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Abstract: This paper proposes a quantum-inspired evolutionary algorithm (QiEA) to solve an optimal
service-matching task-assignment problem. Our proposed algorithm comes with the advantage of
generating always feasible population individuals and, thus, eliminating the necessity for a repair
step. That is, with respect to other quantum-inspired evolutionary algorithms, our proposed QiEA
algorithm presents a new way of collapsing the quantum state that integrates the problem constraints
in order to avoid later adjusting operations of the system to make it feasible. This results in lower
computations and also faster convergence. We compare our proposed QiEA algorithm with three
commonly used benchmark methods: the greedy algorithm, Hungarian method and Simplex, in five
different case studies. The results show that the quantum approach presents better scalability and
interesting properties that can be used in a wider class of assignment problems where the matching
is not perfect.

Keywords: quantum-inspired evolutionary algorithm; service-matching task assignment; greedy
algorithm; Hungarian method; Simplex

1. Introduction

This paper considers a linear optimal service-matching task assignment problem
defined by

Z∗ = arg min ∑
i∈S

∑
j∈T

ci,jZi,j s.t. (1a)

Zi,j ∈ {0, 1}, i ∈ S = {1, · · · , N}, j ∈ T = {1, · · · , M}, (1b)

∑
j∈T

Zi,j = 1, ∀i ∈ S , (1c)

∑
i∈S

Zi,j ≤ 1, ∀j ∈ T , (1d)

where Z = [Zi,j] is the assignment matrix with N rows and M columns. We refer to S as
service agent set and its elements as service agent, and to T as task set and its elements as
task. Thus, ci,j > 0 is the cost of the assignment of service agent i ∈ S to task j ∈ T , and
Zi,j = 1 means that service agent i ∈ S is assigned to task j ∈ T . Without loss of generality,
we assume that N ≤ M, i.e., the task set, is larger than the service agent set. The imposed
constraint (1c) ensures that each service agent gets only one task, while constrain (1d) limits
the assignment of any task to, at most, one service agent. Z∗ is the adjacency matrix of the
resultant matching graph after the assignment is peformed.

An example scenario inspired by the service-matching mobile-agent deployment for
coverage over a dense set of targets studied in [1] is shown in Figure 1. In this service-
matching problem, service UAVs A1, A2, A3 (flying at the same altitude), whose spatial
service over the horizontal two-dimensional (2D) plane is described by a Gaussian distribu-
tion, should be deployed to provide coverage to a set of dense targets in a 2D flat plane. The
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targets are clustered into subgroups TC1, TC2, TC3, and TC4, each described by a Gaussian
distribution of the targets. The assignment cost ci,j is the measure of similarity between the
service distribution of agent Ai and the distribution of targets in subgroup TCj, measured
in terms of the Kullback–Leibler divergence (KLD) ([2], p. 34). More details are provided in
Section 4, where we conduct a numerical study of this service-matching task assignment.
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Figure 1. An optimal service-matching UAV deployment via AP formulation. ci,j indicates the level
of similarity between agent Ai’s service distribution with the target cluster TCj’s distribution. The
figure depicts a case that agent A1, A3, and A3 are assigned, respectively, to TC2, TC3 and TC4.

There are many other service-matching applications which can be used with the
optimal AP problem (1). For example, in manufacturing, in assembly lines, where there
must be a planning between the operators and the tasks [3,4]. Other situations such as in
delivery tasks or ridesharing [5] can also be formulated in the same way. In addition, some
social, economical or political situations are no more than an AP [6].

As in other combinatorial optimisation problems, there is a lack of methods that can
achieve a good approximation factor in polynomial time with good scalability. Currently,
the main algorithms still used to solve service-matching problems (1) are classical methods
such as the greedy algorithm, which, theoretically, ensures an approximation factor of
63% [7] with a complexity of O(NM logM) [8]. The Hungarian method, with an approxi-
mation factor of 1 and a complexity of O(NM(N + M)) [8], or the Simplex method with,
also, an approximation factor of 1 and a complexity of O(N2M2) [8]. The reader should
note that the aforementioned complexity bounds for the Hungarian and Simplex algorithms
are based on execution of these algorithms when N = M.

With the rise of machine learning, new techniques such as neural networks, reinforce-
ment learning or evolutionary algorithms have been formulated to solve combinatorial
optimisation problems. Related to all these techniques, the advances in quantum computa-
tion have originated a new field of study: quantum-inspired algorithms. Quantum-inspired
algorithms try to formulate classical algorithms in a quantum way, using qbits and its
properties, in order to increase the speed of these methods (Quantum-computing- related
terminologies used here are defined in Section 2. The interested reader can find more
detailed information in [9], Chapter 1.) For example, in [10], they use the superposition
property in order to accelerate distribution shaping in the travelling salesman problem,
or in [11], they use entanglement to prevent a two-agent autonomous system from cyber-
physical attacks. In [12] is seen how quantum formulation helps in clustering problems
and in [13,14] is seen how quantum properties are interesting for obtaining a better bal-
ance between exploration and exploitation in reinforcement learning. The same idea of
reducing model size and increasing robustness is seen in other deep-learning techniques
in [15]. One of the interesting applications of quantum-inspired algorithm development
is explored in [16], where a quantum-inspired version of an evolutionary algorithm (EA)
is implemented to solve a knaspack problem with a proven improvement with respect to
classical EA.

This paper focuses on developing a computationally efficient suboptimal solution
for the service-matching assignment problem (1) using a quantum-inspired EA (QiEA)
algorithm and demonstrates its application in solving a service-matching coverage problem
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illustrated in Figure 1. Special attention is given to the design of the collapsing procedure
to make it more coherent with the real collapsing process of qbits and to speed up the
process. In Section 2, preliminary notions about quantum theory are presented. The
proposed method is presented in Section 3. In Section 4, a numerical study focused on a
service-matching task assignment demonstrates the efficacy of our proposed algorithm.
The conclusions and our plan for future work are explained in Section 5.

2. Preliminaries

This section gives the definition of the quantum formulation notion and terminologies
we use throughout the paper. For the convenience of the reader, we also provide the
definition of the KLD measure.

First, following [17], we introduce the notion and the definitions from the quantum
formulation. In quantum computation, the basic unit of information is called a Qbit and
it is neither one nor zero, but the superposition of both states. That means that, in one
timestamp, there is a certain probability that the qbit is in in state zero or in state one. This
can be formulated using Dirac’s notation, also known as brakets, as,

|ψ〉 = α |0〉+ β |1〉 (2)

where |ψ〉 is the qbit, |0〉 and |1〉 are the two possible states and α and β ∈ C are the
amplitudes of these states. The Born’s rule tells us that these amplitudes are directly related
to the probability of being in state |0〉 or |1〉 as the probability of one state is the power of
its amplitude,

p(〈0|ψ〉) = | 〈0|ψ〉 |2 = |α 〈0|0〉+ β 〈0|1〉 |2 = |α|2, (3)

p(〈1|ψ〉) = | 〈1|ψ〉 |2 = |α 〈1|0〉+ β 〈1|1〉 |2 = |β|2, (4)

|α|2 + |β|2 = 1, (5)

One qbit remains in this superposition until it is measured or observed. When that
happens, the qbit becomes fixed in one of the states in the function of the amplitudes, this
process is called collapsing.

As explained in Equation (2), in the superposition state, a qbit depends on two param-
eters, α = aα + j bα and β = aβ + j bβ, that are indeed complex numbers. Therefore, qbits
can be represented with spherical coordinates,

|ψ〉 = α |0〉+ β |1〉 = (aα + j bα) |0〉+ (aβ + j bβ) |1〉 = rαej ϕα |0〉+ rβej ϕβ |1〉 (6)

applying the Born’s rule, Equation (5),

|ψ〉 = e−j ϕα

(
cos(

θ

2
) |0〉+ sin(

θ

2
) ej (ϕβ−ϕα) |1〉

)
(7)

were 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. It can be demonstrated that e−jϕα has no observable
effects [18]; therefore, effectively, we only have to consider the following equation,

|ψ〉 = cos(
θ

2
) |0〉+ ejφ sin(

θ

2
) |1〉 (8)

From Equation (8), it can be seen that a qbit belongs to a Hilbert spaceH and can be
represented as a sphere. This representation is known as a Bloch Sphere, Figure 2.
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Figure 2. Representation of a qbit: On the left, the Bloch Sphere, a spherical representation of a qbit.
On the right, a circular representation of a qbit after all the assumptions.

From the Bloch Sphere, it can be seen that the state of a qbit can be modified using
rotations. Indeed, in quantum computation, the logic gates used to develop circuits are no
more than rotation operations. In this work, the only important rotation is the θ rotation,
as it is the one that makes the superposition state closer or further to states |0〉 or |1〉.
Therefore, in this case, qbits can be represented as circles and, in order to modify them, a
simple rotation matrix will be used.

R(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(9)

KLD is a measure of similarity (dissimilarity) between two probability distributions
p(x) and q(x), where the smaller the value the more similar two distributions are. KLD is
zero if and only if the two distribution are identical ([2], p.34). For Gaussian distributions,
p(x) = N (µ0, Σ0) and q(x) = N (µ1, Σ1), the KLD has a closed form expression ([19],
Equation (2))

DKL

(
p(x)||q(x)

)
=

1
2

(
ln
|Σ1|
|Σ0|

+ (µ0 − µ1)
>Σ−1

1 (µ0 − µ1) +>(Σ−1
1 Σ0)− n

)
, (10)

where n is the dimension of the distributions.
In what follows, we rely on a function best defined as

Ẑ = best(Z1, Z2, · · · , Zp), (11)

which, given any finite number of assignment matrices Z1, · · · , Zp, return the assignment
matrix Ẑ ∈ {Z1, Z2, · · · , Zp} that results in the smallest of cost ∑i∈S ∑j∈T ci,jZl

i,j, l ∈
{1, · · · , p}, computed according to the assignment cost (1a).

3. QiEA for Optimal Service Matching

Inspired by the concept of quantum computing of qbit representation, rotation, ob-
servation and qbit collapsing, we propose the QiEA Algorithm 1 as a suboptimal solution
to the optimal service-matching problem (1). To design this algorithm, we proceeded
as follows.

Consider the assignment matrix Z = [Zi,j]. For any given service agent i ∈ S , every
feasible assignment consists of assigning 1 to one of the elements of Zi,j, j ∈ T and zero
to the rest, while respecting also (1d). Since we do not know which element should be 1,
the idea is to start by a probabilistic approach and, for every service agent i ∈ S , attach
a notion of probability to every Zi,j, which indicates with what probability that element
is 1. Then, at each iteration t of the algorithm, this probability is adjusted as we describe
below. The notion of probability for each element Zi,j can be realised using quantum qbits,



Information 2022, 13, 438 5 of 12

|φi,j〉 (t) = αi,j(t) + j βi,j(t). Thus, at each step t of the algorithm, for each individual l in
population set P = {1, · · · , K}, there is a qbit matrix

|Φ〉l (t) =



[
αl

1,1(t) αl
1,2(t) · · · αl

1,M(t)
βl

1,1(t) βl
1,2(t) · · · βl

1,M(t)

]
...[

αl
N,1(t) αl

N,2(t) · · · αl
N,M(t)

βl
N,1(t) βl

N,2(t) · · · βl
N,M(t)

]


(12)

with size 2N ×M where each element (i, j) is the mentioned probability |φi,j〉l (t) of the
assignment between agent i ∈ S and task j ∈ T .

Algorithm 1 QiEA algorithm for service-matching assignment

1: procedure QIEA
2: Input size of population K, number of iteration MAX_GEN
3: t← 0
4: initialise |Φ〉1 (t), · · · , |Φ〉K (t)
5: generate K individuals Z1(t) = [Z1

i,j(t)], · · · , ZK(t) = [ZK
i,j(t)] by collapsing |Φ〉l (t)

6: for l ∈ {1, · · · , K} do
7: Bl

local(t)← evaluate Zl(t) = [Zl
i,j(t)]

8: end for
9: B(t)← best(B1

local(t), · · · , BK
local(t))

10: while t ≤MAX_GEN do
11: t← t + 1
12: for l = {1, · · · , K} do
13: generate Zl(t) = [Zl

i,j(t)] by collapsing |Φ〉l (t− 1)

14: Bl
local(t)← evaluate Zl(t) = [Zl

i,j(t)]

15: update |Φ〉l (t)
16: Update Bl

local(t− 1) if Bl
local(t) is better

17: if migration condition then
18: Bl

local(t)← B(t)
19: end if
20: end for
21: end while
22: Ẑ? ← best(B1

local(MAX_GEN), · · · , BK
local(MAX_GEN), B(MAX_GEN))

23: end procedure

Evolutionary algorithms are based on the Darwinian explanation of species evolution
where, step by step, there are mutations in each individual of the species and, by the
end, only the individuals with better adaptation to the new environment survive. The
evolutionary algorithms follow a two-step procedure [20]. First, we generate an initial
population of individuals randomly. Next, we repeat the following re-generational steps
until termination: (a) the fitness of each individual in the population is evaluated (lowest
cost, feasibility), (b) the fittest individuals are selected as parents for reproduction, (c) new
individuals are bred (from parents) through crossover and mutation operations to give
birth to offspring, (d) the least-fit individuals of the population are replaced with new
individuals.

QiEA is a probabilistic algorithm similar to other evolutionary algorithms. We use an
evolutionary method to go from an initial state of uncertainty |Φ〉l (0) to a final determined
system Ẑ∗, which is a suboptimal solution to (1). The underlying concept in QiEA is that
|Φ〉l (t) informs us on how to select individual Z(t) = [Zi,j(t)] at each step of the algorithm

(an individual is selected by collapsing |Φ〉l (t)). |Φ〉l (t), which determines the probability
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of each element of Z(t) = [Zi,j(t)] being 0 or 1, is updated at each step based on the fitness of
the generated individuals at step t− 1 using the rotation method, which will be described
below. The advantage of QiEA is, indeed, in this step of updating the probabilities of
selecting future individuals based on feedback from the fitness of the generated individuals.
The schematic procedure of our QiEA algorithm is shown in Figure 3. Our proposed QiEA
is shown in Figure 3: there is a K parallel process to generate K individuals that constitutes
the population set of the algorithm. Each individual generation process l ∈ P = {1, · · · , K}
has its own |Φ〉l (t), initialised at |Φ〉l (0) and updated at each iteration of the algorithm.

1
(t)

1
( ,t)R

Z1
(t)

B (t)1
local

update

collapse

evaluation

l
(t)

l
( ,t)R

Zl
(t)

B (t)l
local

update

collapse

evaluation

K
(t)

K
( ,t)R

ZK
(t)

B (t)K
local

update

collapse

evaluation

. . .  . . .

migration migration

Z = best( )B1
local (MAX_GEN), ... , BK

local
(MAX_GEN)

Figure 3. Scheme of the QiEA procedure considering K initial populations.

Our proposed QiEA algorithm consists of three main procedural steps, collapsing,
evaluation and updating and migration.
Collapsing procedure: This process is a novel contribution of this work and it is a faithful
representation of the quantum-like collapsing of the qbit systems. With this purpose,
the collapsing is performed using the maximum randomness possible. At each step t to
generate individual Zl(t), first, one random service i and one random target j are selected
to form the agent–task pair (i, j). Then, with a uniform probability, we generate a random
value γl

i,j(t) ∈ [0, 1]. Then, Zl
i,j(t) is generated using the collapsing procedure below

Zl
i,j(t) =

{
1 if γl

i,j(t) ≤ |βl
i,j(t)|2

0 otherwise
(13)

After collapse, the agent–task pair (i, j) is removed from the random selection, and the
process is repeated until there is no service agent left to be selected (recall our assumption
that there is more service agents than the tasks). Our collapsing procedure is summarised
in Algorithm 2. It is important to note that, if a service agent is assigned to one task
(qbit (i, j) is collapsed to one), no other service agent can be assigned to that task and
that service agent can not perform any other task. That is exactly what we formulated in
constraints (1c) and (1d). That is, our individual generation procedure always generates
feasible individuals Zl(t), and does not need the costly and often ad-hoc repairing of the
individuals that other quantum-inspired algorithms, e.g., [10,21,22], need. The elimination
of the repair step also results in faster convergence.
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Algorithm 2 Collapsing

1: procedure COLLAPSING

2: Input Qbit system |Φ〉l (t)
3: S̄ ← [1, · · · , N]
4: T̄ ← [1, · · · , M]
5: while S̄ 6= {} do
6: select random service i ∈ S̄
7: select random service i ∈ T̄
8: generate γl

i,j(t) uniformly from [0, 1]

9: collapse: Zl
i,j(t)

Equation (13)←−−−−−−− (|φ〉li,j (t), γl
i,j(t))

10: if Zl
i,j(t) = 1 then

11: remove i from S̄
12: remove j from T̄
13: end if
14: end while
15: end procedure

Evaluation procedure: This procedure has two parts, the computation of the cost for fitness
test, and the formulation/updating of the rotation matrix based on the feedback from the
fitness analysis. Given the collapsed individuals Z1(t), · · · , ZK(t), at step t, firstly, the cost
of the assignment f (Zl(t)) = ∑i∈S ∑j∈T ci,jZl

i,j(t) is computed. The fitness evaluation not

only depends on the cost at time t due to Zl(t) but also has temporal information about
the evolution of the system by saving the best obtained solution until that iteration, which
is stored as Bl

local(t). The variable Bl
local for each individual l ∈ {1, · · · , K} is initialised by

collapsing |Φ〉l (0), as described in step 5 of Algorithm 1. The fitness analysis relies on
function (11) and updates each local Bl

local according to Bl
local(t) = best(Zl(t), Bl

local(t− 1)).
Next, in the evaluation procedure, we update the qubit matrix |Φ〉l according to[

αl
i,j(t)

βl
i,j(t)

]
= R(θl

i,j, t)

[
αl

i,j(t− 1)
βl

i,j(t− 1)

]
, (14)

where rotation angle θl
i,j ∈ {0, δπ,−δπ} is determined from Table 1. Here, 0 < δπ < π

2
is a design parameter which normally is a very small angle. Recall that, according to
the circular qbit representation (8), which is visualised in Figure 2, a positive rotation
0 < δπ < π

2 results in increasing the probability of collapsing to 1 and a negative rotation
0 < −δπ < π

2 results in increasing the probability of collapsing to 0. We proposed Table 1
based on the logic that if the value of Zl

i,j(t) and Bl
locali,j

(t − 1) are the same, we make

no changes to the qbit corresponding to the agent–task pair (i, j), thus setting θl
i,j(t) = 0

(cases 1, 2, 7 and 8 in Table 1). If changing from Bl
locali,j

(t− 1) = 1 to Zl
i,j(t) = 0 results in

decreasing the total cost, we want to encourage collapsing to Zl
i,j(t) = 0 by increasing this

probability by using a positive rotation θl
i,j = δπ (case 3 in Table 1). On the other hand, if

changing from Bl
locali,j

(t− 1) = 0 to Zl
i,j(t) = 1 results in decreasing the total cost, we want

to encourage collapsing to Zl
i,j(t) = 1 by increasing such probability by using a negative

rotation θl
i,j = −δπ (case 5 in Table 1). If the changes in the values result in increasing the

total cost, we do not make any changes to |Φ〉li,j, i.e., θl
i,j(t) = 0 (cases 4 and 6 in Table 1). To

summarise, we make an adjustment to |Φ〉li,j if Zl
i,j(t) 6= Bl

locali,j
(t− 1) and the best value at

step t is set to Zl(t); thus, we can interpret the change in Bl
locali,j

(t− 1) value as a contributor
to decreasing the cost. Algorithm 3 summarises our evaluation procedure.
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Table 1. Evaluation cases to define rotation angle.

Case Zl
i,j(t) Bl

locali,j
(t − 1) f (Zl(t)) ≥

f (Bl
local(t − 1))

θi,j

1 0 0 false 0
2 0 0 true 0
3 0 1 false δπ
4 0 1 true 0
5 1 0 false −δπ
6 1 0 true 0
7 1 1 false 0
8 1 1 true 0

Algorithm 3 Evaluation

1: procedure EVALUATION
2: Input collapsed system Zl(t), best saved solution Bl

local(t− 1)
3: Bl

local(t) = best(Zl(t), Bl
local(t− 1))

4: θl
i,j = 0 for any i ∈ S and j ∈ T

5: if Bl
local(t) = Zl(t) then

6: for i ∈ S do
7: for j ∈ T do
8: if Zl

i,j(t) < Bl
locali,j

(t− 1) then
9: θi,j = δπ

10: end if
11: if Zl

i,j(t) > Bl
locali,j

(t− 1) then
12: θi,j = −δπ
13: end if
14: end for
15: end for
16: end if
17: for i ∈ S do
18: for j ∈ T do
19: update |Φ〉li,j (t) according to (14)
20: end for
21: end for
22: end procedure

Migration procedure: Like other evolutionary algorithms, to avoid getting stuck in local
maxima or minima we perform a migration procedure when the migration condition (t−
tlast migration) ≥ n×MAX_GEN, where n is a percentage that defines when the process is
completed. In the migration step, we simply replace the current best local value Bl

local(t) of
all the individuals l ∈ {1, · · · , K} with B(t) = best(B1

local(t), · · · , BK
local(t)), i.e., Bl

local(t) =
B(t)) for all l ∈ {1, · · · , K}.

4. Numerical Demonstration

To demonstrate the efficacy of our proposed QiEA, consider the service-matching robot-
deployment example we described in Section 1 and depicted in Figure 1. Recall that, in this
example, we have a set S of N service agents with spatial service distribution pi(x), i ∈ S
with Gaussian distributionN (µi, Σi). Each target cluster TCj, j ∈ T , extracted from a GMM
model of the entire targets distribution, has a Gaussian distribution qj(x) ∼ N (µ̄j, Σ̄j).

According to [1], Theorm 2, the best value for ci,j = DKL

(
pi(x)||qj(x)

)
is obtained when

the robot is moved such that µi = µ̄j and the principle axes of the two uncertainty ellipsoids
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corresponding to Σi and Σ̄j are parallel. Considering this configuration, for each service

agent we compute ci,j = DKL

(
pi(x)||qj(x)

)
to form the weighting matrix [ci,j]. Next,

through a set of numerical simulations, we evaluate the efficacy of our QiEA algorithm in
solving this optimal service-matching deployment problem.

In this work, all the simulation codes are developed with Python using well-known
open-source libraries. The optimal deployment for service-matching data is randomly
generated. We carry out a simulation study that compares the performance of our proposed
Algorithm 1 to that of three well-known algorithms: the greedy algorithm, the Hungarian
method and the Simplex linear-programming method. The greedy algorithm is an iterative
method that greedily selects the smallest value of ci,j to set Zi,j = 1, eliminates the row and
the column corresponding to (i, j) from the weight matrix [ci,j] and repeats the procedure.
The Hungarian method is a similar technique to the Greedy Algorithm but, instead of
picking direct assignments from a static cost matrix, the cost matrix is modified at each step
in the function of the minimum values of each row and column. Therefore, this method
considers not only the minimum cost for each assignment, but also the rest of the assign-
ments, which is why it can achieve the optimal solution. To have a comprehensive study,
we also compare our result to that of the Simplex method, which solves the continuous
relaxation of the optimal service-matching problem (1).

4.1. Simulation Results

This section presents the results of our numerical experiments. The proposed algo-
rithm is compared to the benchmark methods in five different scenarios. The simulations are
conducted via Python programming on a PC with processor Intel(R) Core(TM) i7-10510U
CPU @ 1.80GHz 2.30 GHz and a RAM of 16 GB.

4.1.1. Case Studies

We simulate five different scenarios, which are described in Table 2. Case 1 is the
perfect-matching case, where N = M. However, there can also be unbalanced cases
where the number of target clusters is bigger than the number of the service agents. To
demonstrate how our algorithm scales with respect to N and M and also their relative
size, we consider various scenarios for when N < M. The normal distributions for each
target/service in each experiment are randomly created using Python.

Table 2. Case studies.

Case Number of Service Agents
(N)

Number of Target Clusters
(M)

1 10 10
2 5 8
3 2 8
4 90 100
5 2 100

4.1.2. Hyper-Parameters of the QiEA Algorithm 1

To execute the QiEA Algorithm 1, the set of hyper-parameters listed in the first column
from the left of Table 3 should be selected. We chose three candidate values for each
hyper-parameter as reported in Table 3. To tune the hyper-parameters for each case study
listed in Table 2, a grid search over 81 different combinations was implemented. During
this grid search, it was observed that there can be two groups of hyperparameters: the
ones that make the algorithm more accurate and the ones that make the algorithm faster
(compared over same number of epochs). As such, we report the simulation results for
two different executions of Algorithm 1 for solving our problem of interest for the cases
listed in Table 2: the accurate quantum-inspired evolutionary algorithm (AQiEA) and the
fast quantum-inspired evolutionary algorithm (FQiEA). Table 4 gives the chosen hyper-
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parameters for each case study. Notice that the hyper-parameters are not necessarily the
same for each case study.

Table 3. Hyper-parameters of and the assigned possible values for the grid search.

Hyperparameters Possible Values

Population size (K) 2, 5, 10
Rotation angle (δπ) 0.0025π, 0.01π, 0.05π

Epochs (MAX_GEN) 10, 20, 50
Migration frequency 0.25, 0.5, 0.75

Table 4. Grid search results.

Case Type Population
Size (K)

Rotation
Angle (δπ)

Epochs
(MAX_GEN)

Migration
Frequency

1 Accurate 2 0.05π 20 0.5
Fast 2 0.0025π 20 0.5

2 Accurate 2 0.0025π 50 0.5
Fast 2 0.01π 50 0.75

3 Accurate 2 0.0025π 10 0.5
Fast 2 0.01π 50 0.75

4 Accurate 10 0.0025π 20 0.75
Fast 2 0.01π 10 0.75

5 Accurate 2 0.05π 20 0.25
Fast 2 0.0025π 50 0.75

4.1.3. Metrics

In order to compare and evaluate the performance of the methods, three metrics have
been considered, which include optimality gap, execution time complexity and a quality metric.
The optimality gap, denoted by α, is defined as

α =
cost computed by the algorithm− optimal cost

optimal cost
. (15)

When N = M, the Hungarian and the Simplex methods are guaranteed to produce an
optimal solution; however, this guarantee is not the case when N < M. To obtain the
optimal value for N < M, a suggested practice is adding M − N virtual service agents
whose assignment costs to task clusters are much greater than the actual service agents’.
This way, a perfect matching problem is created, which we use to generate the optimal cost
value for computing the optimality gap. Notice that adding virtual agents increases the
computational complexity of the algorithms. The simulation results reported below for all
the algorithms consider the actual matching cases when no virtual agent is added.

The execution time, measured in milliseconds (ms), is the time it took to run the
algorithm. To unify both prior metrics and for the sake of the comparison, the quality
metric Q was implemented in order to have a faster and easier way of comparing and
discussing the algorithms. This metric is computed as

Q =
100− α

execution time
. (16)

4.1.4. Simulation Results

The simulation results for the three aforementioned performance metrics are reported
in Tables 5–7. Per definition (15), the best optimality result is when α = 0. Thus, for a
suboptimal solution, we desire an α closer to zero. For Case 1, as expected, the results in
Table 5 show that the Hungarian and Simplex methods have zero optimality gap. Notice
that in Case 1, AQiEA outperforms the greedy method in the optimality gap, while FQiEA
delivers a close performance to that of the greedy algorithm. In the rest of the cases, the
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Hungarian and the Simplex methods also deliver a zero optimality gap, but as Table 6
shows, this comes with a high execution time, especially when the scale of the system
grows. In Case 4, the Simplex algorithm failed to converge in a reasonable time, so no
results are listed for this case in Tables 5–7. Per definition (16), the quality metric Q is
designed to be 100 when the optimality gap is zero and the execution time is 1 ms. As the
results in Table 7 show, both QiEA algorithms outperform the rest of the methods in terms
of the quality metric.

Table 5. Optimality gap α for the case studies.

Case Greedy Hungarian Simplex AQiEA FQiEA

1 0.4059 0 0 0.2150 0.4579
2 0.2336 0 0 0.1825 1.135
3 0 0 0 0 4.910
4 0.6298 0 − 0.7622 0.9125
5 0.6365 0 0 2.0178 3.007

Table 6. Execution time in ms for the case studies.

Case Greedy Hungarian Simplex AQiEA FQiEA

1 10.03 11.05 537.9 4.591 3.866
2 5.000 7.970 112.5 2.910 2.464
3 4.521 3.000 26.62 2.393 1.530
4 552.9 544.9 - 226.7 32.61
5 19.04 27.90 781.6 1.845 1.418

Table 7. Quality metric for the case studies.

Case Greedy Hungarian Simplex AQiEA FQiEA

1 9.930 9.050 0.1859 21.73 25.75
2 19.95 12.55 0.8889 34.30 40.12
3 22.12 33.33 3.757 41.79 62.15
4 0.1797 0.1835 − 0.4377 3.039
5 5.252 3.584 0.1279 52.57 31.73

5. Conclusions

This work showed how a quantum-inspired evolutionary algorithm could be used as a
practical solution method to solve combinatorial optimisation problems such as an optimal
service-matching coverage problem. Our numerical studies showed that the quantum
approach presents better scalability and interesting properties that can be used in a wider
class of assignment problems where the matching is not perfect. Our future work will apply
our proposed quantum-inspired evolutionary algorithm framework in solving submodular
maximisation problems, particularly the optimal welfare problem. We will also study the
automated tuning of the algorithm hyper-parameters using a machine-learning approach.

Author Contributions: Conceptualization, J.V. and S.K; methodology, J.V.; software, J.V.; validation,
S.K.; resources, S.K.; investigation, J.V. and S.K; writing—original draft preparation, J.V.; writing—
review and editing, S.K.; supervision, S.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by a Balsells Fellowship grant and there was no APC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Information 2022, 13, 438 12 of 12

Abbreviations
The following abbreviations are used in this manuscript:

QiEA Quantum-inspired evolutionary algorithm
AQiEA Accurate quantum-inspired evolutionary algorithm
FQiEA Fast quantum-inspired evolutionary algorithm
EA Evolutionary algorithm
AP Assignment problem
KLD Kullback–Leibler divergence
TC Target cluster
UAV Unmanned aerial vehicle
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