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Abstract: The aging of the world’s population, the willingness of elderly to remain independent, and
the recent COVID-19 pandemic have demonstrated the urgent need for home-based diagnostic and
patient monitoring systems to reduce the financial and organizational burdens that impact healthcare
organizations and professionals. The Internet of Medical Things (IoMT), i.e., all medical devices
and applications that connect to health information systems through online computer networks.
The IoMT is one of the domains of IoT where real-time processing of data and reliability are crucial.
In this paper, we propose RAMi, which is a Real-Time Architecture for the Monitoring of elderly
patients thanks to the Internet of Medical Things. This new architecture includes a Things layer
where data are retrieved from sensors or smartphone, a Fog layer built on a smart gateway, Mobile
Edge Computing (MEC), a cloud component, blockchain, and Artificial Intelligence (AI) to address
the specific problems of IoMT. Data are processed at Fog level, MEC or cloud in function of the
workload, resource requirements, and the level of confidentiality. A local blockchain allows workload
orchestration between Fog, MEC, and Cloud while a global blockchain secures exchanges and data
sharing by means of smart contracts. Our architecture allows to follow elderly persons and patients
during and after their hospitalization. In addition, our architecture allows the use of federated
learning to train AI algorithms while respecting privacy and data confidentiality. AI is also used to
detect patterns of intrusion.

Keywords: real-time architecture; internet of things; internet of medical things; healthcare internet of
things; edge AI; edge computing; data; apache; real-time; blockchain

1. Introduction

With the increase in the world’s population and its aging, the traditional medical
resource has reached its limits. Indeed, it is becoming difficult to get medical appointments,
the price of consultations and treatments are expensive. In parallel, the development of
the Healthcare Internet of Things (HIoT) allowed to propose a solution to achieve remote
diagnostics, develop remote healthcare consultation, follow chronically ill and elderly
patients. These new services are based on medical sensors, RFID tags, wireless networks,
and applications used to connect medical sensors [1]. As cited by Kashani et al. [2], Health
IoT systems (HIoT), in the face of a growing older population (affected by chronic diseases)
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and lack of access to medical resources, are a very promising solution. With the potential
to provide health services to improve quality of life while reducing pressure on health
systems. Research and experiments, such as the ones we propose, deserve to be evaluated
on a real test bench.

Moreover, in [2], Girardi et al. mentioned that an inadequate or reduced data col-
lection and low communication rates lead to diagnostic errors that impact the quality of
healthcare [2].

Nowadays, medical sensors are widely used in operation and emergency rooms, and
Intensive Care Unit (ICU) providing real-time monitoring of patients. While wearable
sensors allow to reduce the treatment cost and personalized medical services thanks to
remote consultation. With the deployment of the 5G, new applications will appear such as
operation guidance, first aid vehicle diagnostic, and so on [3].

All these applications need to be collected, data need to be processed in real-time
to analyze them and make a decision while respecting the sensitivity of the data and
the privacy of the patients. Elsewhere, the global context shows that security is more
than ever a point of attention at the level of processing architectures, especially for those
dealing with sensitive information. Indeed, the data availability is crucial. Architectures
must also guarantee the integrity and the confidentiality of data while remaining resilient
to distributed attacks such as Distributed Denial of Service (DDOS), Man-in-the-middle
(MITM), Botnets [4], which are groups of computers or devices under the control of an
attacker that act to conduct malicious activities against a targeted victim via the network.
By using distributed architectures, data are replicated and client–server architectures are
no longer sensitive to this type of attack. These facts lead us to rethink the way we design
architectures and secure data for critical infrastructures. Recent technological advances
such as blockchain [5] and, more specifically, smart contract and confidential computing,
allow us to reduce drastically the attack surface. The major contributions of this paper are
as follows:

• We conceptualize and implement our IoT and AI architecture proposal for IoMT and
we demonstrate its performance under real operating conditions;

• We experiment with the abnormal ECG detection-based on Machine Learning and
annotation service in order to eliminate a part of false positive alerts.

The remainder of this paper is organized as follows. In Section 2, we present a brief
overview of the state of the art in terms of real-time architecture in Internet of Medical
Things (IoMT) in the form of a classification and we provide a comparison of pros and
cons of all these architectures. In the Section 3, we present our original architecture. In
Section 4, we evaluate performance of our architecture on real use cases. In Section 5,
results are presented and afterwards discussed in Section 6. Finally, we conclude, and we
draw outlines of our future works.

2. Literature Review

In this section, we consider architectures used to process IoT in real-time. Afterwards,
we identified those that are specifically developed to address requirements of the Medical
Internet of Things. We identified some existing elderly monitoring systems and, finally, we
explained recent technological advances.

2.1. General Purpose Real-Time Architectures

The real-time processing of data is crucial in IoMT because human lives are at stake.
To achieve this type of treatment, particular architectures must be put in place [6]. In this
section, we investigate real-time architectures that have not been designed specifically for
IoMT but that could be used in this domain.

Gaur et al. [7] defined a Smart City Architecture model for IoT. This architecture is
a multi-level architecture. The level 1 is the data collection where raw data are collected
from sensors and stored for further processing. The level 2 is data processing where raw
data are transformed into a common format for processing. The level 3 is data integration
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and reasoning where data are classified and can be enriched with domain experts and
uncertain reasoning. The level 4 is device control and alerts where processed data from
level 3 can be used for customized services. The Smart City Architecture components
could be smart health, smart environment, smart energy, smart security, smart office and
residential buildings, smart administration, smart industries, and smart transport [7].

Loria et al. [8] presented an in-house IoT architecture for a product named SeeYourBox.
This architecture is built on two parts: processing and storing. To achieve that goal, the
architecture is composed by three components: the gateway which received raw data from
devices, the engine which analyzed the data and the databases to store the data. This
architecture was designed to be very efficient regarding the SeeYourBox business and the
expertise of their team regarding the technologies in IoT compared to the existing solutions
such as Amazon AWS IoT or Microsoft Azure IoT [8].

Duan et al. [9] proposed an IoT architecture based on Quality of Service (QoS). Their
architecture is based on the traditional IoT architecture of three layers: the perception layer,
the network layer, and the third layer is a mix with the application and the service layer.
The idea of this architecture is to ensure that the requirements of the end user of the IoT’s
application will become the QoS requirement of the application and the service layer. Then,
this QoS requirement will be sent to the perception layer through the network layer. To
achieve this, they also defined a QoS Management Facility for the three layers and two
brokers: one in the network layer and the other in the perception layer [9].

The Table 1 gives a pros and cons analysis of general purposed real-time architectures
selected.

Table 1. Comparison of general purpose real-time architectures.

Author Pros Cons Year Ref.

Duan et al.
This architecture focus on the
improvement of the QoS of

the IoT architecture.

The architecture is only
theoretical. 2011 [9]

Gaur et al.
This architecture gives an

overview of the Smart City
architecture model.

It is only a general overview
of the architecture for Smart

City.
2015 [7]

Loria et al.
This architecture is an

alternative to Amazon AWS
IoT or Microsoft Azure IoT.

The architecture has been
designed for one specific use

case.
2017 [8]

Ta-Shma et al.

This architecture is build to
deliver real-time decisions

based on the mix of the
knowledge of historical and
new data from IoT streams.

The need of historical data
could be a bottleneck for some

use cases for real-time
monitoring like health.

2018 [10]

Debauche et al.

This architecture is based on
edge-cloud to deploy
algorithms of AI and

microservices.

This architecture was
developed especially to run

on constrained devices based
on k8s.

2020 [11]

Ta-Shma et al. [10] proposed the Hut Architecture coupling historical data analytics
and real-time processing in order to enlighten the real-time decision making on the basis of
knowledge extracted from historical data and new data from IoT streams. This architecture
is designed for per-event decisions or respond to events as they arrive by automated
detection complex events in near real-time [10].

In 2020, Debauche et al. [11] described an architecture edge-cloud to deploy algorithms
of AI and micro-services specifically developed to run on constrained devices using k8s [11].
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2.2. Real-Time Architectures for IoMT

With the rise of 5G, the diversification of data sources has increased and the velocity
of medical big data has also speed up [3].

In 2021, Delsate et al. [12] described The Institute of Analytics for Health (INAH), a
platform for statistical and medical research which ensures that medical data are used in
an ethical and secure way. Indeed, each data provider remains sovereign of its own data
because a double pseudonymization prevents any possibility of patient identification [12].

In 2019, Debauche et al. [13] developed a three-layer architecture (Sensors, Fog, Cloud)
for the monitoring of elderly and patients [13]. The Fog Layer is built around the association
of Influxdb, Chronograf, and Kapacitor while a webservice allows the communication
with the cloud layer. Data transmitted to Apache Kafka are temporarily stored in it before
being ingested by the Druid Indexing Service. Apache Druid stores the data in the form of
segments, in other terms, in sets of a few millions of rows of data stored on Hadoop File
System (HDFS). Apache Ambari retrieved the Druid metric emitted to monitor it. Apache
Kylin is used on Druid [13]. Nevertheless, with recent the versions of Apache Druid, it is
more efficient to use Druid without Kylin or in alternative Kylin 4.0 with Parquet.

Sun et al. [3] reviewed the architecture of IoMT, the cloud-enabled IoMT, and the
architecture of edge cloud IoMT and showed the potential of edge-cloud computing in the
medical field. They argued that Edge Cloud computing is well adapted to 5G but brings a
lot of security problems, threats, and privacy issues. The latter will be necessary for the
edge level: the extension of hash and encryption algorithms, the mutual authentication of
nodes, the development of communication security protocol, the thrust management of
nodes, and distributed intrusion detection. In addition, a series of challenges still needs to
be addressed such as cache strategy and cache update strategy, AI algorithms optimization
at the edge level [3].

Nguyen et al. [14] proposed a new decentralized architecture for a cooperative hospital
network using Blockchain called BEdgeHealth. This decentralized health architecture
integrates a data offloading scheme and a data sharing scheme for distributed hospital
networks with Mobile Edge Computing and blockchain [14]. The aim was to reduce the data
latency retrieval and the data sharing overhead known with the existing sharing system.

Razdan et al. [15] proposed an overview of emerging technologies in IoMT, mainly
with a three-layer-based architecture: the Things layer, the Fog layer, and the Cloud layer.
The Things layer consists of sensors, actuators, medical records, etc. The goal of this layer
is to collect all the available data for a further treatment. The Fog layer is composed by
local servers and gateway devices which are used for security and data integrity purposes.
The Cloud layer is used for data storage and computation resources of the data. Through
some case studies, they presented the possibility to use these technologies in IoMT. They
used the Physically Unclonable Function (PUF) to authenticate devices to the network.
They used the Software-Defined Networking (SDN) to connect the devices with no internet
connectivity. Finally, they used the Blockchain to ensure data security and privacy [15].

Boutros-Saikali et al. [16] proposed Open mHealth, a platform built on the top of
scriptr.io, providing multiple connectors allowing interaction with the API of healthcare
device. The platform automatically converts data obtained from devices in Open mHealth
or FHIR observations. The security is inherently managed by scriptr.io through fine-grained
access control rules applied to operations and stored data [16].

Girardi et al. suggested to associate Smart Contract with a datalake. Smart contract
is organized in three parts. The first one “Contract Registrar” contains an user ID and
identity on the blockchain. The second: “Summary Contract allows patients to ensure the
traceability of their medical records and, finally, the third “Patient-Provider Relationship
Contract” manages the relationship between patients and healthcare provider. The data are
stored outside the chain in a datalake. They argue that this combination allows to store a
wide variety of data [17].

Papaioannou et al. [18] presented a categorization of the potential threats and a cate-
gorization of security countermeasures for IoMT. According to [18], the security objectives
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in IoMT are: confidentiality, integrity, non-repudiation, authentication, authorization, and
availability of data.

It should be noted, as mentioned by Zhang et al. [19], that with the generalization of
the Internet of Things (IoT), including smart clothes, there is not yet a unified architecture
capable of connecting all the smart objects in smart hospitals, except with Nb-IoT, which
can be a serious alternative by allowing objects to connect to the Internet by connecting
directly to the operators’ base stations with a very narrow bandwidth of 200 kHz. This
approach introduces edge computing, and Zhang et al. developed an infusion-monitoring
system to monitor in real time the rate of drop and volume of drugs remaining during
intravenous infusion [19].

IPv6 applications in IoT are the trend at the moment with the Community Medical
Internet of Things (CMIoT), but as Lui et al. [20] mentioned, the interconnection of the
different CMIoT components is the main problem to be solved. There are many key issues
still need to be addressed, such as how to handle IoT-oriented IPv6 network routing.

Together with his team, they proposed to design a simplified protocol message format
assuming that the functional requirements are met. The interconnection between the IPv6
network and the physical network can then be achieved more efficiently [20].

Ed-daoudy et al. [21] proposed an architecture for real-time health status prediction
and analytics system using big data technologies. This architecture applies distributed
machine learning model on streaming health data events ingested to Spark, streaming
through Kafka topics. According to the author, their architecture can predict health status,
send an alert message to care providers, and store the details in a distributed database, to
perform health data analytics and stream reporting [21].

Yacchirema et al. [22] implemented an architecture which has two goals: detect and
support of treatment of Obtrusive Sleep Apnea (OSA) of elderly people. Indeed, the OSA
is an important sleep disorder which directly impacts the quality of life. In order to detect
the OSA, they used a FOG Computing method implemented in a smart device located
at the edge of the network. The second objective is achieved by batch data which enable
a descriptive analysis that statistically details the behavior of the data and a predictive
analysis for the development of different services. This architecture used Big Data Tools on
Cloud Computing [22].

The Table 2 gives a pros and cons analysis of real-time architectures for IoMT selected.
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Table 2. Comparison of real-time architectures for IoMT.

Authors Pros Cons Year Ref.

Boutros-Saikali et al. They proposed a platform build on another platform scriptr.io which
provides different connectors to use with the API of healthcare devices.

Their platform and security depend entirely on the scriptr.io platform which
could be a weakness in securing people’s data. 2018 [16]

Zhang et al. They proposed a real-time edge computing architecture for an infusion
monitoring system.

This architecture has been designed for a specific use case and they did not
give a general architecture which can be applied to another use case. 2018 [19]

Lui et al. They proposed to design a new simplified protocol message to solve the
connection’s issue between the IPv6 network and the physical network This protocol is not recognized as a standard to use to solve this issue. 2018 [20]

Debauche et al. This architecture is built based on different open source components. Today, some components used are not necessary anymore (e.g., Apache
Druid with Kylin) 2019 [13]

Ed-daoudy et al. This architecture used distributed machine learning (ML) model on
streaming health data events.

The predictions depend on the accuracy resulting of the training of the ML
model. 2019 [21]

Yacchirema et al. Their architecture used Big Data Tools on Cloud Computing to detect and
treat OSA.

This architecture has been built specifically for OSA problem related to the
elderly people. 2019 [22]

Sun et al. They reviewed different IoMT architectures, and they argued that Edge
Cloud Computing is well adapted to 5G.

There are a lot of security problems, threats, and privacy issues with that
solution. 2020 [3]

Girardi et al. Their architecture proposal is to associate a Smart Contract with a datalake. The contract seems to be very complicated (three parts) to understand and
to implement. 2020 [17]

Papaioannou et al. They presented the security objectives in IoMT. They did not present a real use case with at least one security objective and
the possible solution. 2020 [18]

Nguyen et al. This architecture uses the Blockchain component. This architecture is specific to a hospital which wanted to share their data
securely and by reducing latency. 2021 [14]

Razdan et al. They proposed an overview of emerging technologies in IoMT. They do not apply them to a real use case. 2021 [15]

Delsate et al.
Platform that centralizes data from multiple medical institutions for
scientific research while preserving patient privacy through double

pseudonymization.

Adoption remains dependent on acceptance by medical institutions and
ethics committees. 2021 [7]



Information 2022, 13, 423 7 of 27

2.3. Elderly Monitoring Systems

Jangra et al. [23], in 2018, proposed a design of a real-time multilayered smart health-
care monitoring framework based on IoT. Their proposal is composed of a Personal Body
Area Network (PBAN) composed by various type of sensors (temperature, pulse oximetry,
smart watch, blood pressure, etc). Then, after some transformations, the data are sent to
the cloud to be monitored, by a gateway which could be a smartphone. As a result of
this architecture, they proposed a simulation in LABVIEW software of the body temper-
ature acquired by a temperature sensor. The temperature range is between 36.3 °C and
37.0 °C [23].

Islam et al. [24] developed a smart healthcare monitoring system based on IoT. Their
system is composed of three modules: the sensor module, the data processing module,
and the web user interface. The data processing module is composed of ESP32 processor,
which is the heart of their system. The ESP32 processor offers a full Linux system on a
small platform for a very low price. Their results for the heart rate were in a range between
68–83 bpm, for the body temperature, in a range between 36.1 °C and 37.0 °C, and for the
room humidity, in a range of 60% to 72% [24].

Ramírez López et al. [25] proposed an IoT architecture in healthcare monitoring to
enhance acquisition performance of respiratory disorder sensors. Their architecture is
composed by three modules: the Wireless Personal Area Network (WPAN) acquisition
module composed by a body temperature sensor and a CMS50DL Pulse Oximeter. The
transmission module is composed by Arduino UNO and Raspberry Pi Model 3B (RPIi3B)
programmable cards. The Hub-IoT (NoSQL DB, cloud broker) is used to store and to
process data. As a result, they obtained for spO2, a range between 95% and 97%, for the
heart rate, a range between 86–100 bpm, and for the body temperature, a range of 35.5 °C
to 37.0 °C [25].

Neyja et al. [26] presented an IoT based e-health monitoring system which uses the
ECG signal. This architecture is formed by heterogeneous devices (sensors, user equipment,
etc.), gateway (smartphone), and the hospital database. They have also developed a hospital
alert system which is supposed to generate an alert in case of detection of an abnormal
heart rate activity. To test their architecture, they used the Physio Bank ATM toolbox to
generate the ECG [26].

Ruman et al. [27] proposed an emergency health monitoring system based on IoT. This
architecture is composed by sensors (body temperature sensor, heartbeat sensor, etc), the
data processing software (Arduino, ESP8266) and the cloud to store data. To visualize data,
they used Thingspeak online software. As a result, they obtained a body temperature range
between 35.6 °C and 37.8 °C. For the ECG, they obtained a range between 65–73 bpm [27].

The Table 3 gives a pros and cons analysis of elderly monitoring systems selected.

Table 3. Comparison of elderly monitoring systems.

Author Pros Cons Year Ref.

Neyja et al.
They developed a hospital alert when their

system detects an abnormal heart rate
activity.

Their tests used a simulation toolbox to
generate ECG signal. 2017 [26]

Jangra et al. The architecture proposed more
computation on the PBAN side

As result, they have a simulation in the
LABVIEW software. 2018 [23]

Ramírez López et al.
Their architecture gives the possibility to

visualize historical data through their web
application.

Their architecture depends mainly on
Arduino UNO and Raspberry Pi. 2019 [25]

Islam et al. The architecture does not required too much
IoT tools.

Their architecture depends entirely on the
ESP32 processor. 2020 [24]

Ruman et al. Their system needs few IoT tools. The architecture depends strongly on
Arduino and ESP8266. 2020 [27]
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2.4. Recent Technological Advances

Rahimi et al. [28] presented a study for healthcare services in the cloud environment.
They presented the challenges, needs, benefits on using the cloud for healthcare services,
but also, the strengths and weaknesses of the existing methods. According to the authors
of [28], many articles have tried to improve reliability, scalability, cost, and data access but
they have not investigated safety and privacy aspects. For some articles, which treated
these aspects, they assumed that various security algorithms can be adopted to secure
healthcare data, such as cryptographic, biometric authentication, access control, secure
socket layer, hashing, watermarking, and K-mean clustering [28].

The blockchain is an alternative to the singular failure point of the cloud Architec-
ture [29].

In 2018, Ali et al. [29] conducted a survey on the various uses of blockchain in IoT. They
recommended using permissionless blockchains which are public, anonymous accessible,
and decentralized with Proof-of-stack or proof-of-X consensus algorithms. In addition,
sharing mechanisms in Ethereum and Tendermint (https://tendermint.com, accessed on 1
July 2022) offers superior performances and scalability for IoT applications. Nevertheless,
IoT devices have limited resources and, consequently, cannot host a copy of the blockchain
and are not able to validate new blocks of the blockchain [29].

Pelekoudas-Oikonomou et al. [30] presented the fact that despite the existing blockchain
applications for IoT to enable security, there are not really much existing blockchain-based
security mechanisms specifically designed for IoMT edge networks. They summarized
the current blockchain-based security for IoMT based on smart-contracts which leveraging
the physical unclonable function (PUF) as an additional authentication factor. They also
presented some related works not designed for IoMT but which could be adopted to it due
to similar capabilities and technical characteristics [30].

In 2022, Ruggeri et al. [31] proposed BCB-FaaS, a solution based on smart contracts
on Ethereum blockchain and Function-as-a-Service to allow the interoperability of on-
demand services and secure decentralized communications. Indeed, blockchain allows
to resolve security issues, privacy, and trust concerns while ensuring data confidentiality,
integrity, and availability in multi-stakeholder application environments. The authors used
Ethereum to have a large number of nodes to resist to distributed attacks but in case of the
medical domain, the use of a private blockchain such as Hyperledger Fabric or Sawtooth
is preferable. The processing time by the blockchain must be also considered in critical
systems such as healthcare [31].

The security in architecture is achieved thanks to the encrypting of network transmis-
sion and stored data. However, when processed, the data appear in plain in the memory
during the treatment. Today, the end-to-end security can be obtained with the Confiden-
tial Computing that uses hardware encryption capabilities of recent processors such Intel
SGX, AMD Secure Encrypted Virtualization (SEV) or ARM Trust Zone which allow to
process encrypted data in memory [32]. Trusted Execution Environments (TEEs) are the
base of Confidential Computing [33]. Intel SGX is an extension of x86 architecture and a
Software Development Kit (SDK). The Intel TEE allows execute the safe code in a protected
region of the memory called enclave in order to protect code and data from disclosure or
modification [34]. Intel SGX also provide a remote attestation mechanism, allowing to a
remote application to verify the authenticity of an application thanks to the Intel Attestation
Service (IAS) and the checking of the information received from the enclave. Both sides can
then exchange sensitive and encrypted information thanks to the sharing of a symmetric
key [34]. While the ARM TEE called TrustZone provides system-wide hardware isolation
for trusted applications, in particular for IoT devices [34,35]. The secure zone runs a trusted
OS providing isolation, integrity, system integrity, and running trusted applications [34].
The TEE helps protect against malicious applications, run the code in a secure world, and
allow to isolate sensitive data with a low power consumption, and a low latency and low
performance overhead [34]. Nevertheless, these environments remain vulnerable to side
channel attacks of specific algorithms [33,36] or reverse-engineering attacks [33].

https://tendermint.com
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Valaderes et al. [33] described Confidential Computing technology and its implemen-
tation in the Edge-Fog-Cloud paradigm. The Edge level, on edge and IoT devices, ARM
processors are mostly used. They implement the TrustZone technology which provides
memory isolation, cryptographic acceleration, and trusted I/O. At the fog and cloud level,
Intel SGX provides secure storage, memory isolation, cryptographic acceleration mecha-
nism, and remote attestation procedure with third parties to create a trusted communication
channel between the IoT/Edge and the Fog/Cloud servers [33].

Segarra et al. [35,37] proposed an adapted version of MQTT server Mosquitto, inte-
grating TrustZone in order to improve the security in addition of the using of TLS or SSL.
They implemented in MQT-TZ, a mutual handshaked TLS and an end-to-end two-layer
encryption based on TEE, ACLs, and re-encryption of information in TrustZone with AES
in CBC mode with 32-Byte keys [37]. The proposed modification to the Mosquitto MQTT
server allows to prevent packet interception, man-in-the-middle attacks, unauthorized
entities injection or subscription, and the spoofing of sensitive information [35].

Deep neural networks are a promising approach for the development of health support
tools. However, the use of these particular models requires a large amount of training
data to achieve critical performance. In addition, the data acquisition process is often
problematic as it requires expert annotation and is subject to data protection legislation,
which hinders the development of healthcare support tools. Federated learning is a solution
to overcome this limited data availability while respecting data privacy. The Federated
Learning generates a machine learning model trained with datasets distributed on multiple
devices. The data and the model stay locally without any transmission of data, only the
owner can obtain the trained model [36]. According to authors of [36], the computational
formula of Federated Learning is

Arg Min L(a, b, c) = ΣPkLk(a, b, c) (1)

where k = total number of clients; Pk = weight of the kth client; a = input; b = output;
c = parameter to be learned.

In our architecture, in order to ensure data confidentiality and privacy, medical data
will therefore not be shared and will not leave their original location. Our deep learning
algorithms will rely on federated learning instead of traditional learning. The main advan-
tage for the members of the Coalition thus formed (partners) is that they do not exchange
their local data. In exchange, the partners have to train a similar model on their local data.
In particular, in federated learning, a consortium of actors shares their locally trained model
weights and a central unit aggregates these.

Although it allows partners to share only the gradients and weights of their model,
the architecture also raises several challenges to ensure privacy and confidentiality. Firstly,
the pseudonymization of the training dataset and, secondly, the confidentiality of the
models and gradients must be guaranteed in order to avoid any reverse engineering of the
training dataset. Finally, the protection of the model against degradation by training on
inadequate data.

There is a desire to solve the above challenges. Kaissis et al. [1] proposed a secure
and privacy-preserving architecture. The latter uses federated learning to develop a global
model resulting from the aggregation of weights transmitted by local hospitals.

However, given the privacy breaches of deep learning models, it is highly recom-
mended to protect them from adversarial attacks, especially for applications using sensitive
data. One of the solutions to this problem is to protect the model with homomorphic
encryption, the particularity of which is that it is possible to perform operations directly on
the encrypted data and, therefore, without having to decrypt them, as is usually the case.
In our architecture, this encryption will be used specifically for weight sharing between
neural networks.
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3. RAMi Architecture

Our architecture proposition called RAMi is a Real-Time Architecture for the Monitoring
of elderly patients thanks to the Internet of Medical Things. It contains an early warning
system using the real-time data analysis using Machine Learning (ML) algorithms applied
to real-time data and an annotation system to specifically tag individual patient’s alert on
historical data to avoid false positive alerts.

Our architecture is based on open-source software to ensure its sustainability and the
Independence of other platforms by a design which allows the replacement of a software
brick which would disappear, or another software brick would be more efficient. Moreover,
the fact of using software components with permissive open-source licenses makes it
possible to value the developments made on the platform and even to close the code
afterwards in view of a commercialization. In addition, changing software bricks allows
the architecture to be adapted to the specific needs of particular use cases. The use of a
datalake formed by an object storage, a service of indexing and discovery of the data allows
to store large amounts of data and to exploit them on demand for energy saving purposes
compared to a systematic treatment of the whole dataset before storage.

The architecture associates a cloud and a fog level of treatment to prevent and be inde-
pendent of possible connection problems such as link congestion, temporary interruption
of network connections that could be fatal for patients. In addition, false positives usually
require human intervention, which is costly for health care facilities. The elimination of a
part of them will allow to relieve the care structures by limiting the costs related to false
alarms. We have chosen an architecture deployed in the form of containers to allow easier
deployment, scaling, and management.

Figure 1 presents an overview of the main software bricks of the cloud part of RAMi
architecture as well as the way data flow within the architecture. The data are transmitted
to MQTT topic and then converted in message stored in the message queue. The real-time
processing consumes and transforms the data train and predicts anomalies in data. Patterns
detected are stored in the relational database in order to be annotated. The nursing staff
can annotate each patient’s patterns into true and false positives using the eponymous
service. All the data processed by the real-time processing are stored in the time series
database. All data are stored in a deep storage Amazon S3 compatible. However, data
from the relational database must be converted into objects beforehand. The conversion
into an object makes it easier to search the data and display them in the dashboard. Finally,
an in-memory cache system speeds up the most common queries on both the time series
database and the dashboard system.

Figure 1. Conceptual diagram and principal software of the cloud part of the RAMi Architecture.
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The cloud part of the architecture is built around ten software components (Mosquitto,
Kafka, Spark, Camel, MinIO, ElasticSearch, Surperset, PostgreSQL, Druid, Redis, Zookeeper)
which constitute the core of the architecture, a log system (Log4j), a monitoring system
(AirFlow) and deployment, and an administration model (Kubernetes).

Eclipse Mosquitto (mosquitto.org, accessed on 22 June 2022) is a MQTT server that
collects data from sensors of origins and stores them in individual topics in binary, plain
text or json form, Apache Kafka (kafka.apache.org, accessed on 24 June 2022), a message
queue widely used to temporary store data before or after their processing. Apache Spark
Streaming (spark.apache.org, accessed on 28 June 2022) is implemented to process streams
of data while the MLlib library achieves Machine Learning analysis. At the end, the data
are stored in function of the type of data in a polystore composed of multiple databases
(Apache Druid & PostgreSQL). Apache Camel (camel.apache.org, accessed on 22 June 2022)
is an integration framework that empowers integration of various systems consuming
or producing data. MinIO (min.io, accessed on 22 June 2022) is high-performance, S3
compatible object storage. ElasticSearch (elastic.co, accessed on 24 June 2022) is a software
using Apache Lucene (lucene.apache.org, accessed on 24 June 2022) for indexing and
searching data. Apache Airflow (airflow.apache.org, accessed on 24 June 2022) is a platform
to programmatically author, schedule, and monitor workflows. Apache Superset (superset.
apache.org, accessed on 25 June 2022) is a data exploration and visualization platform.
PostgreSQL (www.postgresql.org, accessed on 28 June 2022) is a powerful, open-source
object-relational database system. Apache Druid (druid.apache.org, accessed on 27 June
2022) is a real-time database to power modern analytic applications. Redis (redis.io,
accessed on 25 June 2022) is an open source, in-memory data store. Apache Zookeeper
(zookeeper.apache.org, accessed on 25 June 2022) is a centralized service for maintaining
configuration information, naming, providing distributed synchronization, and providing
group services. Kubernetes (kubernetes.io, accessed on 25 June 2022) is an open source
system for automating the deployment, scaling, and management of components in a
containerized architecture. Apache Log4j (logging.apache.org/log4j/2.x, accessed on 25
June 2022) is a Java-based logging utility.

Figure 2 presents an overview of the architecture in which some links with Apache
Zookeeper and MinIO are respectively replaced by single and double asterisks to improve
readability. Zookeeper also ensures the replacement of failed instances of Apache Kafka
and Apache Kafka stream, Apache Spark Stream, Apache Camel, Apache Druid. Airflow
plays the role of monitoring of critical components of the architecture: Redis, Apache Spark
Stream, PostgreSQL, Elasticsearch and Apache Druid. It is not used for the deployment
of workflow in our architecture. Kubernetes is used for the deployments of architecture’s
components and ensures its scalability. While Log4j, a well-known library, is implemented
to monitor incidents at key points in the architecture.

mosquitto.org
kafka.apache.org
spark.apache.org
camel.apache.org
min.io
elastic.co
lucene.apache.org
airflow.apache.org
superset.apache.org
superset.apache.org
www.postgresql.org
druid.apache.org
redis.io
zookeeper.apache.org
kubernetes.io
logging.apache.org/log4j/2.x
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Figure 2. Cloud part of the RAMi Architecture.

Data produced by Medical Sensors or Medical Things are sent to MQTT topics. Kakfka
Connect interconnects MQTT with Apache Kafka and ensures one-to-one correspondence
between an MQTT topic and an Apache Kafka topic. Following the nature of the sensors,
data are transmitted individually on individual MQTT topics or on a common topic. In
this last case, Apache Kafka Stream splits all kinds of data in separated thematic topics to
facilitate their processing by Apache Spark later on. Apache Camel consumes raw data
in Apache Kafka. Apache Camel transforms each one in an object and stores it on MinIO
where it is directly available for ElasticSearch where it is indexed and available for search.
MinIO plays at same time the role of Datalake. Apache Spark Streaming consumes data
present in the Apache Kafka, annotates and enriches data while Apache Spark MLlib is
used to clean and validate data before storing them. The time-series data are stored in
Apache Druid in the form of groups of 4 to 7 millions of lines called segments stored onto
MinIO which also plays the role of deep storage. While PostgreSQL is used to store, on
the one hand, a relation between collected data and Metadata of segments is produced by
Apache Druid. Apache Superset allows to analyze, on the one hand, raw data to obtain
an overview of the evolution of the parameters and, on the other hand, query the Druid
database-processed data refining trends and achieving more complex analyses.

Apache Airflow is used in our architecture to monitor workflows in Apache Druid,
PostgreSQL, Redis, and ElasticSearch. Zookeeper coordinates Druid, Spark, and Kafka
clusters. While Log4j allows to log all events at key components of the architecture to
quickly detect anomalies and investigate failures. Redis plays the role of caching system
for Apache Druid at broker level and for the Apache Superset. Finally, Kubernetes deploys
easily all components of the architecture and news pods to scale of the architecture.

The proposed architecture is sufficiently flexible to easily replace most components
with alternatives. In order to enlighten the readers on the possibilities of substitution, we
propose some alternative software bricks that could be used to replace the components of
the architecture. An alternative to Apache Druid, Apache Pinot (pinot.apache.org, accessed
on 30 June 2022), a promising Real-time distributed OLAP datastore, designed to answer
OLAP queries with low latency can be implemented. While Elasticserach can be replaced
by Apache Solr (solr.apache.org, accessed on 30 June 2022), a popular, blazing-fast, open-
source enterprise search platform also built on Apache Lucene (lucene.apache.org, accessed
on 29 June 2022). MinIO can be replaced by Apache Cassandra (cassandra.apache.org,
accessed on 30 June 2022) that is also compatible with Apache Druid in terms of deep
storage.

pinot.apache.org
solr.apache.org
lucene.apache.org
cassandra.apache.org
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Figure 3 presents a conceptual overview of the fog part of the architecture RAMi.
Data are sent by sensors to MQTT server with TLS protocol where they are processed
and temporarily stored locally and then transferred to the MQTT server in the form of
timeseries to the MQTT server of the cloud architecture. The local storage allows to avoid
loss of crucial data in case of temporary congestion or interruption of the network.

Figure 3. Conceptual diagram and principal software of the Fog part of the RAMi Architecture.

Figure 4 presents the architecture deployed on the gateway to clean, validate, and
enrich data received from sensors by the Mosquitto MQTT Server.

Figure 4. Fog part of the RAMi Architecture.

At the gateway level, devices send their data to the MQTT server of the gateway where
the data are handled by Apache MiNiFi (a light version of Apache NiFi (nifi.apache.org,
accessed on 1 July 2022) dedicated to constrained devices). We implemented Apache IoTDB
to store temporary and local data.

A responsive mobile application was developed in Flutter/Dart to visualize data at
the edge and cloud level. Figure 5 shows an overview of the interface data visualization of
the developed application.

nifi.apache.org
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Figure 5. Mobile App to visualize data.

4. Experimentation

The aim of our experimentation is to evaluate our architecture, on one the hand, on the
basis of the ECG real-time abnormal detection and, on the other hand, on the quality of the
patient environment thanks to the evaluation of Heat Index (HI). The two experiments are
implemented on the same microcontroller equipped of four sensors. We used a Wemos D1
R32 board that has the same factor form as an Arduino UNO and is also programmable with
Arduino IDE. On this board, the ATMega328 16 MHz is replaced by an ESP32 WROOM at
240 MHz with Wi-Fi, Bluetooth, and 4MB of flash memory.

Both experiments use a common real time clock DS3231 connected to the microcon-
troller by the I2C protocol to retrieve a common base time which is the Linux time, i.e., the
number of seconds elapsed since 1 January 1970. For the first experimentation, the Wemos
UNO D1 R32 relates to an integrated signal conditioning block for ECG AD8232 and a
High-Sensitivity Pulse Oximeter and Heart-Rate Sensor MAX30102 by I2C protocol. In the
second experimentation, a DTH22 sensor measures ambient air temperature and relative
humidity. The HI is calculated from ambient air temperature and relative humidity with
the following equation:

HI = c1 + c2T + c3R + c4TR + c5T2 + c6R2 + c7T2R + c8TR2 + c9T2R2 (2)

where HI is the heat index (°C) ; T is the temperature (°C) ; R is the relative humidity (%);
c1 = −8.78469475556; c2 = 1.61139411; c3 = 2.33854883889; c4 =−0.14611605; c5 =−0.0123808094;
c6 = −0.0164248277778; c7 = 2.211732 × 10−3; c8 = 7.2548 × 10−4; c9 = −3.582 × 10−6.

In the two experiments, the data are transmitted by Wi-Fi to the gateway with MQTT
protocol with TLS. Figure 6 shows the connection diagram of the 4 sensors with pins of the
microcontroller Wemos D1 R32.
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Figure 6. Connection diagram of the sensors with the microcontroller.

The cloud architecture has been deployed on Contabo Cloud VPS XL (10 vCPU, 60 GB
ram, 800 GB NVMe) with Ubuntu 20.04 LTS Server (contabo.com/en/vps, accessed on 1
July 2022).

The gateway is built around an Odroid M1-8GB powered by a Rockchip RK3568B2
containing a quad-core Cortex-A55, a Mali-G52 EE, and a 0.8 TOPS NPU. In addition, it
is equipped with 8GB LPDDR4 RAM, a RJ45 Ethernet Port (10/100/1000), a M.2 NVMe
M-Key PCIe3.0 2-Lane, a SATA3, and a eMMC Module Socket. An adapted version of
Ubuntu 20.04 LTS with Kernel 4.19.219 and NPU support powered the Odroid M1.

We opted for the use of a medical node of our own making to facilitate the experimen-
tation and to free us from the problems of data format, compatibility but also of proprietary
transmission protocols. In the first experiment, we transmitted data continuously at high
frequency (up to 120 Hz) to test the capability of the architecture to process data in real-time.
In the second experiment, we evaluate the capability of the architecture to process several
data flows in parallel. Temperature and relative humidity are transmitted at a frequency of
0.5 Hz while the data of heart rate and oxygen saturation are transmitted only when the
patient’s finger is in contact with the sensor in a data burst. These two experiments allow
us to test the abilities of the architecture to process data in the three modes of transmission
(continuous, at regular time intervals, and burst).

5. Results

This section presents results obtained at the end of the two experiments. These results
are intended to demonstrate the ability of the architecture to operate in all three data
transmission modes (continuous, at regular intervals, and burst mode).

5.1. Results of the First Experiment

In this first experiment, the ECG sensor is connected to the patient and sends data at
high frequency (up to 120 Hz) continuously. The goals are to test the ability to process data
retrieved at high frequency, on the one hand, and the effectiveness of the Machine Learning
algorithm to detect anomalies on the other hand.

Figures 7 and 8 show ECG of patients detected by the Machine Learning (ML) as
normal, while Figures 9 and 10 show ECG of patients suffering of cardiac diseases and
detected abnormal by the ML algorithm.

contabo.com/en/vps
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Figure 7. Evolution of values for ECG—Healthy person 1.

Figure 8. Evolution of values for ECG—Healthy person 2.

Figure 9. Evolution of values for ECG—Person with disease 1.

Figure 10. Evolution of values for ECG—Person with disease 2.
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5.2. Results of the Second Experiment

The second experiment shows the functioning of the architecture for the calculation
of the HI from the temperature and relative humidity data sent at regular intervals at the
level of Apache Spark Streaming.

The following results are samples of data which have been continuously retrieved
from the medical node described in the previous paragraph, during a period of twelve
hours. Figures 11–13 show examples of results obtained after processing of temperature
data. Figure 11 presents results of the average temperature. While Figure 12 describes
the evolution of standard deviation of the mean temperature. Their values are between
0.046 °C and 0.1631 °C, which means that there is very little deviation around the mean
value.

Figure 11. Average values for temperature.

Figure 12. Standard Deviation on average values for temperature.

Figure 13 presents the evolution of minimum and maximum temperature. In this
figure, the difference is less than one °C. The data covered only twelve hours, but we can
conclude that the temperature that we received from our medical node is quite stable.
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Figure 13. Evolution of Minimum—Maximum values of the temperature.

The results for the relative humidity are represented in Figures 14–16. Figure 14
represents the average values of relative humidity and Figure 15 represents the standard
deviation of these average values. Their values vary between 0.1829% and 1.05%. In
Figure 15, we can see that the relative humidity is quite stable from 1 h to 8 h. Then, we
have a higher value. This is also visible in Figure 14 where the average value increases a
little at the 8th hour.

Figure 14. Average values for relative humidity.

Figure 15. Standard Deviation of average values for relative humidity.
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Figure 16 shows the evolution of minimum and maximum values of the relative
humidity during the given time.

Figure 16. Minimum—Maximum values for relative humidity.

Figures 17–19 represent the result of the heat index. Figure 18 shows the variation of
the head index around the average values represented in the Figure 17. We can see that the
heat index is not so stable as the relative humidity. Figure 18 presents variations between
0.0461 °C and 0.1779 °C which still represent very small variations of the temperature.

Figure 17. Average values for heat index.

Figure 18. Standard Deviation of average values for heat index.
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Figure 19 shows the evolution of minimum and maximum values of the heat index
during the given time. This curve is very similar to that of Figure 13.

Figure 19. Evolution of Minimum and Maximum values of the heat index.

In a second experiment, we experimented with the burst mode thanks to the trans-
mission of beat rate per minute and oxygen saturation of hemoglobin by pulse oximetry
(spO2). The data are only transmitted when the patient puts his finger on the infrared
sensor (AD8232).

Figures 20–22 are samples of the results of the number of beats per minute measured
during one hour from our medical node. In Figure 21, we can see the standard deviation
of the average beat values represented in Figure 20. Instead of the other parameters, the
standard deviation on beat varies between 0.8139 and 5.37 beats per minute. This difference
could be explained by the fact that the X-axis in Figure 21 is expressed in minutes instead
of hours as the other graphics.

Figure 20. Average values for beat.
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Figure 21. Standard deviation on average beat values.

Figure 22 shows the evolution of minimum and maximum values of beat during the
given time. Instead of the other minimum and maximum’s graphics, we can clearly see the
difference between the minimum and the maximum compared Figure 19, for example.

Figure 22. Evolution of minimum and maximum values of beats per minute.

This difference comes from the fact that for beats, we are observing data for one
hour, while we are observing the minimum and maximum of the other parameters for a
twelve-hour period.

Figures 23–25 are samples of the results spO2 rate expressed in % measured during
one hour from our medical node. In Figure 24, we can see the standard deviation of the
average spO2 values represented in Figure 23. Instead of the other parameters, the standard
deviation on spO2 varies between 0.0888 and 2.83% per minute. This difference can be
explained by the fact that the x-axis in Figure 23 is in minutes instead of hours as the other
graphics.

Figure 25 shows the evolution of the minimum and maximum values of spO2 during
the given time. Instead of the other minimum and maximum graphs, we can clearly see the
difference between the extremes.
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Figure 23. Average values for spO2 rate.

Figure 24. Standard deviation of average spO2 rate values.

Figure 25. Evolution of Minimum and Maximum values for spO2 rate.
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This difference indeed comes with the fact that for spO2, like heartbeat, we analyzed
data for one hour while we observed the minimum and maximum for the other parameters
over a period of twelve-hour period.

In the end, we tested our architecture with the data transmitted by our medical node.
ECG Machine Learning algorithm performance was evaluated from data acquired on two
healthy patients (Figures 7 and 8) and on two other patients suffering of cardiac diseases
(Figures 9 and 10). The continuous transmission of data has demonstrated the ability
of the architecture to collect, ingest, and store information at high speed and to detect
certain cardiac anomalies in real time using Machine Learning. Environmental data (air
temperature and relative humidity) were transmitted at a frequency of 1 Hz. The HI is
calculated on the basis of temperature expressed in °C and relative humidity expressed
in %. An extract of the analysis achieved with Apache Superset is shown in Figure 11 to
Figure 13 for temperature, Figure 14 to Figure 16 for humidity, and Figure 17 to Figure 19
for heat index, respectively. Beat rate per minute and spO2 rate acquired by MAX10302
and transmitted at each change of value at a variable frequency between 1 Hz to 3 Hz. One
overview of these data is presented in Figure 20 to Figure 22 and Figure 23 to Figure 25.

These first results allow to demonstrate the correct functioning of our architecture.
Nevertheless, the architecture must also be tested with commercial sensors to demonstrate
its ability to work with a wide variety of sensors producing data at different frequencies
and in various formats. In addition, the architecture must also be assessed with several
sensors which send their data synchronously, to demonstrate its ability to manage and
process data without loss of performance.

6. Discussion

In our experimentation, we have evaluated the ability of the architecture to ingest
and process three ways of sending data. We used for our experiments a Wemos D1 R32
board equipped with 4 sensors (DHT22, DS3231, MAX30102, AD8232) which measures air
temperature/relative humidity, date/time, heartbeat/spO2, and ECG, respectively.

The authors of [23] demonstrated that local processing of data from various sensors is
necessary before sending them to the cloud. Humidity and beat rate values measured in
our experiment is like those obtained in [24]. They also showed the ability of the ESP32
to process data. The authors of [25] measured spO2 and heart rate and their values are
comparable to those measured in our experiments. The authors of [26] used a smartphone as
gateway and sensors to detect heart anomalies but they tested their system with generated
ECG data. While the authors of [27] showed the ability to achieve the processing of ECG
data with Arduino and ESP8266.

In the first experiment, we evaluated our Machine Learning algorithm on several
ECGs to evaluate its ability to detect anomalies. Our experiment was performed with 2
normal ECGs and 2 abnormal ECGs. Moreover, the transmission of an ECG signal has
demonstrated the ability of the architecture to collect, process, and store data in real-time.

In the second experiment, we evaluated the ability of the architecture to manage data
arriving at regular intervals of time or in burst mode.

In the end, our architecture has been tested with our own sensors to alleviate problems
of compatibility and interoperability problems. Indeed, experimentation in a medical
context requires a series of administrative steps and prior agreements with equipment
manufacturers to have access to raw or pre-processed data from their sensors. Moreover,
this architecture alone does not allow for complete patient follow-up. Indeed, the develop-
ment of connectors to interact with the architectures present in hospitals before and after
hospitalization must still be carried out to ensure a complete follow-up from home to the
hospital and vice versa. To achieve this, it will be necessary to support and certify the
architecture for various formatting and data storage standards to ensure security, privacy,
and system interoperability. These processes are lengthy and will likely require several
more years of work.
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Indeed, we must implement security measures and best practices to apply on RAMi,
including—but not limited—to “MQTT”, “Data”, and “Application”.

MQTT: A firewall with advanced configuration is needed for a connection in the MQTT
broker. As MQTT uses TCP, we can block all “UDP”, then study the blocking of “ICMP”,
block all ports not used by MQTT, except the default ones (8883 and 1883), block everything
but the IP address range of the known clients, and use SSH instead of root access.

Data: For maximum protection of personal data, measures can be implemented by
pre-processing the data—i.e., before ingesting it—such as anonymization, which is to make
re-identification of the data difficult (if not impossible), and pseudonymization, which is
reversible and could take the form of using advanced cryptographic or hash methods with
key or salting, encryption, tokenization, and other relevant techniques.

Application: It is necessary to update software and keep all libraries and packages
up to date. We can opt to use SELinux which prevents programs from acting differently
after an update. Thus, even if an attacker manages to replace a program with a harmful
version, nothing will change afterwards. In addition, an interesting piece of software called
“Fail2Ban” checks several log files on a Linux computer, including the SSH log, and looks for
brute force attacks. It depends on iptables and updates the rules automatically if malicious
clients are found.

Finally, the architecture has been tested on a small scale and needs to be tested for use
in production or on a larger scale.

7. Conclusions and Future Direction

In this paper, we presented RAMi, a new platform Fog/Cloud to process medical data
to monitor elderly, bedridden, and convalescent patients. Our architecture is designed to
detect patterns of anomalies in the data in real-time but also to eliminate false positives by
integrating the particularities of the patients.

Moreover, we have proposed alternatives to most of the software bricks that compose
the architecture so that it can be adapted to the needs or particularities of other use cases.
The fact of being relatively independent of the software bricks allows us to protect ourselves
from the disappearance or abandonment of some of them over time and thus make the
architecture hopefully more sustainable.

In the end, the architecture is limited to real-time processing of time series data, which
allows for the collection of most of the data produced by the sensors of convalescent or
elderly patients. Currently, the architecture is not designed to process and import old
patient data.

Our experiments have proven the proper functioning of our architecture and the
ability of the node to correctly process the data streams from the ECG sensor and other
sensors. The values measured by the sensors are in similar ranges to those in the literature.

In future work, we will extend our architecture to all kind of medical data. With this
aim, we will implement Fast Healthcare Interoperability Resources (FIRH) v3 proposed by
Health Level Seven International (HL7) to describe data and improve their interoperability.
The interoperability between data will allow to develop new applications. The development
of a connector will also allow to interconnect INAH [12] and RAMi in the future. In addition,
special attention will be given to the security of the platform to ensure resilience in case of
attack.

In order to improve the security of our architecture, we plan to replace the MQTT
server where information is transmitted in clear text by a version integrating TrustZone, as
proposed by Segarra et al. [35,37].

Finally, our medical node will be equipped with additional sensors to obtain alerts
related to dust (GP2Y1010AU), CO2 (MH-Z14), CO, and NO2 (MICS-4514), as suggested
in [38]. In addition, other devices may be considered to complement the sensors and
meet specific needs or diseases among those identified by [39]. In parallel, we develop
an edge computing architecture to allow interaction and data exchange between medical
infrastructures [40].
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Abbreviations
The following abbreviations are used in this manuscript:

ACL Access Control List
AES Advanced Encryption Standard
AI Artificial Intelligence
API Application Programming Interface
ARM Advanced RISC Machines
BCB Block Chain Based
CBC Cipher Block Chaining
CMIOT Community Medical Internet of Things
DDOS Distributed Deny of Service
ECG Electrocardiography
FaaS Function-as-a-Service
FIRH Fast Healthcare Interoperability Resources
HDFS Hadoop Distributed File System
HI Heat Index
HIoT Healthcare Internet of Things
HL7 Health Level Seven International
IAS Intel Attestation Service
ICMP Internet Control Message Protocol
ICU Intensive Care Unit
IDE Integrated Development Environment
INAH The Institute of Analytics for Health
IoT Internet of Things
IoMT Internet of Medical Things
LTS Long Term Support
MEC Mobile Edge Computing
MITM Man-in-the-middle
ML Machine Learning
MQTT Message Queuing Telemetry Transport
NPU Neural processing unit
OSA Obtrusive Sleep Apnea
PUF Physically Unclonable Function
PBAN Personal Body Area Network
QoS Quality of Service
RFID Radio Frequency Identification
SDK Software Development Kit
SDN Software-Defined Networking
SEV Secure Encrypted Virtualization
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SGX Software Guard Extensions
SSL Secure Sockets Layer
spO2 Peripheral oxygen saturation
TCP Transmission Control Protocol
TEE Trusted Execution Environment
TLS Transport Layer Security
TOPS Total Operations Processing System
UDP User Datagram Protocol
WPAN Wireless Personal Area Network
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