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Abstract: Body-rocking is an undesired stereotypical motor movement performed by some individuals,
and its detection is essential for self-awareness and habit change. We envision a pipeline that includes
inertial wearable sensors and a real-time detection system for notifying the user so that they are aware
of their body-rocking behavior. For this task, similarities of body rocking to other non-related repetitive
activities may cause false detections which prevent continuous engagement, leading to alarm fatigue.
We present a pipeline using Bayesian Neural Networks with uncertainty quantification for jointly
reducing false positives and providing accurate detection. We show that increasing model capacity
does not consistently yield higher performance by itself, while pairing it with the Bayesian approach
does yield significant improvements. Disparities in uncertainty quantification are better quantified by
calibrating them using deep neural networks. We show that the calibrated probabilities are effective
quality indicators of reliable predictions. Altogether, we show that our approach provides additional
insights on the role of Bayesian techniques in deep learning as well as aids in accurate body-rocking
detection, improving our prior work on this subject.

Keywords: Bayesian Neural Networks; uncertainty quantification; stereotypical motor movement;
body rocking

1. Introduction

Body rocking is one type of Stereotypical Motor Movement (SMM) observed in normal
children (in medical literature referred to as “primary” cases) and in children presenting
symptoms of distinct mental disorders (“secondary” cases). Such movements are nor-
mally involuntary and recurrent, sometimes nonrhythmic and purposeless. For secondary
cases, SMM has partial overlap with developing disorders such as autism spectrum disor-
der (ASD), obsessive compulsive disorder (OCD), obsessive compulsive behavior (OCB),
as well as self-destructive behavior (SDB), Tourette syndrome (TS), and attention deficit
hyperactivity disorder (ADHD) [1,2]. Such repetitive behavior could be, but is not limited
to, hand flapping, body rocking, or a combination of the two. Several possible triggers have
been investigated for this behavior and some indications showed a link between such pat-
terns with excitement and anxiety [3]. Body rocking has been shown to be common in blind
infants [4] and may make maintaining social relationships more difficult [5]. A survey with
college undergraduates has shown that self-reported body rocking is connected to General
Anxiety Disorder, [6]. For primary cases of body rocking, the authors in [7] showed that
habit reversal and differential reinforcement is beneficial for self-awareness and stopping
of the movement, which is also summarized in Table 1 of [8].

Since medical research has shown potential for improvements through re-education,
multiple efforts have been put together to identify and reliably characterize the occurrence
of body rocking for both cases aforementioned, envisioning early diagnosis and self-
awareness for behavior reversal.

Wearable sensors such as inertial measurement units (IMU), equipped with 3-axis
accelerometers and gyroscopes, are appropriate for this purpose since they are non-invasive,
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lightweight, and may be placed on virtually any limb. However, signals collected among
different individuals demonstrate variability in their properties that proposed algorithms
for body-rocking detection have been challenging to deal with.

Real-time notification systems were implemented as part of a viability study [9] reveal-
ing an upper bound for real time notification but lacking good accuracy or detection results.
Fast response and precision are key factors for accurate detection that engages the user
to keep wearing the system. From our observations, we noticed that false negatives are
more tolerable than false positives to minimize effects similar to “alert fatigue” [10,11], thus
precision is potentially more important than recall. In order to address that, Bayesian neural
networks (BNN) [12–14] could play an important role due to their capability of uncertainty
quantification. Such networks have been shown to be versatile frameworks, which have
been used for prosthesis applications [15,16], control and robotics [17], and activity recog-
nition [18] to name a few. Uncertainty quantification could provide bounds to consider
or discard a model’s prediction based on a desired trade-off between precision and recall.
Therefore, BNNs can be used to not only to perform body-rocking detection but also to
estimate the uncertainty associated with each prediction in order to prevent false positives.
Consequently, the uncertainty quantification provided by BNNs can be a potential aid to
avoid detecting repetitive activities that are not body rocking, therefore representing a key
factor for continuous engagement of future users of wearable systems equipped with such
technology. To the best of our knowledge, approaching body-rocking detection from the
standpoint of primarily avoiding false positives, have not been attempted in the literature
and it is an inherent limitation of the solutions available so far.

In this work, we present a framework for the detection of body-rocking activity. We
take advantage of the uncertainty quantification provided by BNNs to stipulate a confidence
for a given prediction. Our findings can be summarized as follows:

1. With enough model capacity, our Bayesian framework provided better performance
and was less sensitive to overfitting;

2. Higher capacity alone did not consistently result on higher performance for a given
model when compared to the Bayesian framework;

3. Although transfer learning did not impact significantly the performance, it prevented
the calibrated probability degradation as model complexity increased;

4. The calibrated probability obtained from our Bayesian framework is an interpretable
quantity that accurately represents the likelihood of correctness of the prediction of
the specific dataset;

5. Using the calibrated probability as a criterion for selecting reliable detection, we
observe a clear improvement on precision with relatively low trade-off in other
metrics (e.g., F1-score).

With that, we argue that reliable detection would be possible for real-time notification
systems. The paper is organized as follows. Section 2 provides a literature overview
of the detection of rocking motion. Section 3.1, presents the data collection system.
The BNN framework, models used, pre-processing and evaluation strategies are included
in Sections 3.2, 3.4 and 3.5, respectively. Finally, the results and discussion are presented in
Sections 4 and 5, respectively.

2. Related Work

There exist three main methodologies in the literature for the detection of rocking
motion: (1) using handcrafted features, (2) learning features from the data, or (3) a mix of
the two.

The first methodology, handcrafted features, is the most popular. The study in [19]
places wearable accelerometers on the chest as well as in front of a t-shirt collar for individ-
uals with ASD presenting body-rocking behavior. A zero crossing method is applied on
the time domain signals based on typical interval ranges and signal amplitudes between
body-rocking motions where the best performance (84%) was obtained from the chest
sensor. The study reported at [20] made use of recurrence plots which identifies similari-
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ties by means of Euclidean distance between accelerometer signals representing similar
trajectories in a 3D phase space. The authors showed that this methodology is orientation
invariant and claim resilience to disturbances caused by differences in amplitudes. Recur-
rence quantification analysis (RQA) was employed as a feature extraction method where
characteristics such as amount of recurrences, determinism, and entropy were paired with
a random forest (RF) algorithm to obtain classification accuracy of up to 86% on average.
They also conducted an interesting analysis to find the best body location for the sensors.
As a result, they found that the sensor placed on the torso contributed the most, based on
the output of the RF algorithm. Additionally, using the signals from the torso provided
the highest classification accuracy. This result corroborates the findings of [21]. Another
approach relying on handcrafted features is the seminal work by [22] where the Stockwell
transform, variance, mean difference between axes of entropy, and correlation coefficients
were used as features to be classified for body-rocking detection with a support vector
machine (SVM). Earlier approaches that are similar to the ones mentioned and based on
handcrafted features can also be found in [21,23–25].

The second methodology in [26] is motivated by learning features from raw data in an
end-to-end fashion. This work uses a similar deep learning approach to [27] by applying a
convolutional neural network (CNN) to raw signals for feature extraction. This approach
is applied to the dataset provided by [22] and their own, with simulated SMM and non-
SMM activities. The extracted features were classified by long-short term memory (LSTM)
recurrent neural networks (RNN), in a combination of knowledge transfer and ensemble
learning to find the best performing model. In an earlier study [28], the same author
developed a simpler method where instead of an LSTM for classification, an SVM was
used and ensemble learning was not employed. Another very similar study by the same
author tried the same configuration but with an LSTM [29], motivated by the argument
that handcrafted features do not capture signal dependencies well. However, the author
in [27] showed that handcrafted features still have value for SMM detection.

The third methodology is present in the work by [27]. It is a framework based on
transfer learning with the support of CNNs. The CNNs were trained on time domain and
frequency domain representations of the collected signals, where the frequency represen-
tations were extracted using the Stockwell transform as initially introduced to represent
body-rocking signals in [22]. The transfer learning approach is justified by [27,30] due
to the fact that data domains that share similar characteristics can enhance the ability of
algorithms to learn and perform predictions on unknown data. Therefore, the CNNs are
used to learn the time-frequency related information on SMM (body rocking, hand flap-
ping, or simultaneous body, rocking and hand flapping) extracted from the dataset created
and used by [22] and non-SMM related activities (such as walking, sitting, sitting down,
standing and standing up) extracted from the PUC dataset [31]. The parameters learned
with such training are later used as the transferred knowledge to an SVM classifier. They
show this approach outperforming all contemporaneous state of the art methods [20,22,26]
with accuracy and F1-score values capping on average at 98.29% and 93.66%, respectively.

Uncertainty quantification can be obtained by means of sampling or direct estima-
tion recovering measures of uncertainty such as entropy, variance, mutual information,
etc. Methods based on such approaches have been used for improving classification in
activity recognition tasks [32–34], as well as eliminating predicted samples with high un-
certainty [35]. In the context of multi-instance learning, uncertainty quantification has
been used to improve instance level classifiers [36], and to aid active learning scheme
to provide different levels of confidence about predicted samples for weak labelers (for
the models under training) or strong ones (for the samples that had available labels) [37].
Model ensemble is one way of enabling uncertainty quantification in which such models
could be even neural networks [38]. Modeling from a Bayesian approach allows one to
estimate the model predicted samples distribution or posterior based on assumed prior
distribution of the data. Although the prior assumptions may be misleading [39,40], there
are works modeling an evolving prior for better estimation of the posterior [41].
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As observed thus far, none of the main methods for body-rocking detection focused
on reducing false positives, a factor that impacts a user’s ability to engage with a wearable
system. Using uncertainty quantification for the purpose of eliminating bad predictions has
not been proposed for the purpose of body-rocking detection to the best of our knowledge.
Therefore, the BNN’s framework combines both the ability to screen bad detections and
the ability to take advantage of the discriminative power of deep learning models (as
discussed above).

3. Materials and Methods
3.1. Datasets

In this work, the public SMM dataset Electrodermal Activity Automated Quality
Assessment (EDAQA) (preprocessed version can be found here: https://github.com/
lsadouk/code_SMMs, accessed on 6 July 2022) [25] is used. This dataset was made available
initially by [22], and the preprocessing and models by [27] are used as a benchmark. This
dataset is split into two trials, Study 1 and Study 2. The sampling frequency of the IMU
sensors is different from one trial to another, Study 1 is sampled at 60 Hz and Study 2 is
sampled in 90 Hz. Additionally, the subjects are the same and the two trials are spaced out
by two years. This public dataset will be referred to as EDAQA dataset.

The second dataset used in this study was collected by our group jointly with the
Education Services for the Deaf and Blind (ESDB) of the North Carolina Department of
Public Instruction under IRB 14046 [9], hence this dataset will be referred to as ESDB dataset
(https://zenodo.org/record/5559169#.YqvpxtLMIUE, accessed on 6 July 2022). For the
ESDB data, the 14 sessions were grouped into pairs to ease a granular analysis, hence
ending with seven sessions. The characteristics of each dataset can be found in Table 1. In
this work, the data coming from the wrist was not used since the performance obtained
with it was not promising, as observed in our previous work [9]. Please note that since this
dataset has only one subject, it can be used to analyze the performance of a personalized
model rather than a population-level model.

Table 1. Datasets.

Name Subject Session Total Length Occurrences Behavior
Duration Sensors

ESDB † 1 14 11.74 h 526 7 h (59.7%) Acc, Gyro

EDAQA †† 6 25 10.63 h 792 2 h (20.3%) Acc
† Limb: Right upper arm and wrist; †† Limb: Right/Left wrists, torso.

The ESDB dataset was collected using a Raspberry Pi Model 3, equipped with a touch-
screen display to aid labeling the collected data in real time. The Mbientlab’s MetaMotionR
IMUs (https://mbientlab.com/tutorials/MetaMotionR.html, accessed on 6 July 2022) were
used. The IMU device contains an accelerometer, gyroscope, LED and a piezoelectric vibra-
tion generator. The software application has a UI for real-time data labelling implemented
in Python 3.6. The operating system is the Rasbpian Stretch. The IMU streams data to
the embedded system over bluetooth. The IMU sampling rate is 100 Hz. If the system
were to be used for notifications, once a detection occurs, the vibration generator in the
MetaMotionR device could be activated. A picture of the data collection procedure is
shown in Figure 1.

https://github.com/lsadouk/code_SMMs
https://github.com/lsadouk/code_SMMs
https://zenodo.org/record/5559169#.YqvpxtLMIUE
https://mbientlab.com/tutorials/MetaMotionR.html
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Figure 1. Illustration of the data collection, prediction, and uncertainty quantification pipelines.
(a) Body-rocking movement illustration with sensor placed on the arm. The arrows indicate the
forward and backward body rocking. (b) A sample gyroscope measurement with corresponding
annotations. (c) Our pipeline for prediction and uncertainty, which uses a Bayesian Neural Network
framework based on Monte Carlo (MC) Sampling from dropout. The uncertainty measures include a
variance σ2 indicative of observation noise, and entropy H and mutual information I obtained from
the MC samples. This framework improves the performance of prediction and yields a calibrated
probability ρ that is reliably indicating our confidence in a prediction.

3.2. Bayesian Neural Networks

Deep learning (DL) has shown incredible performance in different applications but it is
still hard to analytically understand the internal nature of such models, which paradoxically
may prevent further advancement of this technology. Model uncertainty has been used as
a way to evaluate such models, offering a probabilistic interpretation of model’s intrinsic
factors driving its performance. In particular, techniques such as dropout have been used
to capture variability in deep learning models in a similar way to ensemble learning by
randomly removing some network connections during training time [42].

For a while, it has been known that an infinite-depth neural network (NN) with
a distribution established over its weights converges to a Gaussian process [12,42,43], while
finite approximation to weights distributions has been attempted under the framework of
Bayesian Neural Networks [12,13]. The authors in [14] showed that a neural network with
arbitrary depth and non-linearities with dropout before its weights, as normally used in
NNs, is a Bayesian approximation of a Gaussian process marginalized over its covariance
parameters. This allows the characterization of the uncertainty due to intrinsic parameters
to the model and due to its input data. Next, a brief introduction of the method used by [14]
is presented, which shows how model uncertainty can be characterized while enabling
model interpretability.

Let us consider the estimated output ŷi of a NN and the ground truth yi for an input
xi with i = 1, · · · , N where each data point (xi, yi) comes from the dataset (X, Y), i.e., the
sets of input and output, respectively. For our discussion, we will consider a NN with L
layers of the form:

ŷ(x; W) =
1√

KL−1
WL · a

(
· · · 1√

K1
W2 · a(W1x + b1) + b2 · · ·

)
(1)

where a(·) is some activation function, Wl ∈ RKl×Kl−1 are the NN weights and bl ∈ RK
l the

vector of biases for each layer l = 1, · · · , L. A standard cost function often used for training
of these networks (even when considering dropout) has the form:

Lstd =
1
N

N

∑
i=1

E(yi, ŷi) +
L

∑
l=1

λW,l ||Wl ||22 +
L−1

∑
l=1

λb,l ||bl ||22 (2)
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where E(·, ·) is a loss function, and the λ’s are weight factors for L2 regularization.
A deep Gaussian process (GP) is a model resulting of the hierarchical composition of

GPs. A Gaussian process models a finite collection of its variables using a multivariate nor-
mal distribution with a defined covariance matrix function. Hence for a GP, the covariance
matrix can be approximated using a variational distribution over each component of its
spectral decomposition [14]. It is known that each hidden layer in a NN can be represented
by one of the layers of a deep GP [14].

In this context, the predictive distribution of the deep GP model can be represented as:

P(y|x, X, Y) =
∫

P(y|x, w) P(w|X, Y) dw

P(y|x, w) = N
(

y; ŷ(x, w), τ−1 ID

) (3)

for some precision hyper-parameter τ > 0, whereN (y; µ, Σ) represent the normal Gaussian
distribution with mean µ and covariance Σ, and X and Y are the training set. Since the
posterior P(w|X, Y) is intractable, the authors in [14] show how to approximate it using
variational inference. Such approximation is made by Monte Carlo Dropout sampling [14]
and by minimizing the KL divergence between an approximating distribution q(w) and
P(w|X, Y), as it will be shown next.

Now, let Wl = Ml · diag
([

zl,j

]Kl−1

j=1

)
, with zl,j ≈ Bernoulli(pl) for l = 1, · · · , L,

and j = 1, · · · , Kl−1, given some matrixes Ml and probability pl as variational param-
eters. Note, that by using this argument we are in practice sampling the elements of Ml . Let
q(w) be the distribution over the matrix Ml . We use the KL divergence between q(w) and
the posterior P(w|X, Y) as our objective for minimization, which (after some mathematical
manipulation) can be expressed as:

LGP = −
∫

q(w) log P(Y|X, w)dw + KL(q(w)||P(w)). (4)

Minimizing Equation (4) is equivalent to maximizing the log evidence lower bound [44],
where the first term is equivalent to −∑N

i=1
∫

q(w) log P(yi|xi, w)dw. Please note that
Equation (4) would require integration over the entire space for the variable w, which does not
scale well [45]. Therefore, it is shown next how the integral can be effectively approximated.

As shown in [14,46], the Monte Carlo approximation of the two terms in Equation (4)
for the deep GP considered gives:

LGP-MC ∝ − 1
N

N

∑
i=1
− log P(yi|xi, wi) +

L

∑
l=1

(
pl

2τN
||Ml ||22 +

1
2τN
||bl ||22

)
(5)

where wi are sampled from the distribution specified by q(w) by obtaining realizations
of the Bernoulli distribution zl,j as it is made during the dropout process. By setting
E(yi, ŷi(xi; wi)) := − log P(yi|xi, wi)), we obtain an expression with similar form
to Equation (2).

For the case of regression, and given enough training data (so the terms due to
regularization of the weights and biases is negligible), we can approximate Equation (5)
by [14]:

Lreg =
1
N

N

∑
i=1

[
1
2

σ̂−2
i ||yi − ŷi||2 +

1
2

log(σ̂2
i )

]
, (6)

where σ̂i is a variable that captures the observation noise for sample (xi, yi) which is treated
as another output of the NN.
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Next, we discuss how to approximate the predictive distribution given a new sample
point x∗ once the model has been trained. The distribution for the predicted value y∗ is [46]:

q(y∗|x∗) =
∫

P(y∗|x∗, w)q(w)dw. (7)

This distribution is approximated using a moment-matching technique by finding
an estimate for the first two moments with the help of Monte-Carlo integration. The first
moment approximation is obtained by the following:

Eq(y∗ |x∗)(y
∗) ≈ 1

T

T

∑
t=1

ŷ∗(x∗, wt) (8)

where {wt}T
t=1 are obtained by drawing T samples from the distribution specified by q(w).

This expression is basically T averaged forward stochastic passes through the NN.
The second moment approximation is obtained by:

Eq(y∗ |x∗)

(
y∗>y∗

)
≈ τ−1 ID +

1
T

T

∑
t=1

ŷ∗
(
x∗; wt)>ŷ∗

(
x∗; wt) (9)

Hence the model’s predictive variance is obtained by:

Varq(y∗ |x∗)(y
∗) ≈ τ−1 ID +

1
T

T

∑
t=1

ŷ∗
(
x∗; wt)>ŷ

(
x∗; wt)−Eq(y∗ |x∗)(y

∗)>Eq(y∗ |x∗)(y
∗) (10)

which is the same as the sample variance of T forward passes through the NN plus the
inverse of the model’s precision.

There are two types of uncertainties considered for quantification [45] (1) aleatoric
uncertainty, which is the uncertainty associated with the data, (2) epistemic uncertainty,
which is the uncertainty associated with the model [47] and usually can be explained by
enough data [48]. For aleatoric uncertainty, there are two subtypes: heteroscedastic and
homoscedastic. The first quantity is dependent on the data, while the second one assumes
identical noise for all input samples.

Predictive entropy [49] measures the amount of uncertainty associated with a mea-
surement. With the Monte Carlo dropout sampling, it is approximated as

H[y∗|x∗, X, Y] =−∑c′(
1
T ∑T

t=1 P(y∗ = c′|x, wt))

· log( 1
T ∑T

t=1 P(y∗ = c′|x, wt))
(11)

Mutual information (MI) between the posterior over the weights and the prediction
y∗ quantifies the uncertainty in the BNN’s output [50]. This measure is larger when the
stochastic predictions are less stable, and it is calculated via:

I[y∗|x∗, X, Y] = H[y∗|x∗, X, Y]+
1
T ∑c′ ,t[P(y∗ = c′|x, wt) · log(P(y∗ = c′|x, wt))]

(12)

Predictive entropy represents the effect of epistemic and aleatoric uncertainties. On the
other hand, mutual information is a representation of the epistemic model uncertainty [47].

The regression aleatoric uncertainty is now extended to a classification task, by mod-
eling the regression uncertainty of the logitvector—the output of the last layer before the
Softmax activation function. A Gaussian distribution is placed over the logit vector as
ẑ ∼ N (y, σ2), where [ŷ, σ2] = f W(x) with f W as the NN. The expected log likelihood for
each training sample is described as [15]:

L = log
{
EN (ẑ;y,σ2)[So f tmax(ẑ)c]

}
, (13)
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where y is the ground truth label of x and c is the index for the ground truth label.
Since Equation (13) is analytically intractable, it is approximated by Monte Carlo

integration. Denote ẑt = f W(x) + σ · εt, where εt follows a standard Gaussian distribution.
The loss function becomes

L = log
1
T

T

∑
t=1

exp

[
ẑt

c − log ∑
c′

exp(ẑt
c′)

]
, (14)

where T is the number of Monte Carlo sampling iterations and c′ is the class index of the
logit vector ẑ [15]. The loss function in Equation (14) is the one that is going to be used later
on in the experiments.

The uncertainty quantification relies on the estimation of the approximated predictive
probability which for the classification case is shown by [48] as the output of softmax vector:

p∗ ≈ 1
T

T

∑
t=1

So f tmax
[
ŷ∗
(
x∗; wt)] (15)

3.3. Probability Calibration

Assume a multi-class classifier with a prediction and corresponding predicted proba-
bility [ŷ, ρ̂] = H(x) for an input x with ρ̂ representing the probability that the class label is
correct. In this case, we would expect ρ̂ to match the empirical probability of this event.
That is, a sufficient condition for calibration can be defined as

P(ŷ = y | ρ̂ = ρ) = ρ, ∀ρ ∈ [0, 1]. (16)

It is known that the predicted probability is not calibrated for neural networks, espe-
cially in the case of BNNs [45]. In this work, we employ the approach of Zhong et al. [15,51]
of using the three uncertainties obtained with the BNN framework (i.e., the variance es-
timate of the prediction, the entropy and the mutual information) to find a map, say Ψ,
from the uncertainties domain to a calibrated probability domain. Hence, a calibration
function Ψ : R3 → [0, 1] is desired such that ρ̂ = Ψ ◦U produces calibrated probabilities,
where U represents the three uncertainty measures from the BNN. In our framework,
we used a neural network to approximate Ψ with architecture composed of three fully
connected layers (FCN) with 32 (activation tanh) and 64 (activation tanh) neurons in the
hidden layers and one neuron (activation sigmoid) for the output layer. Table 2 gives a
summary of the equations so far.

Table 2. BNN equation summary.

Equation Title

ŷ(x; W) = 1√
KL−1

WL · a
(
· · · 1√

K1
W2 · a(W1x + b1) + b2 · · ·

)
(1) Representation of a DNN with L layers

Lstd = 1
N ∑N

i=1 E(yi, ŷi) + ∑L
l=1 λW,l ||Wl ||22 + ∑L−1

l=1 λb,l ||bl ||22 (2) Standard loss function for a DL model

P(y|x, X, Y) =
∫

P(y|x, w) P(w|X, Y) dw (3) Model predictive probability

LGP = −
∫

q(w) log P(Y|X, w)dw + KL(q(w)||P(w)) (4) Loss function of Gaussian Process

LGP-MC ∝ − 1
N ∑N

i=1− log P(yi|xi, wi)+

∑L
l=1

(
pl

2τN ||Ml ||22 +
1

2τN ||bl ||22
) (5) Monte Carlo approximation of (4)

Lreg = 1
N ∑N

i=1

[
1
2 σ̂−2

i ||yi − ŷi||2 + 1
2 log(σ̂2

i )
]

(6) Regression loss obtained from (5)

L = log 1
T ∑T

t=1 exp
[
ẑt

c − log ∑c′ exp(ẑt
c′ )
]

(14) Classification loss obtained from (5)

Varq(y∗ |x∗)(y
∗) ≈ τ−1 ID + 1

T ∑T
t=1 ŷ∗

(
x∗; wt)> ŷ

(
x∗; wt)−

Eq(y∗ |x∗)(y
∗)>Eq(y∗ |x∗)(y

∗)
(10) Model predictive variance
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Table 2. Cont.

Equation Title

H[y∗|x∗, X, Y] = −∑c′ (
1
T ∑T

t=1 P(y∗ = c′|x, wt))·
log( 1

T ∑T
t=1 P(y∗ = c′|x, wt))

(11) Model predictive entropy

I[y∗|x∗, X, Y] = H[y∗|x∗, X, Y] + 1
T ∑c′ ,t[P(y∗ = c′|x, wt)·

log(P(y∗ = c′|x, wt))]
(12) Mutual information

3.4. The Models

The Bayesian DL uncertainty quantification approach is applied to an end-to-end
model, which together with Sadouk et al. [27] represents the state of the art for body-
rocking detection in our assessment. We consider Rad et al. [26] as our baseline, who used
a fully end-to-end deep learning approach for the same goal. For this implementation, we
re-used most of the CNN pipeline developed by them (https://gitlab.fbk.eu/MPBA/smm-
detection, accessed on 6 July 2022). This model is deeper than the one from [27] with 3 CNN
layers of 4, 4, and 8 kernels, respectively. Each of these layers has filter sizes of 10 and
stride of 1, the output of the CNN is flattened and passed through a batch normalization
layer followed by an FCN with eight nodes, the logits are then dropped out with p = 0.2 to
generate a hot encoding output for body rocking and not-body-rocking status. For training
this network, a cross-entropy loss function is used. A diagram of Rad’s architecture is
shown in Figure 2a. This model will be referred to as Rad’s model or Rad’s approach and it
represents the state of the art for end-to-end detection of body rocking in our assessment.

Figure 2. Examples of the deep learning architectures explored in this manuscript. (a) Rad’s model [26],
(b) WiderNet 2×, FCN 128, (c) Bayesian Approach to Rad’s model. The WiderNet type of architecture
is also explored with variants containing eight nodes in the FCN layers in addition to the variant
with 128 nodes.

For a fair use of the Bayesian DL framework, we evaluate an additional model that
is wider than the one aforementioned. The model will be referred to as WiderNet which
is basically an upscaled version of Rad’s approach in terms of number of filters per layer.

https://gitlab.fbk.eu/MPBA/smm-detection
https://gitlab.fbk.eu/MPBA/smm-detection
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For instance, the model WiderNet 2× would be a three-layer CNN model, exactly as in
Rad’s approach, but with 8, 8, and 16 filters per layer of size 10 each. Two variants of
the models are created differing only in the number of nodes in their FCN. Therefore,
the model “WiderNet 2×, FCN 128” has 128 nodes in its FCN as one can see in Figure 2b,
thus the abbreviation “FCN” will be followed by the quantity of nodes. The use of a
WiderNet is justified since Rad’s model is a narrow model (a few filters per layer) and
may not display the advantages of the Bayesian approach since Rad’s shallower aspects
do not contribute to the premises of Bayesian formulation; namely, the deeper/wider the
model, the closer to a Gaussian process. To show that Wider models gain more benefits
when using a Bayesian approach, the WiderNet will be upscaled and evaluated 2×, 4×,
8×, and 16× for comparison. Each upscaled version is going to be evaluated with the
original Rad’s FCN (i.e., 8 nodes) and 128 nodes. Implementation is publicly available
(https://github.com/rafa-coding-projects/Body-Rocking, accessed on 6 July 2022).

3.5. Dataset Pre-Processing and Evaluation Strategy

As mentioned earlier, we used the public EDAQA dataset and our ESDB dataset for
analysis. The detailed characteristics of each dataset can be found in the preprint version of
this manuscript (https://github.com/rafa-coding-projects/Body-Rocking, accessed on 6
July 2022). The models are evaluated in both datasets with the leave-one-subject-out (for the
EDAQA dataset) or leave-one-session-out (for the ESDB dataset) strategies for training and
testing. The training was performed for 45 epochs. For each subject left out, the procedure
is repeated 10 times to account for additional variability in the training process.

For all models, the data were filtered by a Butterworth band-pass filter, segmented
into windows of N samples for each axis (either three axes of gyro of accelerometer mea-
surements), and trained end-to-end as described in the original work [26]. The window
size is a moving window with N = 10.

For the Bayesian approach, the models had their original loss function replaced by the
Bayesian loss (see Equation (14)), and dropout is added for each layer with probability 0.05.
A diagram showing the additions of the Bayesian components to Rad’s model can be found
in Figure 2c.

3.5.1. Transfer Learning for Model Improvement

As a comprehensively explored topic in statistics and DL literature [26,27], transfer
learning (TF) is useful to take advantage of data coming from similar domains, consequently
increasing model generalization capabilities. In the application of wearable sensors, transfer
learning is especially useful to allow a model to work with sensors placed on different limbs.

In our particular scenario, we initially train the best performing model using the
EDAQA data and later on we re-train the model on the ESDB dataset conserving most of its
parameters. As explained before, the torso is the optimal location for body rocking, since
it has minimal coupling with other repetitive activities that could be performed by other
limbs. On the other hand, data coming from the arm has significant mechanical coupling
with other activities, which makes it much more challenging to work with. For example,
in a classroom environment, repeatedly taking folders from the student’s backpack to their
desk would trigger a detector on the wrist but it may not on the chest. The transfer learning
technique has been chosen as an aid to improve the model’s performance in the challenging
(ESDB) arm data set.

3.5.2. Uncertainty Quantification as a Criterion for Choosing Reliable Predictions

We make use of the uncertainty quantification metrics as well as the calibrated proba-
bilities generated by the Bayesian DL framework to develop a criterion to establish whether
a prediction made by the model should generate a notification or not. More specifically,
we will make use of a threshold on these quantities as a criterion for selection of a reliable
detection. Entropy and MI were chosen to be reported since they were shown to be the
most effective. We have not found any clear relationship between the predictions and

https://github.com/rafa-coding-projects/Body-Rocking
https://github.com/rafa-coding-projects/Body-Rocking


Information 2022, 13, 338 11 of 22

other dispersion measures, such as estimated variance, inter-quantile ranges, coefficient of
variation, etc. Finally, as mentioned in the introduction, excessive false positives can lead
to alert fatigue. The trade-off between the distributions of correct and incorrect predictions
will be analyzed as the threshold is changed.

3.5.3. Metrics

For the evaluation metrics, we focus on Area-Under-Curve (AUC) of the computed
Receiver Operating Characteristic (ROC) curve and precision. The AUC is known to
be less sensitive to oscillations in predictions and a good indicator for generalization,
in contrast to other metrics such as accuracy. The other metrics reported are precision,
recall, and F1-score. For the Bayesian approach, the metrics above are calculated using the
model output specified by (15). The regular softmax output (as shown in Figure 2a,b) is for
non-Bayesian models.

4. Results
4.1. Bayesian Approach Compared to Current Methods

For the EDAQA Study 1 in Figure 3 top, one can observe that the AUC, and F1-score
obtained by Rad’s approach is in general superior to the WiderNet models without a
Bayesian approach (with a legend as “AUC FCN 8” and “AUC FCN 128”). By evaluating
the curves for the AUC plot, one can observe that increased model complexity seems to be
degrading the model’s performance, most likely due to overfitting. The Bayesian approach
stands out as being superior to Rad’s approach by almost one standard deviation when
using WiderNet 8× FCN 128. The figure also shows that the Bayesian approach does not
require an aggressive increase on capacity of the architecture in order to perform better
since WiderNet 2× already increases the AUC by 3%, all obtained AUC values are around
94% for the Bayesian approach.

We continue evaluating Study 1, but now for F1-score in Figure 3 top in the middle
column. As expected, the performance degradation due to increase in capacity of non-
Bayesian models is also reflected in their F1-score.

Furthermore, different improvements are obtained as the WiderNet’s capacity is
increased, which is more noticeable than when analyzing the AUC. The F1-score for
Bayesian approach increases from 61% to almost 66%. WiderNet 8× provided the highest
F1-score of 65.8%, just slightly above WiderNet 8× FCN 128 with 65.5%, more than 10%
compared to the F1-Score obtained with Rad’s approach of 54.9%. Precision is also further
improved by the Bayesian approach from 62% with Rad’s model to reaching up to 70%
with WiderNet 16× FCN 128. Therefore, for F1-score and precision, the Bayesian approach
provided greater improvement than for AUC.

For EDAQA Study 2, the reader can refer to Figure 3 middle. The performance in this
portion of EDAQA dataset is superior than the performance obtained in Study 1 as also
shown in [27]. The same model degradation trend when increasing capacity observed in
Study 1 is also present in Study 2 when considering non-Bayesian approaches. On the other
hand, the WiderNet 8× provided an F1-score of 70% compared to 58% of Rad’s model,
an improvement of 12%. The precision when using WiderNet 16× was at 73% and Rad’s
model at 68%, an improvement of 5%.

Finally, for ESDB in Figure 3 bottom, one can observe a superior average performance
by WiderNet variants in general when compared to Rad’s model. This happens although
all AUC values are within a range of about 4%. Thus, considering AUC, one can see
that widening Rad’s model provided improvements for the non-Bayesian approach of
WiderNet 2× and 4× only. Increasing the model capacity any further degrades the AUC,
as the non-Bayesian models variants WiderNet 8× and WiderNet 16× show, independently
of how many nodes are placed in the FCN. The Bayesian approaches had an even higher
performance since AUC improvements were observed until an increase in capacity of 8×.
The models that had FCN 128 seem to be less sensitive to capacity increase. The FCN
128 Bayesian variants seem to have plateaued in terms of performance, leading us to believe
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that the framework has reached a limit in performance. Applying the Bayesian framework
to Rad’s model slightly improved its AUC score from 92% to 93% while the Bayesian
WiderNet 8× had 95%.

Figure 3. Performance of the presented architectures on the datasets. (Top) EDAQA dataset, study 1.
(Middle) EDAQA dataset, study 2. (Bottom) ESDB dataset. The architectures are evaluated under
different metrics to aid the elicitation of Bayesian approach on a regular CNN. The columns represent
the averages of AUC (left), F1-score (middle) and precision (right), across all subjects and 10 runs.
Rad Original is the baseline represented by a blue dot, while the legends identifies the WiderNet
variants. We observe an improvement in all models when considering their Bayesian variant. This
improvement is more noticeable in the ESDB dataset. Best in color.

The results for WiderNet FCN 128 are averaged and summarized in Table 3. Finally,
considering also AUC for model generalization as well as dealing with an imbalanced
data, the up-scaled model WiderNet 8× FCN 128 seems to be the best performing one.
In Figure 4, one can verify how AUC, and precision play a role between the best models
and Rad’s.
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Table 3. Summary of averaged performance for each dataset.

Study 1 Study 2 ESDB

Rad Original AUC: 0.896 0.906 0.916
F1: 0.549 0.580 0.841
Precision 0.620 0.680 0.810

Rad Bayes AUC: 0.891 0.920 0.925
F1: 0.502 0.530 0.852
Precision 0.690 0.720 0.820

WiderNet 2× AUC: 0.895 0.921 0.929
F1: 0.584 0.636 0.855
Precision 0.640 0.670 0.830

WiderNet 2× AUC: 0.941 0.958 0.943
Bayes F1: 0.612 0.679 0.867

Precision 0.660 0.710 0.860

WiderNet 4× AUC: 0.885 0.920 0.930
F1: 0.587 0.653 0.857
Precision 0.640 0.670 0.830

WiderNet 4× AUC: 0.948 0.961 0.946
Bayes F1: 0.645 0.695 0.870

Precision 0.680 0.710 0.860

WiderNet 8× AUC: 0.869 0.903 0.929
F1: 0.554 0.602 0.856
Precision 0.620 0.680 0.830

WiderNet 8× AUC: 0.945 0.960 0.947
Bayes F1: 0.655 0.703 0.870

Precision 0.690 0.720 0.870

WiderNet 16× AUC: 0.838 0.892 0.926
F1: 0.529 0.570 0.852
Precision 0.560 0.670 0.830

WiderNet 16× AUC: 0.943 0.954 0.945
Bayes F1: 0.654 0.700 0.866

Precision 0.700 0.730 0.870
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Figure 4. ROC curves for each dataset for Rad’s model and WiderNet 8×, FCN 128 (i.e., with
128 neurons in their fully connected layer). (a) EDAQA dataset, study 1, (b) EDAQA dataset, study 2,
(c) ESDB dataset. The Bayesian model with the higher capacity performs best in all datasets. Best
viewed in color.

4.2. Effect of Transfer Learning (TF)

We evaluated all Bayesian WiderNet FCN 128 variants using TF. It was observed that
TF from the EDAQA to the ESDB dataset was not effective for Rad’s approach, it rather
substantially decreased their performance. We noticed that Bayesian WiderNet models
obtained better performance with TF than Rad’s model, but still slightly worse than training
the models from scratch.

It is important to note that [27] obtained good results and improvements using TF
from one subject to another. However, the same limbs were being used, while in our case,
TF was attempted from torso data to right upper arm data. The sensing modalities are
also different, since EDAQA dataset only uses an accelerometer, whereas in ESDB the
body-rocking activity is more evident in the gyroscope data.

The transfer learning is accomplished by first training a Bayesian approach model
from scratch on EDAQA Study 1, since from previous results, it seems to be a bit more
challenging for the models than Study 2, the imbalance in that portion of EDAQA dataset
is also less severe than in Study 2. Then, the first CNN layer and the FCN of the model
are trained on ESDB data analogously as before, namely, with 35 epochs, using leave-one-
subject out for the testing set and repeating this procedure 10 times for each subject.

We also analyzed the reliability plots or calibration diagrams, which capture the
correctness of the calibrated probability ρ (as described in Section 3.3). The preprint version
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of this manuscript (https://github.com/rafa-coding-projects/Body-Rocking, accessed on
6 July 2022) contains one example of a reliability plot. The x-axis of the plots captures
the mean calibrated probability value (i.e., which value of ρ is predicted), and the y-axis
corresponds to the fraction of positives in the dataset. Ideally, these numbers should match
and the resulting curves should follow a diagonal line. To capture the offset from this ideal
configuration, we report the Area From Diagonal (AFD), i.e., the area between the model
curve and the diagonal. The AFD is reported for all WiderNet models with FCN 128 with
and without TF in Figure 5. We observe that TF seems to help the Bayesian models to
neutralize the effect of higher variability as the model capacity increases.

Figure 5. Area from the diagonal of reliability plots with and without transfer learning (TF). TF
prevents this error metric from increasing as the model capacity increases. Best in color.

4.3. Uncertainty-Based Detection Selection

In this section, we explore the use of uncertainty as a criterion to select only predic-
tions with high confidence. The Bayesian WiderNet 8×, FCN 128 model is used for this
discussion since it is the model that provided the best overall performance among all
models. The exploration is performed in the ESDB dataset only, since this is the focus of
this manuscript for developing real-time notification systems.

The distributions of the Entropy and MI measures of uncertainty for the correct and
incorrect predictions are displayed in Figure 6.

One can observe that the distribution of incorrect predictions have a higher occurrence
of entropy values greater than 0.4. One cannot tell much about a distinct pattern of MI since
both groups have high concentration of values smaller than 10−1; therefore, only entropy is
used for the analysis detailed next. Rad’s model displays similar patterns.

We consider two uncertainty criteria for detection selection: (1) Setting positive detec-
tions with entropy above a specified threshold to be a negative (i.e., only keeping those
detections with entropy that is low enough) and (2) Setting positive detections with cal-
ibrated probability below a specified threshold to be negative (i.e., only keeping those
detection with calibrated probability that is high enough). Making use of the calibrated
probability as a selection criteria is more desirable since the probability values can be more
easily interpreted, and also because, as seen in the discussion below, it provides a better
trade-off than using a single uncertainty measure. The goal is to use these criteria for
selection of predictions that are truly reliable in order to avoid alarm fatigue.

https://github.com/rafa-coding-projects/Body-Rocking
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Figure 6. Distribution of correct and incorrect predictions for WiderNet 8×, FCN-128 on the ESDB
dataset. Please note that that the entropy has different distributions for the (a) correct vs. (b) incorrect
predictions. This indicate that it is a good feature for quantifying the uncertainty (i.e., higher entropy
means higher likelihood of having an incorrect prediction). Best in color.

Figure 7 provides a visualization of the trade-off between F1-score and precision.
Please note that the calibrated probability with a threshold of 0.65 yields a slight drop in
the F1-score while increasing precision by 7%. This is a beneficial trade-off for our use case
since that means that we can obtain more true positive detections without sacrificing the
overall performance of the system. This degradation in F1-score was further explored in
Figure 8 by exploring the impact in recall. We observe that for an improvement of 7% in
precision, the degradation in recall was of around 6%.

Since the proposed criteria rejects some of the original detections of the model, Figure 9
shows the trade-off between uncertainty threshold values and the percentage of samples
that are kept unchanged (i.e., not set as negative prediction by the threshold criterion). We
notice that for a percentage of samples kept unchanged higher than 60%, both criteria will
provide similar AUC values. This plot supports our previous analysis, showing the impact
of sample selection in metrics, such as precision and F1-score.
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Figure 7. F1-Score vs. Precision plot using uncertainty selection for ESDB dataset. The performance
is obtained by setting the predictions of the model to a negative detection if their uncertainty follows
below the specified calibrated probability or entropy thresholds. The original model is WiderNet
8×, FCN 128 with Bayesian approach and no selection. Please note that the curve produced by the
cal. prob. is better than the entropy curve. Furthermore, a threshold of 0.65 on the cal. prob. yields
almost no drop in F1-score but and 7% increase in precision. Best viewed in color.

Figure 8. Precision vs. Recall plot for uncertainty selection on ESDB dataset. The original model is
WiderNet 8×, FCN 128 with Bayesian approach and no selection. Please note that a threshold of 0.65
on the cal. prob. yields about an equal percentage of increase in precision and decrease in recall. Best
in color.

Figure 9. AUC score vs. Percentage of samples kept unchanged for uncertainty selection on ESDB
dataset. Each curve shows the corresponding threshold values used for the data points. The original
model is WiderNet 8×, FCN 128 with Bayesian approach. Best viewed in color.

5. Discussion

BNNs improve performance beyond what is obtained by simply increasing model
capacity. The first experiments show that the Bayesian approach presented a modest and
inconsistent improvement to Rad’s approach, it improved the performance on Study 2
while it was slightly degraded for Study 1 (see Table 3). Increasing model complexity for
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EDAQA dataset degraded performance for non-Bayesian models, making a case for possi-
ble overfitting. For WiderNet, the performance was enhanced in general when considering
the Bayesian variants. One possible explanation is that applying the Bayesian framework
on a model has a regularization effect [52], which for a model with lower capacity, such
as Rad’s model, results in lower performance. It is important to note that the AUC im-
provements for Bayesian approach were insensitive to further increases in capacity, leading
us to believe that the framework has reached a limit on its performance. Additionally,
it is interesting to note that for the EDAQA dataset, the precision increases with larger
Bayesian models whereas it decreases for larger non-Bayesian models. It is important to
note that according to [53], a DL model approaches a Gaussian process as the number of
layers of the DL model goes to infinity. Another important aspect to bring to the discussion
is that as shown by [54] a sufficient deep and wide model can even fit corrupted data since
DL models have enough capacity to model very complex and even noisy data. However,
based on the observations so far, we have some evidence that the WiderNet model had
benefited from the Bayesian approach, showing that not only deeper models benefit from
such an approach but also widerones. It also shows that model capacity alone did not
extract the “full potential” of the model. Additionally, the Bayesian approach gives us a
relatively computationally cheap way of obtaining uncertainties from model predictions.
One could argue that a simpler ensemble could also provide the same benefit, but based
on our previous work [9] we observed that random forests for example does not perform
well for this dataset (and thus we used an SVM); therefore, a DL approach was chosen for
this work.

Transfer learning reduces model variability. The evidence provided in Section 4.2
supports a claim which has an intuitive appeal: a model that has learned a similar do-
main will provide less variability when being retrained. An interesting unfolding of this
result could be used to investigate the impact in model generalization, which we leave as
future work.

The calibrated uncertainty can serve as a prediction quality indicator. Section 4.3
shows that calibrated probability provides slightly better improvements in precision for
choosing good predictions. To further illustrate that, we computed the ROC when removing
the samples (and associated ground truth values) that do not meet the selection criterion
and obtained an AUC of 98%. Although this represents an unrealistic scenario, we have
evidence that the remaining samples are in very close agreement with their respective
ground truth values. Revealing that the uncertainty-based thresholding really eliminates
predictions with “poor quality”. Figure 10 illustrates this case by adding the new curve to
former Figure 4.

Figure 10. Comparison for ESDB dataset considering a Utopian case where ground truth values are
also removed if the associated calibrated probability is smaller than the selection threshold. Best
viewed in color.
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Limitations and Future Work. This study and proposed pipeline have some limita-
tions worth discussing. (1) Runtime. To produce the ensemble of predictions for uncertainty
quantification, several predictions are necessary which require more computational power
than for a single prediction. Thus, this is a constraint to be taken into consideration when
implementing such methods in real time. However, a Ubuntu desktop with an i7 CPU
3.7 GHz, 64 GB of RAM and a GPU GeForce GTX 1080 Ti takes 3 ms per inference for
the Bayesian approach and 9 µs for non-Bayesian, about 32 times more. Although this
comparison was made on a desktop, implementing a deep architecture with Bayesian
approach for real-time processing on an embedded device is viable as we showed in our
previous work [51] with an architecture more complex than the ones presented in this
manuscript. However, a clinical study should be considered with several subjects wearing
a wearable system running the pipeline proposed in this work. With that, the shortcomings
of the method in terms of comfort and effectiveness could be assessed. (2) Dataset size.
Although we used a public dataset with six subjects, as noted in Section 3.1, we only
evaluated uncertainty quantification results on the data with one subject. Repeating such
evaluations on the EDAQA dataset could bring extra insights in future work. Additionally,
expanding the ESDB dataset could potentially bring further insights into transfer learning
between different subjects since the domain of EDAQA did not provide many performance
improvements to the domain of ESDB what could be due to noise in EDAQA or simply
lack of domain similarity. (3) Further Fine-Tuning of Pipeline. The results obtained from
the pipeline can be potentially improved using a validation set and further tuning the
parameters of the models, which is left for future work. (4) Prior sensitivity analysis. We
have not comprehensively explored different priors for this work, but we acknowledge
their importance in obtaining accurate posteriors depending on the size of the data.

The study of impact of different priors on body-rocking detection using BNN could be
potentially interesting in future work. However, it is expected that priors should not have a
big impact on performance for large datasets. (5) Fixed dropouts probability. We acknowl-
edge that better results have been obtained in the literature using BNNs with dropout
by learning the dropout probability during model training. Therefore, the performance
showed in this manuscript could be potentially increased with such aid in a future work.

6. Conclusions

In this work, a comprehensive comparative study of methods to classify the body-
rocking activity was presented. The methods were evaluated in light of a Bayesian approach.
It was observed that a shallower model tends to not take advantage of the Bayesian
approach. Additionally, the Bayesian approach was shown to provide superior performance
benefits when applied to higher capacity models, as demonstrated by simple networks that
were wider than the baseline model, which we called WiderNet. Although the experiments
show this tendency, we acknowledge that more evaluations with other deeper and wider
models, as well as other datasets, are needed in order to isolate the capacity effect v.s.
Bayesian approach. Assuming precision as a better metric than F1-score for body-rocking
classification, the calibrated probability and estimated entropy turned out to be useful
criteria to establish a “reliable level” for model predictions, significantly improving the
model’s precision, reducing the amount of false positives, and making the case to use such
methods for real-time detection.

Bayesian DL is still a growing research area for which new insights are being shared.
We foresee that the performance observed in this paper can be further improved by not only
comprehensively evaluating deep architectures, but also exploring the effects of different
priors for body-rocking classification and new ways of obtaining posteriors. The work
of [55], for example, condensed a series of justifications for the use of cold posteriors on
top of the fact that there is theoretical and experimental evidence that posterior predictive
can be better than point estimators and that model averaging, in general, provide robust
prediction. They show that cold posteriors improve the predictions of Stochastic Gradient-
Monte Carlo Markov Chain-based ensembles, which could also bring benefits for body-
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rocking classification. Although there are claims in the literature showing that the deep
learning architectures have so much capacity that they can even fit in corrupted data [54],
we intend to show that the Bayesian approach does improve the predictions. Although we
do not explore the impact of the prior in the predictions, we recognize its crucial role
for accurate estimations of the posterior, as shown by [39,40,56]. Applications such as
body-rocking detection can largely benefit from the constant new outcomes from Bayesian
DL. In order to make “live" body-rocking detection using viable BNNs, a clinical study
evaluating user feedback for real-time detection and uncertainty threshold adjustment
should be conducted, with devices equipped with real-time BNNs, which we leave as
future work.
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