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Abstract: Traditional screening approaches identify students who might be at risk for academic
problems based on how they perform on a single screening measure. However, using multiple
screening measures may improve accuracy when identifying at-risk students. The advent of machine
learning algorithms has allowed researchers to consider using advanced predictive models to identify
at-risk students. The purpose of this study is to investigate if machine learning algorithms can
strengthen the accuracy of predictions made from progress monitoring data to classify students as
at risk for low mathematics performance. This study used a sample of first-grade students who
completed a series of computerized formative assessments (Star Math, Star Reading, and Star Early
Literacy) during the 2016–2017 (n = 45,478) and 2017–2018 (n = 45,501) school years. Predictive models
using two machine learning algorithms (i.e., Random Forest and LogitBoost) were constructed to
identify students at risk for low mathematics performance. The classification results were evaluated
using evaluation metrics of accuracy, sensitivity, specificity, F1, and Matthews correlation coefficient.
Across the five metrics, a multi-measure screening procedure involving mathematics, reading, and
early literacy scores generally outperformed single-measure approaches relying solely on mathematics
scores. These findings suggest that educators may be able to use a cluster of measures administered
once at the beginning of the school year to screen their first grade for at-risk math performance.

Keywords: mathematics; screening; progress monitoring; computerized assessment; machine learning;
Random Forest

1. Introduction

The purpose of a screening assessment is to identify potential problems (e.g., learning
difficulties) accurately [1]. The problems that can be identified from screening assessments
used in schools can vary considerably—spanning the domains of cognitive abilities, social–
emotional functioning, and academic achievement, to name a few. The practice of using
screening measures to identify educational needs early is considered a key component to
implementing a multi-tiered system for identifying and supporting students’ instructional
needs. Typically, schools collect information using evidence-based screening measures
three times a year [2]. The timing of the screening assessments tends to follow the same
schedule in all schools, with assessments being administered to students at the beginning,
midpoint, and end of the school year. This data collection schedule is usually referred
to as fall, winter, and spring benchmark assessments. The consequence associated with
the interpretation of screening data typically involves some type of change to curriculum,
instruction, or intervention planning. The over-arching goal, essentially, is to identify
problems before they become more significant. Thus, the key to achieving this goal is to be
able to accurately predict academic performance later in the school year.

The common saying “the best predictor of future behavior is past behavior” has been
used in many contexts and is often considered to hold true [3]. Within the context of
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education, despite the temptation to use other variables (e.g., cognitive abilities) to explain
a particular outcome (e.g., academic achievement), the variable with the greatest predictive
power will likely be the one that is most closely related to the target outcome. That is,
instead of attempting to explain academic performance from a number of related influences
(e.g., cognitive abilities, demographic variables, school-related factors), we should focus
on predicting academic achievement from academic measures because the direct link
is more likely to produce the most useful information [4]. Following this rationale, we
would expect the best predictor of mathematics performance to be a general measure of
mathematics achievement or of relevant skills or sub-skills. In addition, especially in later
grades, the assessment of core academic areas tends to involve more overlap between
reading, writing, and mathematics skills. For example, research suggested that reading
ability and linguistic skills may contribute significantly to mathematics performance [5,6].

Given the strong connection among core academic areas, some researchers have
suggested that using multiple screening measures systematically (typically referred to as
multivariate screening) may be an effective and efficient way to identify students who are
at risk for learning difficulties [7–9]. The primary goal of multivariate screening is to gather
information from multiple measures and thereby increase the accuracy of prediction for
identifying “students at risk” while reducing the number of students incorrectly identified
as at risk. Similarly, a tiered form of multivariate screening, gated screening, has also
been used in this context [8]. In gated screening, educators use a screening measure
to identify students who are “potentially at risk” and then collect more information for
this group of students using another screening measure. In other words, each screening
measure is expected to bring unique information about students’ academic performance,
leading to more refined and accurate predictions of their potential to be at risk for poor
academic performance.

In this study, we aim to extend the current gated screening framework by harnessing
information collected from multiple screening measures focusing on different academic
areas. Specifically, we posit that screening measures for reading and early literacy could
contribute to the prediction of students at risk in mathematics because these screening
measures can provide unique information about at-risk students beyond the information
obtained from a screening measure used for evaluating mathematics performance. Fur-
thermore, we utilize machine learning algorithms to enhance the predictive power of the
proposed approach. To demonstrate the proposed gated screening approach for mathe-
matics and evaluate its accuracy, we use real data from a large sample of students who
participated in the Star assessments (i.e., Star Math, Star Reading, and Star Early Literacy).
In the following sections, we first explain gated screening and important concepts related
to gated screening (e.g., classification accuracy); then, we describe the methodological
approach of our study, and present our findings.

1.1. Gated Screening Approaches

Gated screening began to appear in the educational assessment literature over 10 years
ago and, at the time, the approach was referred to as multi-stage assessment or multi-gate
screening [10]. Gated screening generally implies that multiple types of measures be used
across contexts to optimize the quality of the data that are produced for decision making.
For example, early on, researchers suggested that using teacher ratings in addition to edu-
cational assessment data may be more useful in identifying struggling learners than using
these measures in isolation [11]. Glover and Albers [10] identified “the appropriateness of
the measured construct and content, the timing and frequency of administration, the suit-
ability of the informant, and the representativeness of the normative sample” (p. 125) as
important considerations for gated screening assessments.

Although validity and reliability will always be central to the assessment process,
the psychometric properties of assessments available in schools have changed dramati-
cally over the past 10 years. The increased sophistication that has resulted from rigorous
development processes, which includes the use of advanced measurement and statistical
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techniques, has led researchers to focus more on the efficiency and effectiveness of assess-
ment practices that are used in schools [12]. In other words, the focus in the literature
has shifted away from the psychometric properties of tests and has focused more on de-
veloping efficient assessment practices that lead to effective decisions regarding student
needs and supports. For example, researchers have examined the potential of using only
educational data that are readily available in schools. This includes attempts at maximizing
the predictions of end-of-year achievement levels from data collected early in the school
year [13]. In particular, they appear to focus on benchmark data [7] and state assessment
performance [14].

Recently, researchers have begun to use these approaches more systematically by
applying them within gated screening frameworks. To gather evidence to support the use
of gated screening approaches in schools, researchers appear to specifically be focusing
on: (a) differentiating between using screening measures simultaneously or sequentially
(e.g., [8]); (b) the classification accuracy of screening measures (e.g., [7,13,15,16]); and (c) the
feasibility and practical utility of using predictive models (e.g., [7,17,18]). Furthermore,
there are studies employing machine learning approaches to students who are at risk of
adverse academic outcomes. For example, researchers harnessed predictive models using
machine learning algorithms for the detection of students at risk of not graduating high
school on time or dropping out of high school (e.g., [19–21]) and for the prediction of low
academic performance (e.g., [22,23]). Despite their promising results for identifying at-risk
students with a high degree of accuracy, the scope of these studies has been limited to
middle and high school levels.

1.2. Classification Accuracy

The classification accuracy of an assessment refers to its ability to discriminate between
two distinct groups (“classification accuracy” is often referred to as diagnostic accuracy;
however, for the purposes of this research, it seemed more appropriate to use classification
accuracy to describe the results because the categorical variables defined and used in this
study do not refer to the identification or diagnosis of a disability or disorder). In the
context of educational screening assessments, classification accuracy refers to the ability
to discriminate between students who are at risk for academic difficulties (i.e., in need of
additional instructional supports) and students who are not at risk for academic difficulties
(i.e., demonstrating adequate growth in response to general classroom instruction). Ideally,
a screening measure would discriminate between these two groups with perfect classifica-
tion accuracy. Perfect classification accuracy refers to correctly identifying all the students
who are at risk (true positives) and all students who are not at risk for academic difficulties
(true negatives). However, in practice, it is highly unlikely that any screening measure
will have perfect classification accuracy. Consequently, the sensitivity and specificity of the
screening measure are typically evaluated to determine if the classification accuracy of the
measures is strong enough to make good decisions.

Sensitivity and specificity have a direct influence on the efficiency and effectiveness of
the instructional supports that are provided to students. For example, if a measure does
not have a high degree of sensitivity, many students who are in fact in need of additional
instructional supports (i.e., at risk for academic difficulties) will be identified as not at risk
for academic difficulty (i.e., FN: false negative), and therefore, they will not be provided
with the additional instructional supports. Similarly, if a measure does not have a high
degree of specificity, many students who are not in need of additional instructional supports
(i.e., not at risk for academic difficulties) will be identified as at risk for academic difficulty
(i.e., FP: false positive) and therefore will be provided additional supports unnecessarily. It
is, therefore, not surprising that the accuracy of the prediction (i.e., classification accuracy) of
an assessment is extremely important, and it should be optimized to: (a) avoid squandering
resources by delivering additional supports unnecessarily and (b) identifying as many
struggling learners as possible.
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To be able to determine the classification accuracy of a screening measure, a cut score
needs to be used to be able to compare the accuracy of the classifications. Defining students
as at risk can be challenging, given the implications of assigning this status to students.
For example, if a student is identified as at risk, there may be an implied responsibility to
provide additional instructional supports to that student. On the other hand, if a student
is identified as at risk, but they do not require supplemental instructional supports to
grow academically, then additional educational resources would be provided unnecessarily.
Thus, the assignment of an appropriate cut score involves two important considerations—A
statistical one and a practical one. A value greater than 0.75 is the recommended mini-
mum standard when evaluating the sensitivity and specificity of screening measures [10].
However, the parameters used by other researchers tend to provide a more nuanced in-
terpretation of classification accuracy statistics. These parameters and their associated
descriptors are ≥0.70, acceptable and ≥0.80, optimal [24,25].

To be able to attain this target, researchers can modify cut scores to find a balance
between sensitivity and specificity. However, research should not lose sight of what the cut
scores represent—whether or not a student is at risk for later difficulties. This process is
more important when selecting an appropriate cut score for an outcome than a predictor.
In other words, a student’s actual at-risk status (as opposed to their predicted at-risk
status) should be clearly defined and not be altered to increase the sensitivity or specificity
of a screening approach. With this in mind, researchers will attempt to find a balance
between the optimal sensitivity and specificity that is generated from their predictors.
Some researchers “consider the outcome of an FP to be twice as costly as the outcome
of an FN” ([8], p. 159). This is not surprising considering the resources that would be
wasted if a high number of students not at risk for academic difficulties were provided
additional instructional supports. Van Norman and colleagues [8], however, did note that
“the cost of FNs within a gated screening framework should not be ignored” (p. 159), which
emphasizes the need for balance between sensitivity and specificity.

1.3. Current Study

The purpose of the current study was to develop an effective screening procedure
that can identify students in need of targeted instructional supports. To achieve this goal,
a number of different methodologies and approaches to screening for academic difficul-
ties was considered. Predictive models with various machine learning algorithms were
developed to classify at-risk students in mathematics based on scores from computerized
adaptive assessments focusing on mathematics, reading, and early literacy (i.e., Star Math,
Star Reading, and Star Early Literacy). The following research questions will be addressed:

1. What is the difference in classification accuracy outcomes between single-measure
and multi-measure (e.g., gated) screening frameworks?

2. To what extent does the cut-score parameter influence the classification accuracy of
the screening approach used to identify at-risk students?

2. Methods
2.1. Sample

This study used a sample of first-grade students (MAge = 6.96 years, SDAge = 0.51 years)
in the United States who participated in a series of computerized formative assessments
(Star Math, Star Reading, and Star Early Literacy) during the 2016–2017 (n = 45,478) and
2017–2018 (n = 45,501) academic years. Each student participated in the Star assessments
multiple times during a school year based on their teacher’s test administration decisions
(e.g., at the beginning of the school year, later in the first semester, earlier in the second
semester, and before the second semester ends). The sample was divided into two groups
by school year to provide separate results that could be reviewed for consistency. In other
words, completing the analysis by year allowed for greater confidence in the results, as-
suming that they would be consistent across academic years.
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2.2. Measures

The Star assessments are computerized-adaptive formative assessments used for both
screening and progress monitoring purposes in K–12 classrooms [26–28]. Students are
typically administered several Star assessments, starting from early fall until the end of
the spring term. The following sections briefly describe each Star assessment used in the
current study.

2.2.1. Star Early Literacy

The purpose of the Star Early Literacy assessment is to inform classroom instruction
in the areas that are foundational to developing reading skills. Star Early Literacy was
developed to be used regularly so teachers could receive ongoing feedback about the
growth in skill development for each of their students. The early literacy skills that are
incorporated into this measure are subsumed under three categories: (a) Word Knowledge
and Skills; (b) Comprehension Strategies and Constructing Meaning; and (c) Numbers and
Operations. Forty-one sub-skills are defined under these three over-arching categories. Star
Early Literacy is a fixed-length computer adaptive test that administers 27 items for an
average completion time of less than 10 min. Strong evidence of reliability and validity is
described in detail in the Star Early Literacy technical manual [28].

2.2.2. Star Reading

Star Reading was designed as a standards-based test that includes items that were
developed from five blueprint domains, ten skill sets, thirty-six general skills, and more
than 470 discrete skills [26]. This highly structured design was developed intentionally to
align with national and state curriculum standards in reading, which includes an alignment
with the Common Core State Standards [26]. The purpose of the Star Reading assessment
is to provide meaningful information to teachers to inform their classroom instruction.
It can also provide information about the likelihood that a student will progress well in
response to classroom instruction throughout the year and perform well on the state test at
the end of the school year. This latter purpose is essentially describing Star Reading as a
screening measure.

Currently, Star Reading has two components—a brief measure of reading comprehen-
sion used for progress monitoring and a more comprehensive version that can be used
to assess student achievement or as a screening measure to predict students’ need for
additional instructional supports later in the school year. The version of Star Reading used
to assess reading achievement comprehensively is a fixed-length computerized adaptive
test that administers 34 items to students to identify their current reading level within an
average administration time of approximately 20 min. Star Reading can be administered to
students with a sight-word vocabulary of at least 100 words from kindergarten to grade
12. Strong evidence of reliability and validity are described in detail in the Star Reading
technical manual [26].

2.2.3. Star Math

The purpose of the Star Math assessment is to provide mathematics achievement
data to inform classroom instruction. It was developed to include four broad domains of
mathematics: (a) Numbers and Operations; (b) Algebra; (c) Geometry and Measurement;
and (d) Data Analysis, Statistics and Probability [27]. To ensure that specific skills are
assessed to best inform targeted instruction, 790 individual skills subsumed under 54 skill
sets are included within one of the four broad domains [27]. The inclusion of a wide range
of mathematics skills allows Star Math to be administered to students from kindergarten to
grade 12.

The overall structure and functioning of Star Math are quite similar to Star Reading.
Star Math also has two versions available—A brief measure of mathematical ability that
produces progress monitoring data and a comprehensive measure of mathematics achieve-
ment. The purpose of the latter is to inform instruction and to predict students’ needs for
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additional instructional supports later in the school year. Again, much like Star Reading,
the version of Star Math used to assess mathematics achievement comprehensively is a
fixed-length computerized adaptive test that administers 34 items to students to identify
their current mathematics level within an average administration time of approximately
20 min. Strong evidence of reliability and validity is described in detail in the Star Math
technical manual [27].

2.3. Data Analysis

To classify at-risk students in mathematics, we followed two methodological ap-
proaches: a single-stage prediction and a gated screening approach that involved either a
standard or mixed framework. The following sections describe these approaches in more
detail. For all analyses, the outcome variable was held constant. The criterion used for
end-of-year performance in mathematics was set at the 25th percentile. The 25th percentile
was selected as the outcome variable for two reasons. First, from a normative perspec-
tive, the 25th percentile typically represents the division between typical (i.e., average)
performance and below average performance on norm-referenced measures of academic
achievement (e.g., Wechsler Individual Achievement Test, Third Edition [29]).

Second, students performing at or below the 25th percentile are considered by some
to be “low achieving”, which suggests that additional educational supports are needed to
help these students demonstrate adequate growth in academic domains [30]. Due to scaled
score conversions only being available for the first month of each school year, we used the
25th percentile score from the following year as the end-of-year criterion. For example,
in order to identify the first-grade students who might be at risk for learning difficulties in
mathematics, we first found the Star Math scale score corresponding to the 25th percentile
in Grade 2 using the Star Math technical manual. Then, the first-grade students whose last
Star Math score for that school year was less than this scaled score was identified as “at
risk”, whereas the remaining students were identified as “not at risk”. This binary variable
was used as the dependent variable in the classification analysis.

2.3.1. Single-Stage Screening

In the single-stage screening, we built two models (Model 0 and Model 1) to examine
the predictive power of Star assessment scores from the first half of the fall semester
(i.e., August, September, or October) in the classification of students at risk for learning
difficulties in mathematics. In Model 0, we used students’ first Star assessment score (as
a continuous predictor) and the administration time of the first Star Math (i.e., month) to
predict the binary dependent variable (i.e., 1 = “at risk” and 0 = “not at risk”). In Model
1, in addition to the predictors in Model 0, we also included the first Star Reading and
Star Early Literacy scores and the administration times of the first Star Reading and Star
Early Literacy. Model 0 represents the traditional screening approach based on a single
measure, while Model 1 mimics the gated screening approach by using multiple measures
but concurrently rather than sequentially. Hence, Model 1 can be considered a single-stage
screening approach.

For each model, we used the Logitboost and Random Forest (RF) classification al-
gorithms to run the analysis using the caret package [31] in R [32]. In machine learning,
a boosting procedure applies a classification algorithm repeatedly to reweighted versions
of a training dataset and then takes a weighted majority vote of the sequence of resulting
classifications [33]. The Logitboost algorithm aims to improve the accuracy of traditional
logistic regression by performing additive logistic regressions based on maximum Bernoulli
likelihood as a criterion. The goal of traditional logistic regression is to learn a function that
estimates the probability of falling into one of the two exclusive categories, given a set of
predictors. In the context of classification of at-risk students, a logistic regression model
would have the following form:

P(1 = Student at risk|X1, . . . , Xk) =
eF(x)

1 + eF(x)
, (1)
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where the probability of being at risk (i.e., P(1 = Student at risk|X1, . . . , Xk)) is predicted
based on k number of predictors, e refers to the exponential function, and F(x) = b0 +
b1X1 + b2X2 + . . . + bkXk. The logistic regression function aims to learn the ideal set of
parameters (i.e., b0, b1, . . . , bk) from the training dataset to make accurate predictions for
the test dataset. The Logitboost algorithm employs a sequential approach for updating the
prediction model F(x) as:

F(x) = F(M)(x) = ΣM
m=1 pmh(x; am), (2)

where h(x; am) is a pre-specified function to adjust the predictions over M sequences.
The task is to learn the parameters pm and am from the training dataset to adjust the
prediction accuracy.

The RF algorithm [34] is another widely studied method in machine learning. This
algorithm is often considered a “standard classification method”, competing with other
popular machine learning algorithms such as logistic regression [35]. As an ensemble
learning method, the RF algorithm draws random, bootstrap samples from the original
data, builds classification models in the form of a tree structure (i.e., decision trees), and then
aggregates all decision trees to reduce the overall variance before making a prediction.
The main advantage of the RF algorithm over decision trees is its ability to add randomness
to the predictive model by searching for the best feature (i.e., predictor) among a random
subset of features. This approach results in a wider diversity in the model and thereby
generalizes over the data more accurately. To implement the RF algorithm, we followed
the same model set up where the dependent variable was the classification of at-risk
students (i.e., 1 = “at risk” and 0 = “not at risk”) and the predictors were students’ first
Star assessment score and the administration time of the first Star Math (Model 0) and
additional predictors, including the first Star Reading and Star Early Literacy scores and
the administration times of these assessments (Model 1). For both the Logitboost and RF
algorithms, once we obtained a prediction model based on the training dataset (70% of the
full dataset), we applied the model to the test dataset (30% of the full dataset) to obtain
classifications of students at risk in mathematics.

In the model training process for both algorithms, we applied the undersampling,
oversampling, and ROSE techniques [36,37] due to the strong class imbalance problem
(i.e., having much fewer number of at-risk students compared with those who were not at
risk). The proportion of at-risk students was 17% and 18% in the 2016–2017 and 2017–2018
datasets. Undersampling randomly subset both classes (i.e., 1 = “at risk” and 0 = “not at
risk”) in the training dataset so that the class frequencies could match the least prevalent
class (i.e., students at risk for learning difficulties in mathematics). Oversampling took a
random sample of the minority class (i.e., 1 = “at risk”) with replacement so that it became
the same size as the majority class (i.e., 0 = “not at risk”). The ROSE method created a
sample of synthetic data by downsampling the majority class (i.e., 0 = “not at risk”) and
synthesized new data points in the minority class (i.e., 1 = “at risk”). This process yielded a
synthetic and balanced sample of the two classes (see Menardi and Torelli [36] for further
details on the ROSE method).

2.3.2. Gated Screening

In the standard gated screening analysis, we first predicted students at risk for learning
difficulties in mathematics based on their first Star Math score in a school year. The criterion
for the identification of these students was that their first Star Math score must be higher
than the Star Math scores corresponding to the 30th, 40th, or 50th percentiles. This process
resulted in a categorical flag (i.e., 0 = not at risk or 1 = at risk) for each percentile cut-off
value. Second, we reviewed the scores from other Star assessments for students who were
identified as “at risk” based on the initial flag and created a second flag if the students were
also “at risk” based on the 30th, 40th, and 50th percentiles of the other Star assessments (i.e.,
Star Reading and Star Early Literacy). The students who were flagged in both rounds were
considered being “at risk”, whereas the remaining students were considered being “not at



Information 2022, 13, 400 8 of 18

risk”. For example, if a student’s Star Math score is below the scale score corresponding
to the 30th percentile in Star Math, then the student receives an initial “at risk” flag. Next,
if the student’s score in either Star Reading or Star Early Literacy is also below the scale
scores corresponding to the 30th percentile for those assessments, then the student’s “at risk”
flag is confirmed. Other students who are not flagged after the two rounds of screening are
considered being “not at risk”. Using the standard gated screening approach, we examined
if the students were correctly identified as being “at risk” at the end of the school year
based on whether their last Star Math score was above the scale score for the 25th percentile
in Grade 2.

The mixed gated screening approach also consisted of two stages. The first stage
involved the identification of the students who were “not at risk”, which was based on their
first Star Math score in a school year. We again used the scale scores corresponding to the
30th, 40th, and 50th percentiles to identify students who were above these cut-off values
and then temporarily removed these students from the training dataset. Then, in the second
stage, we used the remaining students (i.e., the sample of students who were identified as
being “at risk” in the first stage) and applied the Logitboost and RF algorithms to predict
whether they would still be identified as being “at risk” based on their last Star Math
score (i.e., whether or not their scores were above the scale score corresponding to the 25th
percentile of the next grade level). Using the training dataset, the classification based on the
final Star Math score was predicted based on the first Star Reading and Star Early Literacy
scores and the administration times of these assessments. The prediction algorithm from
the training dataset was then applied to the test dataset to make predictions and evaluate
the outcomes. Students in the test dataset who were flagged either based on their first
Star Math score or by the machine learning model were considered “at-risk” students. All
single-stage and gated screening methods were applied to student data from the 2016–2017
and 2017–2018 academic years. Figure 1 depicts the single-stage and mixed gated screening
procedures involving a binary classification model based on machine learning.

Figure 1. Single-stage and mixed gated screening procedures.
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2.3.3. Evaluation Criteria

The results of both the single-stage and mixed gated screening approaches were
evaluated based on the following metrics:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (3)

Sensitivity =
TP

TP + FN
, (4)

Speci f icity =
TN

TN + FP
, (5)

F1 = 2× (Sensitivity× Speci f icity)
(Sensitivity + Speci f icity)

, and (6)

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (7)

where TP is the proportion of true positive classifications, FP is the proportion of false
positive classifications, TN is the proportion of true negative classifications, FN is the
proportion of false negative classifications, and MCC is the Matthews correlation coefficient.
Among these metrics, sensitivity, specificity, and accuracy have been widely used by educa-
tional researchers for identifying at-risk students, whereas the F1 score and MCC metrics
have been less prevalent in the literature despite their higher robustness for handling highly
imbalanced classes [38]. Unlike the other evaluation metrics that range from 0 to 1, MCC
ranges between −1 and 1 where −1 represents perfect misclassification, 0 represents no
agreement through a random guess classifier, and 1 represents perfect classification.

3. Results

The findings from single-stage and gated screening methods (i.e., standard and mixed)
for the 2016–2017 and 2017–2018 academic years are presented in Tables 1 and 2. All single-
stage screening methods using oversampling yielded sensitivity, specificity, and accuracy
values exceeding the acceptable threshold of 0.70, except for Model 1 with the RF algorithm.
Although this model produced lower sensitivity in the 2016–2017 (0.685) and 2017–2018
(0.678) datasets, its specificity and accuracy were much higher than those observed for
the single-stage screening methods. Compared to the oversampling results, the single-
stage screening with undersampling yielded much higher values of sensitivity, specificity,
and accuracy across both academic years. All evaluation values exceeded the acceptable
threshold of 0.70 or the optimal threshold of 0.8, except for the specificity of Model 1 with
the LogitBoost algorithm for the 2017–2018 dataset (see Table 2).

The single-stage screening methods with the ROSE approach generally yielded less
accurate results than the single-stage screening methods with the oversampling and under-
sampling methods. This particular method produced optimal sensitivity values (≥0.80)
across both academic years, except for Model 0 (only Star Math as a predictor) with the
RF algorithm; however, the same method yielded relatively lower sensitivity and accuracy
values (either optimal or below the optimal value of 0.70). It should be also noted that
unlike the lower specificity and accuracy values, the sensitivity values produced by the
single-stage screening methods with the ROSE approach were the highest value across all
single-stage screening methods.

Among the three standard gated screening methods, the 50% threshold model using
the Star Math score corresponding to the 50th percentile as a cut-off score was the only
one that produced sensitivity, specificity, and accuracy values higher than the acceptable
threshold of 0.70 for both academic years (see Tables 1 and 2). Although the other two
models with 30% and 40% thresholds yielded optimal specificity and accuracy values above
0.80, they produced lower levels of sensitivity. This finding suggests that those two models
would accurately identify students whose academic performance levels in mathematics
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are acceptable but fail to detect students at risk in mathematics. Therefore, the standard
gated screening models with 30% and 40% thresholds may not be useful to school-based
professionals (e.g., school psychologists) who aim to proactively identify students at risk in
mathematics and providing them with individualized support.

Table 1. Sensitivity, Specificity, and Accuracy Results for the 2016–2017 School Year.

Screening Method Algorithm Prediction Model Sampling Sensitivity Specificity Accuracy

Single-Stage RF Model 0 (SM) Oversampling 0.797 0.717 0.731
Single-Stage RF Model 1 (SM + SR + SEL) Oversampling 0.685 0.839 0.812
Single-Stage LogitBoost Model 0 (SM) Oversampling 0.713 0.790 0.777
Single-Stage LogitBoost Model 1 (SM + SR + SEL) Oversampling 0.835 0.726 0.744
Single-Stage RF Model 0 (SM) Undersampling 0.799 0.706 0.722
Single-Stage RF Model 1 (SM + SR + SEL) Undersampling 0.829 0.737 0.753
Single-Stage LogitBoost Model 0 (SM) Undersampling 0.711 0.792 0.778
Single-Stage LogitBoost Model 1 (SM + SR + SEL) Undersampling 0.788 0.781 0.782
Single-Stage RF Model 0 (SM) ROSE 0.635 0.793 0.766
Single-Stage RF Model 1 (SM + SR + SEL) ROSE 0.882 0.667 0.704
Single-Stage LogitBoost Model 0 (SM) ROSE 0.856 0.690 0.719
Single-Stage LogitBoost Model 1 (SM + SR + SEL) ROSE 0.866 0.665 0.699

Gated (Standard) - 30% Threshold - 0.468 0.923 0.844
Gated (Standard) - 40% Threshold - 0.624 0.863 0.822
Gated (Standard) - 50% Threshold - 0.778 0.781 0.780

Gated (Mixed) RF 30% Threshold Oversampling 0.698 0.788 0.773
Gated (Mixed) RF 40% Threshold Oversampling 0.781 0.739 0.746
Gated (Mixed) RF 50% Threshold Oversampling 0.863 0.670 0.703
Gated (Mixed) LogitBoost 30% Threshold Oversampling 0.570 0.868 0.816
Gated (Mixed) LogitBoost 40% Threshold Oversampling 0.892 0.568 0.624
Gated (Mixed) LogitBoost 50% Threshold Oversampling 0.896 0.594 0.646
Gated (Mixed) RF 30% Threshold Undersampling 0.703 0.787 0.773
Gated (Mixed) RF 40% Threshold Undersampling 0.784 0.736 0.744
Gated (Mixed) RF 50% Threshold Undersampling 0.876 0.663 0.699
Gated (Mixed) LogitBoost 30% Threshold Undersampling 0.627 0.848 0.810
Gated (Mixed) LogitBoost 40% Threshold Undersampling 0.704 0.804 0.787
Gated (Mixed) LogitBoost 50% Threshold Undersampling 0.885 0.609 0.657
Gated (Mixed) RF 30% Threshold ROSE 0.737 0.767 0.762
Gated (Mixed) RF 40% Threshold ROSE 0.791 0.712 0.726
Gated (Mixed) RF 50% Threshold ROSE 0.879 0.641 0.682
Gated (Mixed) LogitBoost 30% Threshold ROSE 0.909 0.504 0.574
Gated (Mixed) LogitBoost 40% Threshold ROSE 0.679 0.808 0.786
Gated (Mixed) LogitBoost 50% Threshold ROSE 0.930 0.529 0.598

Note. SM: Star Math; SR: Star Reading; SEL: Star Early Literacy; RF: Random Forest. Rows with bold values
denote that all three values (sensitivity, specificity, and accuracy) in the model exceeded the acceptable threshold
of ≥0.70.

Compared with the standard gated screening methods, the mixed gated screening
methods involving a standard gated screening based on Star Math in the first stage and
a predictive model based on Star Reading and Star Early Literacy in the second stage
generally yielded more accurate results. This finding highlights the value of using reading-
related measures in identifying students at risk in mathematics. However, the mixed
gated screening methods yielded inconsistent results in exceeding acceptable and optimal
thresholds of sensitivity, specificity, and accuracy. For example, during the 2016–2017
academic year, the mixed gated screening method with oversampling could not meet the
acceptable or optimal values, regardless of the prediction algorithm (RF or LogitBoost) and
the cut-off score for Stage 1 (30%, 40%, or 50%). However, the mixed gated screening with
oversampling yielded relatively better results for the 2017–2018 academic year. Similarly,
the results for the mixed gated screening using the ROSE approach produced different
results across the two academic years. These findings suggest that the composition of the
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student at risk in mathematics and those who perform reasonably in mathematics might be
slightly different between the two academic years.

Table 2. Sensitivity, Specificity, and Accuracy Results for the 2017–2018 School Year.

Screening Method Algorithm Prediction Model Sampling Sensitivity Specificity Accuracy

Single-Stage RF Model 0 (SM) Oversampling 0.784 0.714 0.727
Single-Stage RF Model 1 (SM + SR + SEL) Oversampling 0.678 0.831 0.803
Single-Stage LogitBoost Model 0 (SM) Oversampling 0.731 0.775 0.767
Single-Stage LogitBoost Model 1 (SM + SR + SEL) Oversampling 0.843 0.710 0.734
Single-Stage RF Model 0 (SM) Undersampling 0.779 0.715 0.727
Single-Stage RF Model 1 (SM + SR + SEL) Undersampling 0.838 0.722 0.743
Single-Stage LogitBoost Model 0 (SM) Undersampling 0.701 0.790 0.774
Single-Stage LogitBoost Model 1 (SM + SR + SEL) Undersampling 0.842 0.670 0.701
Single-Stage RF Model 0 (SM) ROSE 0.683 0.738 0.728
Single-Stage RF Model 1 (SM + SR + SEL) ROSE 0.873 0.664 0.702
Single-Stage LogitBoost Model 0 (SM) ROSE 0.847 0.678 0.708
Single-Stage LogitBoost Model 1 (SM + SR + SEL) ROSE 0.898 0.607 0.659

Gated (Standard) - 30% Threshold - 0.461 0.914 0.832
Gated (Standard) - 40% Threshold - 0.622 0.851 0.809
Gated (Standard) - 50% Threshold - 0.758 0.764 0.763

Gated (Mixed) RF 30% Threshold Oversampling 0.713 0.776 0.764
Gated (Mixed) RF 40% Threshold Oversampling 0.779 0.728 0.737
Gated (Mixed) RF 50% Threshold Oversampling 0.849 0.661 0.695
Gated (Mixed) LogitBoost 30% Threshold Oversampling 0.729 0.682 0.690
Gated (Mixed) LogitBoost 40% Threshold Oversampling 0.717 0.776 0.765
Gated (Mixed) LogitBoost 50% Threshold Oversampling 0.824 0.679 0.705
Gated (Mixed) RF 30% Threshold Undersampling 0.710 0.776 0.764
Gated (Mixed) RF 40% Threshold Undersampling 0.783 0.720 0.731
Gated (Mixed) RF 50% Threshold Undersampling 0.858 0.651 0.688
Gated (Mixed) LogitBoost 30% Threshold Undersampling 0.615 0.831 0.792
Gated (Mixed) LogitBoost 40% Threshold Undersampling 0.736 0.763 0.758
Gated (Mixed) LogitBoost 50% Threshold Undersampling 0.821 0.694 0.717
Gated (Mixed) RF 30% Threshold ROSE 0.716 0.762 0.753
Gated (Mixed) RF 40% Threshold ROSE 0.808 0.690 0.711
Gated (Mixed) RF 50% Threshold ROSE 0.864 0.637 0.678
Gated (Mixed) LogitBoost 30% Threshold ROSE 0.698 0.793 0.776
Gated (Mixed) LogitBoost 40% Threshold ROSE 0.678 0.803 0.780
Gated (Mixed) LogitBoost 50% Threshold ROSE 0.867 0.619 0.664

Note. SM: Star Math; SR: Star Reading; SEL: Star Early Literacy; RF: Random Forest. Rows with bold values
denote that all three values (sensitivity, specificity, and accuracy) in the model exceeded the acceptable threshold
of ≥0.70.

Unlike the mixed gated screening methods with either oversampling or ROSE, mixed
gated screening using undersampling yielded relatively more consistent results across the
two academic years. The models using the 30% and 40% thresholds with undersampling
could generally achieve the acceptable threshold of 0.70 for the sensitivity, specificity,
and accuracy values. For the RF algorithm, the mixed gated screening using the 30% and
40% thresholds in the first stage exceeded the acceptable threshold of 0.70; whereas for the
LogitBoost algorithm, only the 30% threshold could exceed the acceptable threshold. Using
the 50% threshold in the first stage seemed to improve the sensitivity significantly (i.e.,
beyond the optimal threshold of 0.80) while decreasing specificity and accuracy for both
the RF and LogitBoost algorithms (see Tables 1 and 2). Furthermore, although the overall
performance of the RF and LogitBoost algorithms was not the same, the differences in terms
of the evaluation metrics (i.e., sensitivity, specificity, and accuracy) were mostly negligible.

Table 3 presents the F1 scores and MCC results for the 2016–2017 and 2017–2018
school years. As explained earlier, F1 scores and MCC tend to be more reliable metrics for
evaluating binary classifications results on imbalanced datasets. The results presented in
Table 3 show that the F1 scores were above 0.70 and the MCC values were above 0.40 for
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all screening methods, except for a few cases (e.g., the standard gated screening with the
30% threshold). Generally, the single-stage screening methods with either oversampling or
undersampling seemed to yield higher values of F1 and MCC, compared with the other
screening methods. Specifically, single-stage screening based on Model 1 (i.e., Star Math,
Star Reading, and Star Early Literacy as predictors) with the LogitBoost algorithm and
undersampling was the best performing screening method in the 2016–2017 dataset, while
the same method with oversampling was the best performing screening method in the
2017–2018 dataset. The standard gated screening method with the 50% threshold also
yielded comparable results. Similar to the findings presented in Tables 1 and 2, the mixed
gated screening methods produced inconsistent results across the two evaluation metrics
and the two school years. The only consistent pattern for the mixed gated screening was
the positive impact of using the 40% threshold, which seemed to improve both F1 and MCC.
Overall, these findings are aligned with the conclusions drawn based on the sensitivity,
specificity, and accuracy metrics.

Table 3. F1 Scores and MCC Results for the 2016–2017 and 2017–2018 School Years.

Screening Method Algorithm Prediction Model Sampling 2016–2017 2017–2018
F1 MCC F1 MCC

Single-Stage RF Model 0 (SM) Oversampling 0.755 0.414 0.747 0.418
Single-Stage RF Model 1 (SM + SR + SEL) Oversampling 0.754 0.450 0.747 0.437
Single-Stage LogitBoost Model 0 (SM) Oversampling 0.750 0.417 0.752 0.418
Single-Stage LogitBoost Model 1 (SM + SR + SEL) Oversampling 0.777 0.438 0.771 0.453
Single-Stage RF Model 0 (SM) Undersampling 0.750 0.393 0.746 0.413
Single-Stage RF Model 1 (SM + SR + SEL) Undersampling 0.780 0.445 0.776 0.439
Single-Stage LogitBoost Model 0 (SM) Undersampling 0.749 0.416 0.743 0.412
Single-Stage LogitBoost Model 1 (SM + SR + SEL) Undersampling 0.784 0.462 0.746 0.399
Single-Stage RF Model 0 (SM) ROSE 0.705 0.343 0.709 0.355
Single-Stage RF Model 1 (SM + SR + SEL) ROSE 0.760 0.432 0.754 0.414
Single-Stage LogitBoost Model 0 (SM) ROSE 0.764 0.411 0.753 0.410
Single-Stage LogitBoost Model 1 (SM + SR + SEL) ROSE 0.752 0.442 0.724 0.388

Gated (Standard) - 30% Threshold - 0.621 0.420 0.613 0.399
Gated (Standard) - 40% Threshold - 0.724 0.444 0.719 0.428
Gated (Standard) - 50% Threshold - 0.779 0.448 0.761 0.429

Gated (Mixed) RF 30% Threshold Oversampling 0.740 0.401 0.743 0.403
Gated (Mixed) RF 40% Threshold Oversampling 0.756 0.413 0.753 0.406
Gated (Mixed) RF 50% Threshold Oversampling 0.754 0.415 0.743 0.400
Gated (Mixed) LogitBoost 30% Threshold Oversampling 0.688 0.405 0.705 0.397
Gated (Mixed) LogitBoost 40% Threshold Oversampling 0.694 0.438 0.745 0.409
Gated (Mixed) LogitBoost 50% Threshold Oversampling 0.714 0.427 0.745 0.402
Gated (Mixed) RF 30% Threshold Undersampling 0.743 0.406 0.742 0.404
Gated (Mixed) RF 40% Threshold Undersampling 0.759 0.411 0.750 0.400
Gated (Mixed) RF 50% Threshold Undersampling 0.755 0.411 0.740 0.395
Gated (Mixed) LogitBoost 30% Threshold Undersampling 0.721 0.424 0.707 0.397
Gated (Mixed) LogitBoost 40% Threshold Undersampling 0.751 0.426 0.749 0.417
Gated (Mixed) LogitBoost 50% Threshold Undersampling 0.722 0.374 0.752 0.401
Gated (Mixed) RF 30% Threshold ROSE 0.752 0.406 0.738 0.404
Gated (Mixed) RF 40% Threshold ROSE 0.749 0.418 0.744 0.400
Gated (Mixed) RF 50% Threshold ROSE 0.741 0.405 0.733 0.395
Gated (Mixed) LogitBoost 30% Threshold ROSE 0.648 0.417 0.742 0.397
Gated (Mixed) LogitBoost 40% Threshold ROSE 0.738 0.376 0.735 0.417
Gated (Mixed) LogitBoost 50% Threshold ROSE 0.674 0.423 0.722 0.401

Note. SM: Star Math; SR: Star Reading; SEL: Star Early Literacy; RF: Random Forest. Rows with bold values
indicate the highest evaluation metrics for each screening method.

Overall, the screening methods that produced the greatest balance between the five
evaluation metrics (i.e., sensitivity, specificity, accuracy, F1, and MCC) were single-stage
screening with either oversampling or undersampling. Furthermore, the RF algorithm
generally yielded better results in terms of balancing sensitivity, specificity and accuracy
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compared to the LogitBoost algorithm; however, the LogitBoost algorithm generally out-
performed the RF algorithm based on the F1 and MCC metrics. In terms of the sampling
method, oversampling (for RF) and undersampling (for LogitBoost) seemed to be more
reasonable options. Regardless of the screening method, the ROSE approach appeared to
enhance sensitivity at the expense of specificity. Compared to the single-stage screening
approaches, the gated screening approaches (both standard and mixed gated) performed
relatively less accurately. Especially the mixed gated screening methods yielded incon-
sistent results across different algorithms, prediction models, and sampling strategies.
However, the standard gated screening approach with the 50% threshold seemed to be
a reliable and consistent option for detecting students at risk in mathematics when there
is no secondary measure (e.g., Star Reading or Star Early Literacy) available to measure
students’ reading skills.

4. Discussion

The use of the same measures for the purpose of both screening and progress monitor-
ing has the potential to contribute to an efficient assessment system that is able to identify
students who are at risk for academic difficulties. If this dual purpose is possible, then
the data would be able to identify students who are struggling early in the school year,
which would allow educators to implement supports before the difficulties become even
more significant. This focus on prevention, rather than intervention, represents the future
of educational assessment and interventions in schools [12]. To be able to achieve both
efficiency and effectiveness in a school-based assessment system, strong empirical evidence
must exist for each identified purpose [39]. Star assessments are well established as having
strong psychometric properties. Moreover, considerable evidence in support of their use as
progress monitoring measures has also been documented in the literature (e.g., [40–42]).
The purpose of this study was to extend the existing evidence to identify an optimal
methodology that could maximize the potential of using multiple Star assessment scores
to produce highly accurate screening data for students at risk for mathematics difficulties
later in the school year.

4.1. Screening for Mathematics Difficulties

The established relationship between mathematics performance and reading skills [5]
led us to consider if using multiple measures from different content areas (e.g., reading
and early literacy) could produce greater accuracy in identifying students who are at risk
for mathematics difficulties in their early elementary years (e.g., grades 1 and 2). In ad-
dition, Van Norman et al. [8] showed that measures with the potential to explain unique
variance in the outcome variable were more likely to improve the diagnostic accuracy of the
screening approach. When considering the single-stage screening method results, several
combinations of algorithms and sampling methods produced better sensitivity, specificity,
or accuracy when multiple measures were used. For example, our study showed that the
RF and LogitBoost algorithms combined with an undersampling approach led to improve-
ments across all evaluation metrics when Star Math, Star Reading, and Star Early Literacy
were used together. These findings further support the use of multiple measures, from a
variety of core curricular areas, as being beneficial to increasing the quality of predictions
made from screeners.

4.1.1. Single vs. Gated Screening Approaches

In this study, the gated screening results were somewhat surprising, since they did
not necessarily lead to significant improvements over the single-stage approaches when
various evaluation metrics were considered concurrently. However, the results were
more nuanced than those reported by Van Norman et al. [9], who described a consistent
reduction in sensitivity across all grade levels when comparing gated screening and single
measure approaches. Specifically, the gated screening approaches applied in this study
were able to produce some particularly strong results when only a single evaluation metric
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was considered. For example, the mixed gated approach with a LogitBoost algorithm
and a 50% prediction model threshold produced a sensitivity value of 0.930—A value
that significantly exceeded any of the other approaches from the single-stage methods.
Nonetheless, the results of this study suggest that many approaches to single- or multi-
stage screening can produce acceptable levels of sensitivity, specificity, and accuracy. Thus,
the primary consideration when selecting a methodology could be whether a balanced
level of the evaluation metrics is optimal for the purpose of screening or if one or two of
the evaluation metrics should be weighed more than another.

4.1.2. Weighing Evaluation Metrics

It could be argued that for the purpose of screening, minimizing the occurrence of false
negatives (i.e., not providing additional supports to students who are in fact at risk) is a
greater priority than minimizing the occurrence of false positives (i.e., providing additional
supports to students who may not necessarily need them). If this is the case, then the
sensitivity metric could be prioritized in the selection of an approaching screening approach.
Using this logic, a gated screening approach using the LogitBoost algorithm would likely
be an optimal choice. It could, however, also be argued that the accuracy, F1, and MCC
metrics provide guidance as to the approach that provides the greatest balance between
students who are in fact at risk for mathematics difficulties versus those that are not, given
their ability to consider both true positives and true negatives. In this case, a single-stage or
gated screening approach could be taken. Of note, the multi-measure model (i.e., Model 1)
within the single-stage screening approach generally produced stronger accuracy than the
single-measure approach.

Although the results of this study were perhaps not as clear as we had hoped in
identifying a single, optimal approach to implementing an efficient screening process
for mathematics difficulties, the results were similar to other studies that took different
approaches. For example, Klingbeil et al. [43] used likelihood ratios to evaluate the utility of
fall and winter MAP math assessments for the purpose of identifying at-risk math learners.
A computerized summative statewide assessment was used as the criterion measure.
Their results showed similar or slightly better evaluation metrics than those reported in
the current study. Thus, this comparison leads to additional considerations as different
approaches to screening at-risk learners are weighed. Specifically, the data or broader
assessment practices within a school, district, or state may lead administrators to select
one approach over another. In other words, a school with Star assessments covering core
content areas may opt to take the approach to screening described in this study. Conversely,
a school that is using the MAP math assessment with periodic benchmark assessments (i.e.,
fall and winter) may opt to simply use those data for the additional purpose of screening
for at-risk learners. In addition to data availability within their current assessment practices,
school administrators may also want to consider the difference in administration time and
how the measures they select meet their over-arching assessment needs.

4.1.3. The Influence of Cut-Score Parameters

By comparing multiple approaches to generating screening results, the results of this
study also allowed us to evaluate the influence of cut-score parameters on the classification
accuracy of the screening approach used to identify at-risk students in mathematics. The re-
sults of previous research examining evaluation metrics between cut scores suggested
that specificity values are consistently higher than sensitivity values [44]. However, this
trend was not consistently observed in our results. Instead, a more restrictive (i.e., lower)
threshold for the cut-score parameter leads to a more balanced outcome across the five
evaluation metrics. Thus, similar to the conclusions drawn from the discussion comparing
single and gated screening methods, priorities with respect to the purpose of the screening
could be considered to select an appropriate threshold. For example, a less restrictive (i.e.,
higher) prediction model threshold tended to produce stronger sensitivity while reducing
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the values for the other two evaluation metrics. Thus, if sensitivity were to be prioritized,
a higher threshold parameter could be set.

4.2. Limitations and Future Directions

The results of this study should be considered in light of several limitations. First, this
study included three measures—Star Math, Star Reading, and Star Early Literacy—in the
prediction model. The inclusion of these three measures is somewhat unique to early grade
levels, given that Star Early Literacy is not likely to yield useful information at higher grade
levels when most students have progressed significantly with respect to their reading skills.
Second, the relationship between reading and mathematical skills is likely to change over
time, as the math curriculum includes more word-based problems [6]. Thus, the current
study is limited to only applying to screening for at-risk math learners at grade 1. Third,
this study used Star Math scores as the end-of-year criterion when identifying students at
risk for low math performance. However, the results of other measures of mathematics
(e.g., statewide assessment programs) could be used as the end-of-year criteria to further
validate the findings of this study.

There are three directions for future research that may further improve the quality of
the screening approaches generated from this research. First, the screening framework for
mathematics could potentially be improved by creating subscores within the Star Early
Literacy assessment that better account for the math skills from that measure that set
the foundation for later math skills. Second, to increase the strength and quality of the
prediction for end-of-year performance in mathematics, a number of additional predictors
(e.g., demographic characteristics and other cognitive measures) could be incorporated
into the assessment systems used by schools. If additional predictors were to be identified,
they should incorporate a different aspect of the desired outcome, as the ones included
in the current analysis capture the core aspects of reading and mathematics very well.
However, the increased effectiveness of using additional predictors may come at too great
of a cost when considering the high-quality information that is already generated from the
efficient screening framework presented using only Star assessments. Third, this study
used supervised machine learning models for binary classification of students at risk
in mathematics and those who are not. Future studies can utilize supervised anomaly
detection using machine learning and deep learning algorithms (see Ángela Fernández
et al. [45] for a review of different algorithms) to identify abnormal patterns (e.g., students
who perform significantly worse than their peers). Fourth, depending on the outcomes
of the screening procedure, students could be more or less frequently tested based on
their academic growth in mathematics throughout the academic year. Previous research
showed that students’ assessment schedules can be personalized in core subject areas
based on their learning progress estimated from Star assessment scores [46–48]. Future
research can investigate the relationship between screening results and students’ academic
growth throughout the academic year by following a personalized assessment schedule
for students.

5. Conclusions

This study fills a practical gap in education to support the development of more so-
phisticated predictive models for screening approaches. The screening methods introduced
in this study can be used by researchers to design more effective screening procedures
based on multiple academic measures and test their efficacy based on multiple evaluation
metrics (e.g., sensitivity, specificity, accuracy, F1, and MCC). In addition, the results of this
study provide an important opportunity for educators to leverage available data to identify
students who are at risk for low mathematics performance.
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