]
(7) }
(8) } &
(9) Provides Capability “Access” := “True”
(10) }

Figure A1. Anti-Pattern for Rule 1.

Line (1) initiates the anti-pattern with an element pattern that examines all “ECU”s of
the system.

In lines (2–8), it is examined whether the “ECU” has a connector (2), which originates
from a “Wireless Interface” (3).

In addition, three attributes of this interface are examined (4–6).
It is checked whether the interface has the attribute “Network Technology” with the

set value “Wide Area Wireless Network” (4), as this threat targets, for example, the UMTS
interface of the vehicle.

Furthermore, this anti-pattern verifies that the interface does not have a simple or
strong “Authorization” (5) mechanism or an “Authentication” (6) mechanism.

If these mechanisms are not implemented in any way, it would be possible for an
attacker to abuse this interface to send malicious data to the vehicle.

This line (7) concludes the description of the “Wireless Interface” and line (8) the
description of the connector between the “ECU” and the interface.

In line (9), we describe the first capability filter. This indicates that the attacker is
assigned the capability named “Access” with the value “True” for the “ECU” component if
this anti-pattern is completely valid. The last line (10) closes the element pattern.

The second anti-pattern in Figure A2 also focuses on an ECU within the system and
builds on the first one. In this case, it checks whether the attacker can make use of the

Information 2023, 14, 14 24 of 28

access capability to the ECU to modify the data on the ECU component by exploiting the
memory or non-existent/faulty input validation.

(1) Element : “ECU” {
(2) Requires Capability “Access” >= “True” &
(3) “Encrypted Storage” != “Yes” &
(4) “Input Validation” != “Yes” &
(5) Provides Capability “Modify” := “True”
(6) }

Figure A2. Anti-Pattern for Rule 2.

In the first line (1), the element pattern is again specified with a focus on the “ECU”.
In the second line (2), it is checked whether the attacker already has the “Access”

capability on this “ECU”. This line refers to the previous anti-pattern, as this threat requires
some kind of connection between the adversary and the “ECU” component.

In lines (3–4), the “Encrypted Storage” (3) and “Input Validation” (4) attributes of the
“ECU” are examined. In both cases, it is checked whether the value is not equal to “Yes”.

If this is the case, the attacker obtains the capability “Modify” on this “ECU” as
described in line (5) by the provided capability filter. This filter provides the attacker with
an additional capability that can be used in the following steps.

This is due to the fact that the attacker can upload data to the “ECU” and the data is
not inspected and the data can be stored within the “ECU” as no encryption is necessary.

Line (6) closes this anti-pattern.
In the third anti-pattern in Figure A3, we again focus on the ECU in order to validate

that the attacker is able to gain full control over this component. For this, the attacker needs
the capability to modify this component. In addition, it must be possible to update the
component, and, furthermore, it must be possible for the attacker to exploit this update
process in order to install malicious software and thus gain control over the component.

(1) Element : “ECU” {
(2) Requires Capability “Modify” >= “True” &
(3) “Updates” = “Yes” &
(4) “Secure Boot” != “Yes” &
(5) “Managed” != “Yes” &
(6) Provides Capability “Control” := “True”
(7) }

Figure A3. Anti-Pattern for Rule 3.

Line (2) refers to the previous anti-pattern, as the attacker needs the capability to
“Modify” the component to upload malicious data into the “ECU”. In lines (3–5), the
anti-pattern focuses on additional properties of this “ECU”.

It is analyzed whether it is possible to “Update” the “ECU” (3), as this allows the
attacker to install malicious software.

Secondly, it is checked whether the “ECU” does not have a “Secure Boot” mechanism
(4), meaning that modified software cannot be detected during the boot process.

Furthermore, this anti-pattern checks if the attribute “Managed” of the “ECU” is
unequal to “Yes”. If this is the case, it is not regularly checked for faulty software or
other impairments.

If these preconditions are met, then the attacker gains complete “Control” (6) over the
“ECU” and can perform further attack actions through this corrupted “ECU”.

The following fourth threat displayed in Figure A4 now directly threatens the vehicle’s
braking system, but can also affect other functionalities of the vehicle. The attacker uses
the control over the corrupted ECU to flood the vehicle’s CAN BUS system with malicious
forged CAN messages. The direct connection of the ECU to the BUS system allows the

Information 2023, 14, 14 25 of 28

attacker to create his own messages and inject them into the system. By sending a large
number of these messages, the system can collapse. This attack pattern is similar to a DDoS
attack and can thus also paralyze the braking system and thus also affect passenger safety.

(1) Flow {
(2) Source Element : “ECU” {
(3) Requires Capability “Control” >= “True”
(4) }&
(5) Target Element : “ECU” {
(6) Holds Asset {
(7) “Cybersecurity Attribute” = “Availability”
(8) }
(9) }&
(10) Includes Element : “BUS Communication” &
(11) Includes No Element : “ECU” {
(12) “Anomaly Detection” = “Yes”
(13) }
(14) }

Figure A4. Anti-Pattern for Rule 4.

Line (1) establishes a flow pattern. This pattern examines the system and the connec-
tors between the components. However, it does not only examine direct connections but all
connections and searches for a path between the defined source and target element. Not
only the shortest path is examined, but every path that exists within the system. In this
way, data flows between components can be examined.

Lines (2–4) define the source element of the flow.
This flow starts at an element of type “ECU” (2).
In addition, the attacker must already have gained the ability “Control” on this element

(3). Line (4) concludes the specification of the source element. Lines (5–9) describe the
target element of the flow. This flow pattern targets all other “ECU”s (5) associated with
the source that has an asset or is associated with it (6), where the asset must be concerned
about the “Availability” (7) represented by the asset’s “Cybersecurity Property”.

Line (8) completes the asset description and line (9) completes the flow pattern tar-
get description.

As described earlier, a flow pattern examines a path between a source and a destination.
With an include filter as in line (10), we can check the elements within the observed path.
When describing the threat, we found that the “ECU” can be used to send CAN messages,
so this path must contain a “BUS Communication” element (10).

However, the flow should not contain an “ECU” type element (11) that is capable of
performing “Anomaly Detection” (12). Otherwise, the system could detect that there is a
large number of CAN messages that should not be in the system and could then shut down
the “ECU” under the “Control” of the attacker.

The fifth anti-pattern in Figure A5 describes another threat that exists through an
attacker-controlled ECU for the analyzed system. This threat targets the updated behavior
of the overall system. Normally, an update is downloaded from the system via the UMTS
interface and then rolled out to the individual ECU components. In this case, the attacker
can exploit this behavior by injecting a malicious update into the system and installing
it on all ECU components, thereby gaining control of these components. This threat is a
synthesis of anti-patterns three and four.

Information 2023, 14, 14 26 of 28

(1) Flow {
(2) Source Element : “ECU” {
(3) Requires Capability “Control” >= “true”
(4) }&
(5) Target Element : “ECU” {
(6) “Encrypted Storage” != “Yes” &
(7) “Input Validation” != “Yes” &
(8) “Updates” = “Yes” &
(9) “Secure Boot” != “Yes” &
(10) “Managed” != “Yes” &
(11) Provides Capability “Control” := “true”
(12) }&
(13) Includes Element : “BUS Communication” &
(14) Includes No Element : “ECU” {
(15) “Anomaly Detection” = “Yes”
(16) }
(17) }

Figure A5. Anti-Pattern for Rule 5.

Similar to the fourth anti-pattern, a flow pattern (1) is used in Rule 5 to examine data
communication starting from an “ECU” (2) under “Control” of the attacker (3) and a target
“ECU” (5).

As described in the third threat, the target “ECU” must have the following attributes:
(6) it must not have “Encrypted Storage”, (7) it must not implement an “Input Validation”
mechanism, it must allow “Updates” (8), it must not implement “Secure Boot” (9) and it
must be an “ECU” with the property “Managed” set unequal to “Yes”(10).

If all these properties apply, then the attacker also obtains the “Control” capability
over any target “ECU” (11).

The communication must be via the vehicle’s CAN messaging system, so the path
must contain an element “BUS communication” (13).

Finally, also in this case, no “ECU” within the path (14) may perform “Anomaly
Detection” (15), otherwise, the update could not be carried out.

The sixth and final anti-pattern in Figure A6 we would like to present in this context
relates to the assets linked to an ECU under the control of the attacker. If a system com-
ponent comes under the control of the attacker, the integrity of assets can no longer be
guaranteed, as the attacker may influence them. In this example, we want to point out that
the attacker controls the brake control ECU and, in the worst case, changes the behavior of
the brake.

(1) Element : “ECU” {
(2) Requires Capability “Control” >= “true” &
(3) Holds Asset {
(4) “Cybersecurity Attribute” = “Integrity”
(5) }
(6) }

Figure A6. Anti-Pattern for Rule 6.

This anti-pattern focuses on any “ECU” within the system (1) that is under the control
of the attacker (2).

It also checks whether this “ECU” is related or linked to an “Asset” (3) that focuses on
the “Integrity” (4) of this specific “ECU”.

Information 2023, 14, 14 27 of 28

References
1. Bradley, T. Cyber Attacks on Cars up 225 Percent: How Hackers Could be Targeting Your Vehicle. Section: Cars. 2022.

Available online: https://www.express.co.uk/life-style/cars/1632500/hackers-target-drivers-cyber-attacks-cars (accessed on
15 August 2022).

2. Blum, B. Cyberattacks on Cars Increased 225% in Last Three Years. 2022. Available online: https://www.israel21c.org/
cyberattacks-on-cars-increased-225-in-last-three-years/ (accessed on 15 August 2022).

3. 1 in 3 Automotive Cyber Incidents Result in Car Theft or Break-Ins—Atlas VPN. Available online: https://atlasvpn.com/blog/1-
in-3-automotive-cyber-incidents-result-in-car-theft-or-break-ins (accessed on 16 August 2022).

4. Schmittner, C.; Schrammel, B.; König, S. Asset Driven ISO/SAE 21434 Compliant Automotive Cybersecurity Analysis with
ThreatGet. In Proceedings of the European Conference on Software Process Improvement, Krems, Austria, 1–3 September 2021;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 548–563.

5. Schmittner, C.; Dobaj, J.; Macher, G.; Brenner, E. A preliminary view on automotive cyber security management systems. In
Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1634–1639.

6. Schmittner, C.; Tummeltshammer, P.; Hofbauer, D.; Shaaban, A.; Meidlinger, M.; Tauber, M.; Bonitz, A.; Hametner, R.; Brandstetter,
M. Threat Modeling in the Railway Domain. In Proceedings of the International Conference on Reliability, Safety, and Security of
Railway Systems, Lille, France, 4–6 June 2019; pp. 261–271.

7. Shevchenko, N. Threat Modeling: 12 Available Methods. 2018. Available online: https://insights.sei.cmu.edu/sei_blog/2018/1
2/threat-modeling-12-available-methods.html (accessed on 14 December 2022).

8. Lautenbach, A.; Islam, M. The HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS) Project—Security
Models. 2016. Available online: https://autosec.se/wp-content/uploads/2018/03/HEAVENS_D2_v2.0.pdf (accessed on
11 August 2022).

9. Shostack, A. Threat Modeling: Designing for Security; Wiley: Indianapolis, IN, USA, 2014; OCLC: 855043351.
10. Hamad, M. A Multilayer Secure Framework for Vehicular Systems; Technische Universität Braunschweig: Braunschweig,

Germany, 2020.
11. Khan, R.; McLaughlin, K.; Laverty, D.; Sezer, S. STRIDE-based threat modeling for cyber-physical systems. In Proceedings of

the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy, 26–29 September 2017;
pp. 1–6. [CrossRef]

12. The Ultimate Beginner’s Guide to Threat Modeling. Available online: https://shostack.org/resources/threat-modeling.html
(accessed on 12 August 2022).

13. Allen-Addy, C. Threat Modeling Methodology: TRIKE. Available online: https://www.iriusrisk.com/resources-blog/trike-
threat-modeling-methodologies (accessed on 14 December 2022).

14. Threatmodeler. Threat Modeling Methodologies: What is VAST? 2018. Available online: https://threatmodeler.com/threat-
modeling-methodologies-vast/ (accessed on 14 December 2022).

15. Smith, C. The Car Hacker’s Handbook: A Guide for the Penetration Tester; No Starch Press: San Francisco, CA, USA, 2016.
16. Shaaban, A. An Ontology-Based Cybersecurity Framework for the Automotive Domain-Design, Implementation, and Evaluation.

Ph.D. Thesis, Faculty of Computer Science, University of Vienna, Vienna, Austria, 2021. Available online: https://utheses.univie.
ac.at/detail/59948 (accessed on 17 August 2022).

17. Goswami, D.; Schneider, R.; Masrur, A.; Lukasiewycz, M.; Chakraborty, S.; Voit, H.; Annaswamy, A. Challenges in automotive
cyber-physical systems design. In Proceedings of the 2012 International Conference on Embedded Computer Systems (SAMOS),
Samos, Greece, 16–18 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 346–354.

18. Pauker, F.; Mangler, J.; Rinderle-Ma, S.; Pollak, C. Centurio. work-modular secure manufacturing orchestration. In Proceedings
of the 16th International Conference on Business Process Management 2018, Sydney, Australia, 9–14 September 2018.

19. AVL. Automotive Cybersecurity—A Holistic Approach to the Protection of Vehicles. 2020. Available online: https:
//www.avl.com/web/guest/services1/-/asset_publisher/gYjUpY19vEA8/content/automotive-cyber-security (accessed on
10 October 2020).

20. EVITA. E-Safety Vehicle Intrusion Protected Application—FINAL DRAFT. 2008. Available online: https://trimis.ec.europa.eu/
sites/default/files/project/documents/20130702_175923_78998_EVITA_ProjectSummary.pdf (accessed on 15 August 2022).

21. OVERSEE. The Application Store for Cars: Secure Download of Your Favorite Apps into Your Car. 2010. Available online: https:
//www.oversee-project.com/fileadmin/oversee/press_releases/OVERSEE-Pressrelease-1-EN.pdf (accessed on 15 August 2022).

22. Olsson, M. HEAling Vulnerabilities to ENhance Software Security and Safety. 2016. Available online: https://www.vinnova.se/
globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/elektronik-mjukvara-och-kommunikation-rapporter/2012-04625
eng.pdf (accessed on 15 August 2022).

23. J3061_202112; Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. SAE International: Warrendale, PA, USA, 2021.
24. ISO/SAE 21434 Road; Vehicles—Cybersecurity Engineering. ISO—International Standardization Organization: Geneva,

Switzerland, 2021.
25. ETSI. Intelligent Transport Systems (ITS); Security; Threat, Vulnerability and Risk Analysis (TVRA); Technical Report; European

Telecommunications Standards Institute (ETSI): Sophia, France, 2010.

https://www.express.co.uk/life-style/cars/1632500/hackers-target-drivers-cyber-attacks-cars
https://www.israel21c.org/cyberattacks-on-cars-increased-225-in-last-three-years/
https://www.israel21c.org/cyberattacks-on-cars-increased-225-in-last-three-years/
https://atlasvpn.com/blog/1-in-3-automotive-cyber-incidents-result-in-car-theft-or-break-ins
https://atlasvpn.com/blog/1-in-3-automotive-cyber-incidents-result-in-car-theft-or-break-ins
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://autosec.se/wp-content/uploads/2018/03/HEAVENS_D2_v2.0.pdf
http://doi.org/10.1109/ISGTEurope.2017.8260283
https://shostack.org/resources/threat-modeling.html
https://www.iriusrisk.com/resources-blog/trike-threat-modeling-methodologies
https://www.iriusrisk.com/resources-blog/trike-threat-modeling-methodologies
https://threatmodeler.com/threat-modeling-methodologies-vast/
https://threatmodeler.com/threat-modeling-methodologies-vast/
https://utheses.univie.ac.at/detail/59948
https://utheses.univie.ac.at/detail/59948
https://www.avl.com/web/guest/services1/-/asset_publisher/gYjUpY19vEA8/content/automotive-cyber-security
https://www.avl.com/web/guest/services1/-/asset_publisher/gYjUpY19vEA8/content/automotive-cyber-security
https://trimis.ec.europa.eu/sites/default/files/project/documents/20130702_175923_78998_EVITA_ProjectSummary.pdf
https://trimis.ec.europa.eu/sites/default/files/project/documents/20130702_175923_78998_EVITA_ProjectSummary.pdf
https://www.oversee-project.com/fileadmin/oversee/press_releases/OVERSEE-Pressrelease-1-EN.pdf
https://www.oversee-project.com/fileadmin/oversee/press_releases/OVERSEE-Pressrelease-1-EN.pdf
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/elektronik-mjukvara-och-kommunikation-rapporter/2012-04625eng.pdf
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/elektronik-mjukvara-och-kommunikation-rapporter/2012-04625eng.pdf
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/elektronik-mjukvara-och-kommunikation-rapporter/2012-04625eng.pdf

Information 2023, 14, 14 28 of 28

26. UNECE, U.N.E.C.f.E. Draft New UN Regulation on Uniform Provisions Concerning the Approval of Vehicles with Regard to
Cyber Security and of Their Cybersecurity Management Systems. 2020. Available online: https://unece.org/DAM/trans/doc/
2020/wp29grva/GRVA-05-05r1e.pdf (accessed on 25 February 2020).

27. Microsoft. Microsoft Threat Modeling Tool Getting Started Guide, Microsoft Trustworthy Computing, 2016. Available online:
https://download.microsoft.com/download/4/F/D/4FDDEA98-4ABD-47A7-AA0E-815CE8660A76/Threat%20Modeling%
20Tool%202016%20Getting%20Started%20Guide.docx (accessed on 20 December 2022).

28. Microsoft. Microsoft Threat Modeling Tool User Guide, Microsoft Trustworthy Computing, 2016. Available online:
https://download.microsoft.com/download/4/F/D/4FDDEA98-4ABD-47A7-AA0E-815CE8660A76/Threat%20Modeling%
20Tool%202016%20User%20Guide.docx (accessed on 20 December 2022).

29. Eng, D. Integrated Threat Modelling. Master Dissertation, Universitetet i Oslo, Oslo, Norway, 2017.
30. Wolf, M. Combining Safety and Security Threat Modeling to Improve Automotive Penetration Testing. Master’s Thesis,

Universität Ulm, Ulm, Germany, 2019.
31. OWASP Threat Dragon | OWASP Foundation. Available online: https://owasp.org/www-project-threat-dragon/ (accessed on

18 July 2022).
32. Williams, I.; Yuan, X. Evaluating the effectiveness of Microsoft threat modeling tool. In Proceedings of the 2015 Information

Security Curriculum Development Conference on—InfoSec ’15, Kennesaw, Georgia, 15–17 November 2015; ACM Press: Kennesaw,
Georgia, 2015; pp. 1–6.

33. Christl, K.; Tarrach, T. The analysis approach of ThreatGet. arXiv 2021, arXiv:2107.09986. [CrossRef]
34. Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [CrossRef]
35. Navarro, J.; Deruyver, A.; Parrend, P. A systematic survey on multi-step attack detection. Comput. Secur. 2018, 76, 214–249.

[CrossRef]
36. Paul, S. Towards Automating the Construction & Maintenance of Attack Trees: A Feasibility Study. Electron. Proc. Theor. Comput.

Sci. 2014, 148, 31–46.
37. Lallie, H.S.; Debattista, K.; Bal, J. A review of attack graph and attack tree visual syntax in cyber security. Comput. Sci. Rev. 2020,

35, 100219. [CrossRef]
38. Schneier, B. Academic: Attack Trees—Schneier on Security. 1999. Available online: https://www.schneier.com/academic/

archives/1999/12/attack_trees.html (accessed on 20 December 2022).
39. Shanker, S. Enhancing Automotive Embedded Systems with FPGAs. Ph.D. Thesis, Nanyang Technological University, Singapore,

2016. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://unece.org/DAM/trans/doc/2020/wp29grva/GRVA-05-05r1e.pdf
https://unece.org/DAM/trans/doc/2020/wp29grva/GRVA-05-05r1e.pdf
https://download.microsoft.com/download/4/F/D/4FDDEA98-4ABD-47A7-AA0E-815CE8660A76/Threat%20Modeling%20Tool%202016%20Getting%20Started%20Guide.docx
https://download.microsoft.com/download/4/F/D/4FDDEA98-4ABD-47A7-AA0E-815CE8660A76/Threat%20Modeling%20Tool%202016%20Getting%20Started%20Guide.docx
https://download.microsoft.com/download/4/F/D/4FDDEA98-4ABD-47A7-AA0E-815CE8660A76/Threat%20Modeling%20Tool%202016%20User%20Guide.docx
https://download.microsoft.com/download/4/F/D/4FDDEA98-4ABD-47A7-AA0E-815CE8660A76/Threat%20Modeling%20Tool%202016%20User%20Guide.docx
https://owasp.org/www-project-threat-dragon/
https://doi.org/10.48550/arXiv.2107.09986
http://dx.doi.org/10.1016/j.jcss.2014.02.005
http://dx.doi.org/10.1016/j.cose.2018.03.001
http://dx.doi.org/10.1016/j.cosrev.2019.100219
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://dx.doi.org/10.13140/RG.2.1.4001.1768

	Introduction
	Materials and Methods
	Generic Cybersecurity Management
	Automotive Cybersecurity Management
	Research Projects
	ISO/SAE 21434
	ETSI TVRA
	UNECE WP29

	THREATGET—Cybersecurity by Design
	THREATGET's Approach towards Threat Modeling
	Automated Attack Tree Analysis

	Evaluation Example
	THREATGET and TARA
	A Typical Automotive Architecture
	Definition of Assets and Damage Scenarios
	System Architecture
	Identification of Threats
	Identification of Attack Scenarios—Attack Trees

	Results
	Discussion
	Patents
	Appendix A
	Appendix A.1

	References

