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Abstract: Entity linking plays a fundamental role in knowledge engineering and data mining and
is the basis of various downstream applications such as content analysis, relationship extraction,
question and answer. Most existing entity linking models rely on sufficient context for disambiguation
but do not work well for concise and sparse short texts. In addition, most of the methods use pre-
training models to directly calculate the similarity between the entity text to be disambiguated and
the candidate entity text, and do not dig deeper into the relationship between them. This article
proposes an entity linking method for Chinese short texts based on Siamese-like networks to address
the above shortcomings. In the entity disambiguation task, the features of the Siamese-like network
are used to deeply parse the semantic relationships in the text and make full use of the feature
information of the entity text to be disambiguated, capturing the interdependent features within
the sentences through an attention mechanism, aiming to find out the most critical elements in the
entity text description. The experimental demonstration on the CCKS2019 dataset shows that the F1
value of the method reaches 87.29%, increase of 11.02% compared to the F1 value(that) of the baseline
method, fully validating the superiority of the model.

Keywords: Chinese short text; entity linking; named entity recognition; entity disambiguation

1. Introduction

Entity Linking (EL) is considered an integral part of natural language processing and is
often used as pre-processing for missions such as information extraction [1] and intelligent
question and answer [2]; it also plays a critical role in the construction and updating of
knowledge bases by linking different texts with structured information.

At present, the reason why entity linking technology has been significantly developed
in English is that the language is not limited by word segmentation, and there are many
knowledge bases of entity linking. In the early stages, the shortcomings in the development
of Chinese entity linking were mainly as follows: (1) Chinese word segmentation and entity
recognition have a more significant impact on entity linking; (2) Chinese entity linking
started late and lacked a more mature knowledge base. OpenKG integrates 120 Chinese
knowledge base projects, such as the graph database of Peking University, the CN-DBpedia,
and CN-Probase projects of Fudan University, and the three major Chinese encyclopaedia
projects, forming a relatively developed Chinese semantic knowledge base. Chinese entity
linking has developed by leaps and bounds. However, the effect of short text entity linking
is still not ideal.

Nowadays, Chinese short texts, such as questions and answers, queries, and headlines,
are essential in the Internet corpus. For short texts, it is difficult to determine the specific
meaning of a word without contextualizing it, so accurately linking entities in short texts
remains a significant challenge.

With the rise of pre-training language models, entity linking methods based on pre-
training language models have become a focus of research in recent years. Word2Vec
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and GloVe were widely used until 2019. Kolitsas et al. added contextual information
encoding on top of character-level embedding in order to make word embeddings aware
of the importance of local context, resulting in better experimental results. Gupta et al. [3]
obtained the meaning of entities in different contexts from introducing external data
sources to enrich the semantic and contextual information of the entities. The method
utilises GloVe as a source of word embedding, and uses an LSTM-based encoder to capture
lexical and syntactic local contextual information of mentions. The word embedding
produced by Word2Vec is static and independent of the sentence in which the word is
located. For example, in the sentences “I want to access my bank account” and “We went
to the river bank”, the vector of “bank” given by Word2Vec is fixed. Often the same entity
is represented in different sentences with various meanings, requiring consideration of
contextual semantic information. The advantage of BERT lies in the fact that the generated
word embedding is dynamic and able to deal with ambiguity.

Entity linking can be seen as a problem of semantic matching between the text where
the entity is mentioned and the text describing the candidate entity. Two methods are
currently used to calculate the semantic similarity of sentence pairs: Cross-Encoder and
Bi-Encoder. Cross-Encoder: two sentences are passed simultaneously to the BERT model,
which produces an output value between 0 and 1, indicating the similarity of the input
sentence pair. Cheng et al. [4] stitched the entity text to be disambiguated and the candidate
entity description text, and inputted them into the BERT model. The probability of the
candidate entity was then obtained by concatenating the vector output at the [CLS] position
with the feature vector of the candidate entity. Logeswaran et al. [5] combined the mention
of context and entity description text, using [SEP] to separate the text as input to the BERT,
and subsequently scored the output. For many applications, Cross-Encoder is not practical
(time-consuming), does not produce sentence embedding, and does not allow comparison
using cosine similarity. Whereas Bi-Encoders can generate separate sentence embedding,
Siamese networks are those that define two network structures to characterise the sentences
in a sentence pair separately. Reimers et al. [6] modified BERT to use Siamese and triple
network structures to derive semantically meaningful sentence embedding that can be
compared using cosine similarity. This is improved by considering that in Siamese network,
encoding only sentence pairs does not take full advantage of the information in the text of
the entities to be disambiguated.

With the advent of pre-training models, the ability of machines to understand text
content has become increasingly powerful. However, for disambiguation aspect, the
similarity between the entity description text to be disambiguated and the candidate
entity description text, is calculated directly through a pre-training model, which has the
disadvantage of not making full use of the text information of the entity to be disambiguated.
This paper proposes a short Chinese text entity linking method based on a Siamese-like
network to solve the above drawbacks. RoBERTa-BiLSTM is used to generate sentence-
level embeddings, extract key features in the text through an attention mechanism, and
use the properties of the Siamese-like network for information transfer to achieve the
purpose of text information reuse. By deeply parsing the semantic relationship of the text,
mining the correlation between the entity text to be disambiguated and the candidate entity
description text, and leveraging feature information of the text to be disambiguated to
solve the ambiguity problem, the accuracy of entity linking in short texts can be improved.
Taking kb_data in CCKS2019 as the basic knowledge base, the experimental verification of
this method shows that the F1 value reaches 87.29%.

The rest of the paper is structured as follows. The latest techniques and various ap-
proaches to entity linking are discussed in Section 2. Section 3 introduces the entity linking
model, explains the named entity recognition model, and details the entity disambiguation
model in this paper. Section 4 presents the pre-processing and the results of the experiments.
In Section 5, the conclusions and prospects are presented.
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2. Related Work

Entity linking is a crucial technique to resolve the problem of words with multiple
meanings and multiple words with the same meaning. Entity linking plays a crucial role
in question and answer [7], text analysis [8], information retrieval [9], and knowledge
base augmentation [10]. For question and answer, entity linking is an immediate need for
KBQA, as the graph database can only be queried for subsequent work after the entity has
been accurately linked. Entity linking works in two ways: end-to-end [11] and linking-
only [12]. In the former, the entities in the text (i.e., NER) are extracted first and then
the extracted entities are disambiguated. In the latter, on the other hand, the text and
the entities are mentioned directly as input (the default entities are already identified),
and candidate entities are found and disambiguated. The ultimate aim of both ways of
working is to accurately match ambiguous entities. Most of the time, it is considered that
entity disambiguation is equivalent to entity linking, except that the step of named entity
recognition is missing. Many scholars [13,14] view entity linking as a binary classification
problem. For example, given <entity referent term, candidate entity>, a dichotomous model
is used to determine whether they match or not. Nowadays, scholars have proposed a series
of effective methods to disambiguate entities, divided into two approaches: (1) methods
based on graph models; (2) methods based on deep learning.

Alhelbawy et al. [15] used a graph-based approach to perform joint entity disam-
biguation. All entities in the text are represented as nodes in the graph, which are ranked
based on their PageRank values, and entity disambiguation is performed according to
the magnitude of the numerical value. Zhang et al. [16] designed a unified framework
LinKG to merge different types of knowledge graphs, and proposed a Heterogeneous
Graph Attention Network (HGAN) to match entities with ambiguous moulds correctly
(e.g., human names). Hu et al. [17] used a graph neural network model to solve the entity
disambiguation problem. An entity-word heterogeneous graph is constructed for each
document to build global semantic relationships among disambiguated entities in the
text, obtain entity graph embeddings that encode global semantic features, and transfer
the embedding representation to a statistical model to disambiguate entities. However,
graph-based models treat all candidate entities the same, which leads to increased difficulty
in differentiation, Fang et al. [18] designed a Sequence Graph Attention Network (SeqGAT),
which takes full advantage of graph and sequence methods to dynamically encode be-
fore and after entities, exploiting local consistency and reducing noise interference. In
the context-limited short text with insufficient number of entities and relationships, the
graph model-based approach ignores the entity-to-entity relationship, and therefore cannot
obtain the global semantic features of entities. To address this problem, Zhang et al. [19]
first predicted the classification of entities to be disambiguated, which yielded the set of
candidate entities based on category, and then found the association with the candidate
entities for disambiguation through a knowledge graph. The knowledge graph itself is
a graph-based data structure that not only contains information about entities, but also
holds the relationship between entities, which can display the global semantic features of
entities. Zhu et al. [20] designed a Category2Vec embedding model based on joint learning
of word and category embeddings to calculate the semantic similarity between contextual
and informational words of entities in the knowledge graph, and improve the performance
of disambiguation methods based on context similarity.

In 2018, Google proposed the BERT pre-training model [21]. Since then, the large-
scale pre-training language model has become a mainstream approach, allowing the field
of natural language processing to develop by leaps and bounds. A large number of re-
searchers have improved and fine-tuned the model and achieved better performance on
numerous sub-tasks of natural language processing (e.g., entity linking). Zhan et al. [22]
used BERT as a basic framework to extract the connections between the context of entities
to be disambiguated and candidate entities and refine entity associations by analysing
entity interrelationships. Later, [23] introduced a multi-task learning approach into the
short textual entity linking process to build a multi-task learning model for entity linking
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and classification, to mitigate the problem of insufficient information in the short textual
entity linking process. Zhang et al. [24] stitched the context of the entity mention with the
description text of the candidate entities and introduced a local attention mechanism to
alleviate the long-distance problem and enhance local context information. Zhao et al. [25]
presented a BERT-Random Walk with Restart (BERT-RWR) entity linking model by com-
bining deep neural networks and graph neural networks, aiming to compute the semantic
similarity between entity mentions and candidate entities, with better results. Gu et al. [26]
designed a multi-round reading framework to perform the entity linking of short texts.
Generating a separate question for each entity to be disambiguated, forming a candidate
set through the entities in the knowledge base, and using the linked entities to update the
current interrogative is equivalent to adding a contextual description of the entities to be
disambiguated, thus improving the accuracy of entity linking. Barbara et al. [27] defined the
entity disambiguation task as a text extraction task, where the text to be disambiguated and
all candidate entity texts are stitched together. The output of the model is then the index of
words starting and ending with the target option, and the method achieves optimality on
several datasets.

In this paper, the disambiguation entities in the text are identified using the RoBERTa-
WWM-BiLSTM-CRF (Conditional Random Field) network framework, and the information
of the text to be disambiguated is fully utilized for entity disambiguation using the proper-
ties of a Siamese-like Network.

3. Entity Linking

For a given Chinese short text, the entity recognition model is used to identify the
entity designation items contained in the text to form the set of entities to be disambiguated;
then, the entities to be disambiguated are matched by name in the knowledge base to
construct the candidate entity set; finally, the best entity is selected through the analysis of
text similarity.

A piece of text is represented as: s = {c1, c2, . . . , cn}, where ci represents the i-th
character. The purpose of the entity recognition model is to use the BIOES marking method
to mark each character. The named entity recognition model can be used to retrieve entity
mentions in the text. The entity mention set is represented as M =

{
m1, m2, . . . , mj

}
, where

j is the number of entity referents. Each identified entity is an object for disambiguation (en-
tity mention), and a candidate entity set is constructed by matching entities with the same
name from the knowledge base, e.g., the candidate entity set of mj is D =

{
dj1, dj2, . . . , djn

}
,

where n is the number of entities with the same name in the knowledge base. Since the
number of entities in the knowledge base is vast and it is time-consuming to compare each
entity in the knowledge base, the best method is to filter out the entity objects that are not
likely to be the target entities by generating the candidate entity set. The details of the
procedure for entity linking are shown in Figure 1.

3.1. Named Entity Recognition

This paper uses RoBERTa-WWM-BiLSTM-CRF as a network architecture for named
entity recognition. RoBERTa-WWM [28] is an improvement on BERT by using the Chinese
whole word masking technique in the pre-training phase, and using HIT LTP (Language
Technology Platform) as a word separation tool. This makes the semantic representa-
tion generated by the model possess word information, which is more suitable for Chi-
nese natural language processing tasks to some extent. The pre-training language model
RoBERTa-wwm is used to generate a semantic representation of the text of the entity to
be disambiguated; the resulting semantic representation is fed into a BiLSTM network
to capture contextual information; and the sequence relationships between the labels are
restricted using conditional random fields to obtain the best results to ensure the legitimacy
of the prediction. The Entity Recognition (ER) model is shown in Figure 2.
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First, the input of RoBERTa-WWM is the cumulative sum of the character vector,
text vector, and position vector. The input text needs to be processed, and the input text
is defined as s = {c1, c2, . . . , cn}. The initial character vector {ECLS, E1, . . . , En, ESEP} ,
sentence s is obtained by adding [CLS] tags at the beginning of the text and [SEP] labels at
the end of the text, which the RoBERTa-WWM model processes. The text vector is divided
into 0 and 1, where 0 indicates the first sentence and 1 indicates the second sentence,
corresponding to the named entity recognition task for which there is only one sentence.
Hence, the type of the text vector is 0. To learn the time series features, BERT uses location
vectors to add time-series information by varying the sine and cosine so that the location
encoding contains information about the relative position of the context.

PE(pos, 2i) = sin
(

pos/10002i/dmodel
)

(1)

PE(pos, 2i + 1) = cos
(

pos/10002i/dmodel
)

(2)
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BERT Layer: RoBERTa-WWM is a structure containing 12 layers of Transformer
encoder, which uses a bidirectional transformer encoding structure to analyse the weight
of text through a self-attention mechanism, to evaluate the relationship between each one
of the words in a piece of text and all the terms in the whole part of the text, to obtain
the association of each word with all the text, which allows better learning of contextual
linguistic information, where Q, K and are the feature vectors for calculating the weights,
V is the vector representing the input features, and

√
dk is the deflation factor.

(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (3)

To capture richer features in the text and calculate the attention of all words in a
sentence, Transformer uses a “multi-headed attention” mechanism.

The Transformer coding unit incorporates residual networks and layer normalization
to address the problem of gradient disappearance and explosion in deep learning.

LN(xi) = α× xi − µL√
σ2

L + ε
+ β (4)

FFN = max(0, xW1 + b1)W2 + b2 (5)

BiLSTM Layer [29]: In the classical RNN (Recurrent Neural Network) algorithm, the
LSTM [30] (Long Short-Term Memory) is used for the long-term dependency problem.
In-text, the meaning of words changes with the context in that the words are related to the
text above the words and related to the text below. The core of an LSTM is made up of the
following components: input character xt at the moment t, unit state Ct, temporary unit
state C̃t, hidden layer state ht, forgetting gate ft, memory gate it, and output gate ot. The
following equation represents the structure.

ft = σ
(

Wi · [ht−1, xt] + b f

)
(6)

it = σ(Wi · [ht−1, xt] + bi) (7)

C̃t = tanh(Wc · [ht−1, xt] + bc) (8)

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

ot = σ(Wi · [ht−1, xt] + b0) (10)

ht = ot ∗ tanh(Ct) (11)

The BiLSTM model results from the combination of the forward and backward LSTM
models. The output of the BERT model is used as the input of the BiLSTM model, and then
the output of the BiLSTM model’s forward and backward dissemination is spliced so that
it can extract the context information in the text.

CRF Layer [31]: Conditional Random Fields (CRF) is a popular conditional probability
model in natural language processing that can be used to derive conditions for maximizing
the probability of a sequence. BiLSTM only considers information about the context in
the text and does not consider the dependencies between the tags. In this paper, the tag
sequence is modelled using the CRF layer to ensure the legitimacy of the predicted titles by
adding constraints to get the best results.

3.2. Entity Disambiguation

This paper only considers disambiguation using entity mention context and descrip-
tion text of candidate entities, and proposes a short Chinese textual entity linking method
based on Siamese-like networks for this process. This paper uses RoBERTa [32]-BiLSTM
as the central network architecture for text encoding, by connecting the Attention layer to
capture the interdependent features between sentences. By focusing on the hidden states of
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candidate entity texts through the semantic representation of the text to be disambiguated,
the aim is to identify the most critical features in the entity descriptions, evaluate the
semantic associations between them using cosine similarity, and select the best entities. The
Entity Disambiguation (ED) model is shown in Figure 3.
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Figure 3. Entity disambiguation model (ED).

Compared with other models, BERT has the advantage of being able to observe
text sequences dynamically. As an embedding layer in the similarity calculation model
proposed in this paper, word sequences are received via BERT, and feature vectors are
generated simultaneously by BERT. The generated feature vectors are passed through
the BiLSTM layer to gain the semantic-level connections in the clause and form a whole
sentence-level feature representation. Each BiLSTM encoder will be multiplied by the
respective weight of a word to highlight the vital messages in the sentence.

The input on the left side of Figure 3 is the text of the entity description to be disam-
biguated, and the hidden state sequence of its BERT-BiLSTM output is Hm =

{
hm

1 , hm
2 , . . . , hm

n
}

.

The forward hidden state output
→
hi and the backward hidden state output

←
hi are stitched

together, and their metrics are shown as follows:

hm
i =

[→
hm

i ;
←
hm

i

]
(12)

Stitching the forward and reverse hidden states with the results of going through the
Attention layer,

gm = [hm
i ; hm

Attention] (13)

where the Attention hidden layer is calculated as follows:

αm
i = ωT

α hm
i (14)

αm
i =

exp
(
αm

i
)

∑e
k=b αm

k
(15)
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hm
Attention = ∑e

k=b αm
k hm

i (16)

The resulting gm is then passed through a superficial fully connected layer (Dense),
which is used to obtain the final entity mention representation:

Mr = Dense(gm) (17)

The input on the right side of Figure 3 is the candidate entity description text, whose
BERT-BiLSTM hidden state sequence output is He =

{
he

1, he
2, . . . , he

n
}

, and the stitching
result of the hidden state output is he

i . This paper uses the attention mechanism to generate
the entity representation, which is slightly different from the attention mechanism used
on the left side. Here, the entity mention representation Mr is used to focus on the hidden
state of the candidate entity, aiming to identify the most critical feature points in the entity
description. The entity representation Er based on the attention mechanism is shown
as follows:

αe
i = score(Mr, he

i ) (18)

αe
i =

exp
(
αe

i
)

∑n
t=1 αe

t
(19)

Er =
n

∑
t=1

αe
t he

t (20)

where αe
i is the attention score Mr and the hidden state of the candidate entity he

i . The
calculation is performed using a splicing approach, and the formula is as follows:

score(Mr, he
i ) = vT

a tanh(Wa[Mr; he
i ]) (21)

The use of a Siamese-like network model allows for the full exploitation of the semantic
features of the text to be disambiguated and the candidate entity description text. Given the
semantic text representation Mr of the entity to be disambiguated, and the candidate entity
description text semantic representation Er, where i is the number of candidate entities
mentioned by the entity, using cosine similarity between these two vectors represents their
semantic relevance, namely:

P(Mr, Er
i ) = consine(Mr, Er

i ) (22)

In the prediction process, the cosine metric is used to calculate the similarity be-
tween the contextual reference pairs and each candidate entity, and the one with the most
resemblance is selected as the final result.

4. Experiments
4.1. Dataset

The data used for the experiments is the CCKS2019 dataset. The CCKS2019 training
set provides 90,000 tagged sentences, and the test set provides 30,000 untagged sentences,
most of which have an average length of 22; the knowledge base includes 400,000 entities.
The training data includes a piece of text and a mention_data data field, which includes the
span of entity mention and the corresponding ID of the knowledge base. The knowledge
base contains fields of “subject_id”, “subject”, “alias”, “data”, etc. The “data” fields contain
multiple predicate and object fields.

4.2. Data Pre-Processing

The task of entity linking is to match the entities in the text to be disambiguated
with the knowledge base, so the contents of the text and the knowledge base need to
be processed.
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Entity Description Dictionary: concatenates all tuples (prediction, object) from the
“data” field into a single sentence to represent the entity description.

Alias Dictionary: Since the number of entities in the knowledge base is enormous, it is
time-consuming to pair up each entity in the knowledge base. The best way is to filter out
the entities that are not likely to become the target entities is by generating the candidate
entity set. This paper constructs an “Alias Dictionary” to screen the candidate entities
by searching the “Alias Dictionary” fields to generate the candidate entities. The Alias
Dictionary is shown in Table 1.

Table 1. Alias Dictionary.

Subject Alias

Bridge to the Stars Singbridge, Bridge to the Stars, . . .
Robin Williams Robin Williams, Robin William, . . .
Scud missiles Scud, Scud missiles, . . .

EntityName Dictionary: The “EntityName Dictionary” is constructed by analysing the
entity names in the knowledge base. After construction, each entity name corresponds to
one or more entity IDs, e.g., “LiQing” corresponds to multiple entity IDs. The EntityName
Dictionary is shown in Table 2.

Table 2. EntityName Dictionary.

Entity (Subject|Alias) Entity ID

LiQing 10015, 23433, 27209, 31339, 42267, . . . , 408084

4.3. Evaluation Indicators

There must be standard criteria in considering the merits of the various methods of
entity disambiguation. In this paper, precision (P), recall (R), and F1-score (F1) are used to
discriminate the accuracy of entity linking. The F1-score (F1) is the balance of precision and
chances of completeness, which integrates the overall effect.

There are N entity mention in Text: Mn = {m1, m2, . . . , mn} each mention is linked
to the entity of the knowledge base: En = {e1, e2, . . . , en}, the output of the model is:
E′n = {e′1, e′2, . . . , e′n}:

Precision (P):

P =
∑n∈N |En ∩ E′n|

∑n∈N |E′n|
× 100% (23)

Recall (R):

R =
∑n∈N |En ∩ E′n|

∑n∈N |En|
× 100% (24)

F1:
F1 =

2PR
P + R

× 100% (25)

4.4. Experimental Results

The results of the named entity recognition model tested on the CCKS2019 dataset are
shown in Table 3, which mainly compare the effects of using different BERT models on the
same dataset.

Table 3. Named entity recognition experimental results.

Model P/% R/% F1/%

BERT-BiLSTM-CRF 86.38 85.24 85.81
BERT-WWM-BiLSTM-CRF 87.63 87.55 87.59

Our Model 88.15 88.38 88.26
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To test the validity of the entity disambiguation methods in this paper, separate
experiments were conducted on the CCKS2019 dataset in different ways. Table 4 shows the
comparative experimental results. As can be gleaned from Table 4, the RoBERTa performs
slightly better as the embedding layer of the entity disambiguation model.

Table 4. Entity disambiguation experiment results.

Model P/% R/% F1/%

Word2Vec-BiLSTM 68.74 66.98 67.85
BERT-BiLSTM 78.68 78.61 78.64

BERT-CNN 80.24 79.36 79.80
bert-base-chinese 84.66 83.80 84.23
RoBERTa-WWM 84.85 85.25 85.05

Our Model 87.07 87.51 87.29

The above table shows that BERT has obvious advantages compared with Word2Vec.
This is because Word2Vec produces static word representations that do not take into account
the semantic information of the context, whereas for entity linking, the problem of multiple
meanings of a word and multiple words with the same meaning requires contextual
resolution. The advantage of BERT is that the resulting word representations are dynamic
and capable of handling textual ambiguity.

In the above table, it can be seen that the BERT-CNN framework obtains better results
than BERT-BiLSTM. The primary reason is that the text processed in this paper is a short
Chinese text, and the advantage of BiLSTM in processing long text is not reflected, so the
performance of CNN is slightly more effective than BiLSTM.

In order to find the most suitable BERT model for processing Chinese text matching,
this paper conducts experiments using several popular BERT models as Siamese-like
network embedding layers simultaneously, such as bert-base-chinese, RoBERTa-wwm, and
RoBERTa (both the experiments conducted for this paper use the 12-layer model BERT-
base). From the results in Table 4, we can learn that RoBERTa performs better in the task of
text matching.

For the correlation degree between the Chinese short text and the knowledge base
entity description text, this paper obtains the sentence-level feature representation through
the RoBERTa-BiLSTM model; it captures the interdependent features between sentences
through the Attention layer; it focuses the information obtained from the entity description
text to be disambiguated on the candidate entity description text information; and it finds
out the most critical feature points in the candidate entity description text, so as to filter
out the candidate entity with the best matching degree. Therefore, this model outperforms
other models in the short Chinese text entity linking task.

5. Conclusions and Feature Work

This paper proposes an entity linking method based on a Siamese-like network, which
is different from the traditional method of simply calculating the similarity between entity
mentions and entities. This paper profoundly analyses the semantic relationship in the
text, not only by feature representation of the disambiguated entity text features and the
candidate entity text features, but also by making full use of the text features of the entity
to be disambiguated in order to extract the most critical information. The experimental
performance shows that the method proposed in this paper achieves better accuracy in
Chinese short textual entity linking compared with the baseline model.

Future work will examine how to adapt the current model to other languages for entity
linking issues and multimodal entity linking. Data in the real world is not all structured or
semi-structured data, but more of a “picture + sound + video” format, involving visual and
auditory modalities. Taking only textual information into account can result in inaccurate
entity linking due to missing data. In addition, using information such as picture, sound,
and video to enrich the context will absolutely improve the accuracy of the entity linking.
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