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Abstract: We focused on job interviews as critical examples of complex social interaction in orga-
nizational contexts. We aimed at investigating the effect of face-to-face vs. computer-mediated
interaction, of role (candidate, recruiter), and of the interview phase (introductory, attitudinal, techni-
cal, conclusive) on intra-brain and inter-brain connectivity measures and autonomic synchronization.
Twenty expert recruiters and potential candidates took part in a hyperscanning investigation. Namely,
electroencephalography (delta, theta, alpha, beta bands) and autonomic (skin-conductance, heart-
rate) data were collected in candidate-recruiter dyads during a simulated job interview and then
concurrently analyzed. Analyses highlighted a link between face-to-face condition and greater intra-
/inter-brain connectivity indices in delta and theta bands. Furthermore, intra-brain and inter-brain
connectivity measures were higher for delta and theta bands in the final interview phases compared to
the first ones. Consistently, autonomic synchronization was higher during the final interview phases,
specifically in the face-to-face condition. Finally, recruiters showed higher intra-brain connectivity in
the delta range over frontal and temporoparietal areas, while candidates showed higher intra-brain
connectivity in the theta range over frontal areas. Findings highlight the value of hyperscanning
investigations in exploring social attunement in professional contexts and hint at their potential to
foster neuroscience-informed practices in human resource management processes.

Keywords: job interview; remote vs. face-to-face; EEG hyperscanning; brain connectivity; autonomic
synchronization

1. Introduction

Social neuroscience investigates the neural mechanisms involved in the functioning
of interpersonal behavior. The social brain comprehends the neurophysiological basis of
interpersonal behavior and social cognition [1], mediated by certain neural networks that
connect the limbic regions to the prefrontal cortex (PFC). For instance, the dorsal (DLPFC)
and ventral portion of the lateral PFC support the components of social interaction and
cooperative behavior [2–4]. These networks allow effective interpersonal interchanges.

In an organization, the social dimension appears critical for value and innovation
developments, and in this light, cognitive neuroscience elicits the comprehension of the
workers’ cognitive and affective systems. Ongoing neuroscientific research refers to leader-
ship, motivation, job assessment, and interviewing [5,6]. Its framework is referred to as
neuromanagement, defined as that interdisciplinary approach that explores internal mech-
anisms of management by applying knowledge derived from neuroscience and cognitive
sciences [7].

In this work, we focused on the job interview for the following reasons. First, psy-
chologically, it represents the main social interaction between the organization and the
candidate. Then, strategically, it was shown to be a good predictor of employability [8]
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and a value-maximizer, as it limits cases of bad hiring and loss of virtuous workers. Lastly,
according to the authors, available studies have never properly considered its social com-
plexity. A job interview represents a subcomponent of the selection process, where a
candidate is invited to meet and interact with a company representative, who aims at
selecting the best-fitting candidate for a position [9].

Dimensions such as anxiety, self-efficacy, its predictive validity, performance outcome,
and the impact of age, accent, age, and gender, were previously investigated [10,11]. More-
over, it was shown that anchoring-and-adjuments heuristics and associated motivational
mechanisms drive bias against stigmatized people in interview decisions [12]. Stigmatized
applicants receive lower interview judgments and have a lower probability to be selected
for the job.

Through methodological lenses, research has adopted psychometric methods, via
questionnaires, qualitative-verbal methods (i.e., focus groups, in-depth interviews), or
behavioral approaches [12]. These methods are extremely valuable for investigating associ-
ations of meaning, concepts, events, or complex attitudinal constructs on a general scale,
but they present weaknesses if covert cognitive and affective processes are the research ob-
ject. In fact, they are mediated by the person’s language, cognitive bias, and self-awareness.
Social neuroscience’s interest in the job interview appears evident as it represents a pivotal
social moment, which can be easily stressful and demanding [5].

Furthermore, due to COVID-19, the employment of videoconferencing platforms
proliferated. Therefore, the rise of digital forms is considered in this work. Historically
telephone interviews were the first step toward technologized job interviews. Via the
distribution of laptops, equipped with cameras, and a broadband internet connection,
job interviews were firstly carried out in remote settings. In this sense, COVID-19 forced
companies to switch to digitalized forms. Nowadays, many companies also include the use
of machine learning approaches in the selection process, in particular for initial curricula
screening purposes.

As many studies related to human-computer interaction have shown, a new medium
generally determines different social responses, which are embodied at a neurophysi-
ological and cognitive level. Communication platforms shape social relationships [13].
Unfortunately, existing evidence is ambiguous [14]. Computer-mediated interaction could
act as a social connector or a separator. Remote communication has been linked to dimin-
ished levels of empathy [15], and factors such as age and technology habits are known to
be significant mediators [14]. Conversely, face-to-face interaction is sometimes perceived as
challenging and stressful [16].

Other approaches have focused on the behavioral dimension. The detection of non-
verbal behaviors of the interviewee (gaze, facial expression, and posture) was investi-
gated [17] aiming at signaling possible improvements to the candidate for training pur-
poses [18]. Another study on job interviews found different gaze patterns between recruiters
and candidates [19], in particular, the interviewer made more frequent and longer gaze
contacts compared to the interviewee. Furthermore, automated video interview (AVI)
analysis, via machine learning, using verbal, paraverbal, and nonverbal behavior from
audio-video data was employed to assess personality traits [20]. Moreover, the positive
effect of combined cognitive reappraisal (CCR) on stress levels, in terms of heart rate vari-
ability was considered, with the CCR group presenting less physiological stress, a speech
better perceived by others, and more affiliative smile and hand gestures [21]. Besides
these findings, it should be pointed out that the metrics used here are indirect proxies for
cognitive and affective processes and only a few studies consider both interacting agents.

The complexity that arises in the social dimension can be efficiently approached
only if all the agents are simultaneously considered [22]. For these reasons, among the
available methods, hyperscanning is a proposed paradigm that allows the exploration of
interpersonal brain mechanisms, generated by social interaction, via the consideration of
inter-brain—besides intra-brain—connectivity [23]. In fact, hyperscanning consists of the
simultaneous recording of cerebral activity of two or more subjects involved in a task.
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EEG hyperscanning extends the research application in the domain of the social brain.
Examples of applications were carried out and an electrophysiological synchronization
occurs between the agents in terms of inter-brain connectivity [24] and intra-brain connec-
tivity. Intra-brain connectivity refers to the synchronization and co-occurrence of neural
activity between an individual’s brain regions and is a proxy of the functional specialization
of an individual’s brain activity [25]. In contrast, inter-brain connectivity can be under-
stood as functional connectivity between the individual’s brain related to inter-personal
coupling mechanisms during social exchanges [26]. The effects of increased inter-personal
coupling could also result in a certain degree of synchronization of autonomic responses in
interacting dyads [27].

Augmented portability, improved devices, and signal processing techniques are major
factors that allowed the development of neuroscientific protocols for the organization [28].
Common techniques aim at assessing a stimulus (communication or advertising-related) or
a medium (user experience of a product), training an individual (neuroempowering and
neuro- and bio-feedback protocols), or assessing specific cognitive or affective dimensions
within a group. An employed tool is non-invasive electroencephalography (EEG), which
has been applied to investigate workers’ mental workload [29], risk management [30],
workers’ trust [31], and emotion detection [32]. The power density data is extracted via
Fourier’s transformation [33] and then considered within specific spectral boundaries.
The most commonly signal subcomponents are alpha (8–13 Hz), beta (13.5–30 Hz), delta
(0.5–3.5 Hz), and theta (4–7.5 Hz). Each frequency wave is associated with a functional
significance, which also depends on the activated cortical region where the pattern is
detected. Concerning low-frequency waves, theta is considered correlated to long-term
memory and emotional processing [34], and delta is linked to declarative, explicit memories,
and other affective states [35]. Instead, alpha and beta are associated with attentional and
conscious processing towards specific stimuli, or a general environment e.g., [36].

Together with central electrophysiological activity, peripheral autonomic parameters
have been employed to determine the positive and negative emotional activation, the
arousal, and the stress response in individuals and therefore they proved to be valuable in
the assessment of cognitive-affective dimensions in social interactions [37]. Electrodermal
activity (EDA) corresponds to the resistance and electrodermal potential that provoke
alteration in the electrical characteristics of the skin and reflects a person’s autonomic
responses to internal and external stimuli. EDA is composed of skin conductance level (SCL)
and skin conductance response (SCR). While the latter reflects short-lasting fluctuations,
associated with attentional processing e.g., [38] SCL corresponds to the tonic activity of
EDA and is linked to workload and arousal [39].

Given the methodological issues we underlined, and the known synergetic interaction
between brain, body, and behaviors, composed of complex feedback and feedforward
processes, we advocate and propose an integrated multi-method approach to study social
dynamics during a job interview, adopting a dual hyperscanning paradigm [40]. Thus,
central and peripheral parameters were applied to a qualitative evaluation of the job
interview session to address set questions, where role (recruiter, candidate), setting (face-
to-face vs. remote), and job interview phases (introductory, attitudinal, technical, and
conclusive) are together considered.

Therefore, the following research questions were set. Is there a difference in intraper-
sonal and interpersonal connectivity levels depending on the face-to-face vs. computer-
mediated setting of the job interview? Is electrophysiological connectivity in the dyads
detected during a job interview? Does the connectivity emerge in specific interview phases?

Electrophysiological and autonomic parameters are simultaneously gathered during
the task, in both participants. We hypothesized to observe specific patterns in the EEG
and autonomic correlates, based on the considered factors. First, we expected to observe
higher intra-brain connectivity in those job interview phases, which presented particular
cognitive and emotional relevance such as the attitudinal and technical phases, where soft
and hard skills are tested on the candidate. Conversely, regarding inter-brain connectivity,
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we expected to detect significantly increased activity in the last phases of the job interview
process, due to a deeper social understanding within the dyad. Furthermore, we conjec-
tured that the face-to-face condition might be an eliciting factor for both these predicted
patterns we just introduced. Ultimately, as for the synchronization of autonomic indices
(electrodermal activity and heart rate), we believed that it could mirror the trend expected
for central activity, thus increasing during the final phases of the interview, resulting in it
being higher in the face-to-face condition.

2. Method
2.1. Participants

Participants joined the experiment after signing the written informed consent. The
research was carried out following the principles of the Helsinki Declaration and was
further approved by the Ethical Committee, where the work was designed. The popula-
tions of interest were, on one side, human resource professionals, on the other, potential
candidates who were actively seeking a job. A total of 20 subjects (n = 20, Mage = 27.3,
SD = 9.17), 10 recruiters and 10 candidates, were successfully recruited. All subjects were
right-handed, presenting normal/corrected-to-normal visual acuity. For all participants,
the following exclusion criteria were considered: (i) history of neurology or psychiatry
disorders; (ii) being involved in therapies with psychoactive drugs; (iii) presenting clinically
relevant distress or burnout history.

Participants were then randomly divided into dyads while considering their role, and
then randomly assigned to the condition (face-to-face vs. remote). For ethical reasons,
the candidates were not real contenders, and have not been involved in other previous
job interviews for this position. The following ad hoc inclusion criteria were considered:
(i) being older than 18 years old; (ii) proficiency in online communication technologies;
(iii) currently looking for a similar/equal job position in the experiment. For human re-
source professionals, the following ad hoc inclusion criteria were also considered: (a) being
employed; (b) being regularly involved in the recruitment process and personally carrying
out job interviews; (c) five or more years of professional experience in job interviewing.

2.2. Procedure

For the data acquisition, a dual-EEGs and autonomic activity hyperscanning paradigm
was designed. In this work, simulated job interviews were carried out by participants.
Every subject signed the written informed consent and was randomly assigned to one
of the two experimental conditions: remote vs. face-to-face. Every dyad, composed of
one recruiter and one candidate, underwent one interview. Every interview presented
four different phases. Participants, one recruiter, and one candidate were introduced in a
laboratory room by a researcher.

In the remote condition, two independent rooms were used. In one condition a face-to-
face job interview was carried out, while in the other condition the task was conducted via
the video teleconferencing software program Microsoft Teams, through personal computers.

A member of the research team previously verified that every subject was familiar with
the software. EEG and autonomic system devices were installed on both the subjects and a
2-min resting-state baseline was recorded. Data were simultaneously gathered from both
agents. The research team previously briefed the recruiters regarding the conduction of the
job interview to limit the impact of the interviewing style and maximize the standardization.
All candidates were motivated to participate in the research protocol, as it represented a
learning occasion for their professional future.

In line with the interviewers’ experience, four phases were established, each one with
an approximate duration of ~5 min. The interview lasted about 25 min, with the following
phases: (i) introductory; (ii) attitudinal; (iii) technical; and (iv) conclusive. In the introductory
phase, both actors shortly described themselves. The candidate’s curriculum is discussed.
Recruiters presented the company’s profile, the aim of the process, and the job offer. In
the attitudinal phase, candidates were questioned regarding their motivation and attitude.
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A description of their soft skills was discussed. In the technical stage, recruiters investigated
the candidate’s hard skills, discussing how they would fit the job position and the overall
company needs. Finally, in the conclusive phase, feedback was furnished, eliciting strengths
and weaknesses. Once the job interview was concluded, tools were detached. A debriefing
phase was conducted to assure that participants understood the research aim. Job interview
phases are reported in Figure 1.
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Figure 1. The four phases of the job interview. The four phases carried out during the experiment
task by the dyads: introductory, attitudinal, technical, and conclusive.

To maximize the relevancy of the social interactions we checked each session to
highlight not-pertinent time intervals, using audio-visual materials.

2.3. Signal Recording and Processing
2.3.1. EEG Signal

Recruiters’ and candidates’ EEG activity was recorded, according to the hyperscanning
specifics, via two lean 15-channels EEG systems. Electrodes were placed in correspondence
to F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P3, Pz, P4, O1, and O2 electrode sites (SI10) [41],
using Ag/AgCl sensors with physical reference in the two earlobes. vEOG was monitored
for subsequent signal processing. Electrodes impedance was kept below 5 kΩ. Data were
sampled at 1000 Hz, with a 0.01–200 Hz bandpass input filter and a 50 Hz notch filter.
During offline processing, a 0.5–50 Hz bandpass filter was applied to the raw data. Average
reference was computed to limit the effect of situational biases on recorded data and
improve the comparability between EEGs. Furthermore, to lower ocular movements and
blinks noise, a regression-based ocular correction algorithm was applied. Data were then
segmented according to the internal structure of the assessment interview (four phases)
and manually screened for residual ocular and movement artifacts. Finally, power spectra
were computed, via Fast Fourier Transform algorithm (resolution: 0.5 Hz; window length:
2 s) to extract power density data for the standard EEG bands, defined as follows: delta
(0.5–3.5 Hz), theta (4–7.5 Hz), alpha (8–13 Hz), and beta (13.5–30 Hz). The average EEG
power profile was computed and extracted for both resting and for each of the four phases
(introductory, attitudinal, technical, and conclusive) of the interview plot, normalized based
on the time lengths, and considering four main Regions of Interest (ROI): frontal (F7, F3, F4,
F8), central (C3, C4), temporoparietal (T7, T8, P3, P4), and occipital (O1, O2).

2.3.2. Autonomic Activity

The autonomic activity was recorded in the dyads during the task through multi-
use units. Recording sensors were positioned on subjects in correspondence with the
distal phalanx of the second finger, on the non-dominant hand. The sensor monitored
electrodermal and cardiovascular activity, in terms of skin conductance level (SCL), skin
conductance response (SCR), and heart rate (HR). An accommodation phase took place
before the recording session began. Data were sampled at 40 Hz. Moreover, to maximize
accuracy, artifact rejection and data filtering were offline applied when needed. Heart Rate
(HR, measured as beats per minute) was extracted via photoplethysmography, detecting
blood volume changes in the microvascular tissues. Phasic SCR was computed using tonic
EDA activity, via moving average. Mean HR, mean SCL, and SCR count were computed
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for each of the four phases of the job interview plot (introductory, attitudinal, technical,
and conclusive).

2.4. Data Analysis

Here we described the data analysis process for the considered variables. For all
ANOVA models, degrees of freedom were corrected by Greenhouse–Geisser epsilon when
needed. No outliers were observed in that sample or subgroup. Post-hoc analysis (contrast
analysis for ANOVA, with Bonferroni corrections for multiple comparisons) was succes-
sively applied. The size of statistically significant effects has been estimated via partial eta
squared (η2) indices.

2.4.1. EEG

In the first part of the analysis, we calculated the intra-brain and inter-brain connec-
tivity index for every dependent variable (delta, theta, beta, and alpha power). The phase
synchronization approach was not implemented in the preliminary analysis as it does not
allow the further computation of correlation coefficients. Specifically, for the calculation of
the functional intra-and inter-brain connectivity indices, the partial correlation coefficient
Πij was computed, by normalizing the inverse of the covariance matrix Γ = Σ−1:

Πij =` (
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a) Partial correlation matrix

Γ = (Γij) = Σ− 1 Inverse of the covariance matrix

This procedure [42] can quantify the relationship between two independent signals
(i, j), for example within a dyad, known as inter-brain connectivity, and the neural connec-
tivity between an individual’s brain regions, defined as intra-brain connectivity.

For intra-brain connectivity, we applied a set of four ANOVA, one per every frequency
band intra-brain connectivity index, considering the following factors: Role (2: recruiter,
candidate) and Condition (2: face-to-face, remote) as between factors, and Interview phase
(4: introductory, attitudinal, technical, and conclusive) and Region of Interest (ROI; 4:
frontal, central, temporoparietal and occipital) as within factors.

Similarly, for inter-brain connectivity, we applied a set of four ANOVA, one per every
frequency range inter-brain connectivity index, considering Condition (2: face-to-face, remote)
as between factor, and Interview phase (4: introductory, attitudinal, technical, and conclusive)
and Region of Interest (ROI; 4: frontal, central, temporoparietal and occipital) as within factors.

2.4.2. Autonomic Activity

In the first step of the analysis, we computed the synchronization indices using Pearson
correlation coefficients [43] for each autonomic measure (HR, SCL, and SCR), with the same
mathematical procedure previously described in the EEG section.

Then a set of three repeated-measures ANOVAs, one per each dependent variable,
was run considering Condition (2: face-to-face, remote) as between factor and Interview
phase (4: introductory, attitudinal, technical, and conclusive) as within factor.

3. Results
3.1. EEG
3.1.1. Intra-Brain Connectivity

Delta. Interview was found to be significant (F[3,57] = 7.09, p ≤ 0.05, η2 = 0.43).
From post hoc analyses, higher intra-brain connectivity was found in the attitudinal phase
compared to introductory phase (F[1,19] = 7.13, p ≤ 0.05, η2 = 0.43), and in the technical
phase compared to the introductory phase (F[1,19] = 8.07, p ≤ 0.05, η2 = 0.44). Data is
reported in Figure 2a. Moreover, Condition was found significant (F[1,19] = 9.33, p ≤ 0.05,
η2 = 0.48), with higher intra-brain connectivity in the face-to-face compared to the remote
condition. Data is reported in Figure 2b. Finally, the interaction effect Role*ROI resulted
significant (F[3,54] = 6.78, p ≤ 0.05, η2 = 0.40). Post hoc analyses highlighted higher intra-
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brain connectivity for recruiters compared to candidates in the frontal region (F[1,19] = 6.70,
p ≤ 0.05, η2 = 0.40) and in the temporoparietal region (F[1,19] = 6.78, p ≤ 0.05, η2 = 0.40).
Data is reported in Figure 2c.
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Theta. The condition factor was found significant (F[1,19] = 8.45, p ≤ 0.05, η2 = 0.45),
with increased intra-brain connectivity for the face-to-face condition compared to the remote
one. Data is reported in Figure 3a. Furthermore, the interaction effect Role*ROI was found
to be significant (F[3,54] = 6.70, p ≤ 0.05, η2 = 0.40). Post hoc analyses highlighted higher
intra-brain connectivity in the candidates compared to the recruiters (F[1,19] = 6.16, p≤ 0.05,
η2 = 0.38) in the frontal region. Data is reported in Figure 3b. Moreover, the interaction effect
Interview*ROI*Role was also found to be significant (F[9,162] = 7.65, p ≤ 0.05, η2 = 0.44).
The post hoc analyses highlighted increased intra-brain connectivity in the frontal region
for the candidates during the technical phase compared to the introductory (F[1,9] = 6.78,
p ≤ 0.05, η2 = 0.40) and attitudinal (F[1,9] = 6.98, p ≤ 0.05, η2 = 0.40) phases, as well as
during the conclusive phase compared to the introductory (F[1,9] = 9.14, p ≤ 0.05, η2 = 0.46)
and attitudinal (F[1,9] = 7.74, p ≤ 0.05, η2 = 0.40) phases. Data is reported in Figure 3c.

No other significant results for intra-brain connectivity were detected.

3.1.2. Inter-Brain Connectivity

Delta. The factor Interview resulted in being significant (F[3,27] = 9.32, p ≤ 0.05,
η2 = 0.49). Post hoc analyses highlighted higher inter-brain connectivity for the conclusive
compared to the introductory phase (F[1,9] = 10.98, p ≤ 0.05, η2 = 0.46). Data is reported
in Figure 4a. Furthermore, Condition resulted in being significant (F[1,9] = 9.32, p ≤ 0.05,
η2 = 0.48), with higher inter-brain connectivity for the face-to-face condition compared to
the remote condition. Data is reported in Figure 4b.
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Theta. The factor Condition was found to be significant (F[1,9] = 8.80, p ≤ 0.05,
η2 = 0.45), with increased inter-brain connectivity in the face-to-face condition compared to
the remote setting. Data is reported in Figure 5a.
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The interaction effect Interview*ROI was also found to be significant (F[9,81] = 6.78,
p ≤ 0.05, η2 = 0.40). Post hoc comparisons detected significant differences with increased
inter-brain connectivity in the frontal area for technical and conclusion phases compared
to introductory (respectively: F[1,9] =6.04, p ≤ 0.05, η2 = 0.37; and F[1,9] = 6.11, p ≤ 0.05,
η2 = 0.36) and attitudinal (respectively: F[1,9] = 7.13, p ≤ 0.05, η2 = 0.41; and F[1,9] = 6.93,
p ≤ 0.05, η2 = 0.37) phases. Data is reported in Figure 5b.

No other significant results for inter-brain connectivity were detected from the statisti-
cal analysis.

3.2. Autonomic Data

HR. The interaction effect Interview*Condition was found to be significant (F[3,27] = 6.16,
p≤ 0.05, η2 = 0.39), revealing higher synchronization in the technical and conclusive phases
compared to introductory (respectively: F[1,9] = 6.21, p ≤ 0.05, η2 = 0.40; and F[1,19] = 6.78,
p ≤ 0.05, η2 = 0.40) and attitudinal (respectively: F[1,9] = 7.12, p ≤ 0.05, η2 = 0.41; and
F[1,9] = 8.90, p ≤ 0.05, η2 = 0.41) phases in the face-to-face condition. Data is reported in
Figure 6a.
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SCL. The interaction effect Interview*Condition was found to be significant (F[3,27] = 8.23,
p ≤ 0.05, η2 = 0.42). As revealed by post hoc analyses, synchronization was generally
higher in the technical and conclusive phases compared to the introductory (respectively:
F[1,9] = 8.90, p ≤ 0.05, η2 = 0.44; and F[1,9] = 8.98, p ≤ 0.05, η2 = 0.42) and attitudinal
(respectively: F[1,9] = 6.09, p ≤ 0.05, η2 = 0.40; and F[1,9] = 9.04, p ≤ 0.05, η2 = 0.40) phases
in the face-to-face condition. Data is reported in Figure 6b.

4. Discussion

In the present study, we focused on the job interview as a critical example of complex
social interaction in organizational contexts. The research aimed at investigating the
effect of face-to-face vs. remote computer-mediated interaction, of the phase of the job
interview (introductory, attitudinal, technical, and conclusive), and of the role (candidate
vs. recruiter) on neurophysiological and autonomic markers of inter-personal coupling
between candidates and recruiters, as well as on intra-brain connectivity measures. Data
analysis highlighted the influence of the investigated factors on both intra- and inter-brain
connectivity measures and on autonomic synchronization of interlocutors.

Face-to-face interactions have systematically elicited higher intra-brain connectivity
in delta and theta frequency ranges, mirroring a peculiarly coherent activation of neural
networks likely involved in supporting the understanding of interlocutors’ behavior [44].
It is worth noting that slower components of the EEG spectra are known to be linked to
emotional processing and responsiveness, in particular when social reinforcements are
present [45]. Greater intra-brain connectivity in lower frequency bands during face-to-face
interviews, compared to remote ones, might hint at the greater information-processing
demand imposed on social understanding and regulation processes by such a complex
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form of interaction. Namely, social exchanges occurring in face-to-face conditions are
intrinsically connoted by richer social information deriving from the full set of verbal
and non-verbal communication channels available for the dyadic exchange. Conversely,
computer-mediated communication, due to setting and technical limitations, allows con-
veying only a part of non-verbal communication cues (e.g., degraded information on body
posture, proxemics, and gestures in case a webcam is used, or loss of relevant information
apart from verbal and vocal ones if no webcam is used). The greater presence of social cues
in face-to-face interaction, while likely allowing the understanding of the interlocutor’s
motives and communication and fostering adaptive social regulation, increases processing
effort. Furthermore, their multimodal nature plausibly requires the combined involvement
of different neural structures.

Intra-brain connectivity in slower EEG bands changed with the progress of the job
interview and was modulated by the phases and content of the interaction. In particular,
the interview phases with higher delta connectivity indices appear to be the attitudinal
and the technical ones. Those two phases were the most cognitively demanding during the
interview and plausibly required peak attention from both the candidates—who were trying
to provide the best presentation of their skills—and the recruiters—who were involved in
checking matches and discrepancies in candidates’ skills. The different observed levels of
intra-brain connectivity might reflect the mediation of broad cortical networks for cognitive
elaboration, with a more relevant impact and greater “echo effect” on the recruiter role
e.g., [46]. At the same time, the peculiar pattern of increased intra-brain connectivity in the
theta band specifically shown by candidates in the last phases of the interview compared
to the first ones might mirror the progressive increase in cohesion among frontal structures
involved in cognitive-affective control and behavior regulation in complex situations [47].

Then, higher intra-brain connectivity indices were observed in frontal and tem-
poroparietal areas for the recruiters in the delta frequency range, while candidates showed
higher intra-brain connectivity in frontal areas in the theta range. Intra-brain connectiv-
ity in the frontal and posterior regions is generally involved in mirroring mechanisms
during action execution and the observation of similar actions and may be evidence of
an interdependent synchronization at a cognitive level [48]. In fact, increased delta intra-
brain connectivity was observed in the temporoparietal area while decoding informative
gestures [23] and linked to the involvement of mirroring mechanisms e.g., [49]. Comple-
mentarily, delta intra-brain connectivity in frontal areas was associated with social-and
affective- gesture encoding [23] and could be linked to the ability to respond to relational
and social situations [50]. Building on such evidence, present findings might reflect the
greater expertise of senior recruiters in decoding and understanding non-verbal language
and socially relevant cues, compared to candidates. Yet, we acknowledge that this interpre-
tation would benefit from additional testing and corroboration via focused investigations.
The higher theta connectivity indices shown by candidates over the frontal region, instead,
likely mark, as above mentioned, the shared neural effort imposed by the socially-salient
situation in terms of cognitive-affective control and self-regulation.

Regarding inter-brain connectivity data, connectivity indices in both theta and delta
ranges were higher in the face-to-face than in the remote condition. Such a pattern is
consistent with the one emerging from the analysis of intra-brain connectivity measures.
Decoding and encoding of affective non-verbal communication were previously linked
to modulations of delta and theta frequency waves [51]. The response in slower EEG
components might suggest a greater focus of the dyads on social processing and on the
regulation of interpersonal interaction and its affective correlates during the face-to-face
condition [52]. As above noted, the observed difference in neurophysiological indices
of inter-brain coupling between face-to-face and remote computer-mediated interactions
might plausibly reflect the intrinsic limitations in properly conveying part of non-verbal
communication cues in remote interaction settings. The use of web-based communication
platforms, indeed, leads to a greater focus on linguistic content and, among non-verbal
communication channels, on non-verbal vocal cues (e.g., prosody), paralinguistic contents,
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eye behavior, and facial expressions, while neglecting other unavailable cues. The difference
in the amount and in the source of information used to guide interpersonal regulation and
sense-making processes during the interviews likely provides different socio-psychological
contexts for engagement and interpersonal coupling.

In addition, inter-brain connectivity changed with the progress of the interview, with
higher inter-brain connectivity measures in the delta range during the final phase than
in the initial phase of social interaction. A similar pattern, though localized in frontal
areas, for the theta frequency range was detected. Consistently, we observed greater
autonomic synchronization during the final phases of the task, specifically in the face-to-
face condition. This gradually increased interpersonal coupling pattern is consistent with
the hypothesis that attunement in dyads increases by building on the progressive shared
communication experience and fine-tuning processes aimed at optimizing the exchange and
communication efficacy. Specifically, activity in the theta frequency range has been related
to emotional tuning and encoding/recall processes [53], which might have happened
more intensively in the last part of the job interview. Slow EEG activity predicts working
memory, navigation, and encoding [54] during the wake. Furthermore, the implicit/explicit
exchange of feedback during social interaction enhances emotional elaboration, shapes
adaptation, and self-regulation mechanisms, and boosts long-term memory formation,
modulating the degree of syntonization between inter-agents. Again, recent perspectives
see inter-brain synchronization correlated to the degree of the sense of joint agency in
communicative and shared actions e.g., [55]. Previous studies found that brain activities
in the frontal region were synchronized in dyads engaged in joint actions [56] and, in
particular, that inter-brain theta synchronization in the prefrontal cortex was especially
associated with collaborative tasks between individuals that strongly involve executive
functions [57].

In addition, being involved in a collaborative or a social communication task proved to
elicit greater autonomic synchronization between the involved individuals, with a greater
inter-personal correlation between cardiovascular and electrodermal activities.

5. Conclusions

This study explored the benefits of applying neuroscience methods in the investi-
gation of human resource management (HRM), with a focus on job interviews. Given
their strategic value and their psychological salience for both candidates and company
representatives, such a form of social interaction typically elicits remarkable recruitment of
cognitive resources and requires high levels of engagement in both inter-agents, which in
turn modulate social attunement and interactional dynamics. Present findings highlight
the value of hyperscanning investigations as a methodology to explore the quality of social
dynamics and attunement even in real-life social exchanges, point out the feasibility of
such investigations at the workplace, and hint at their potential to foster the development
of neuroscience-informed evidence-based practices in HRM processes.

Indeed, some initial guidelines, in the form of practical implications can be derived
from the acquired data. Firstly, job interviewing is a two-way process, but recruiters are
more emotionally in control of the situation. Therefore, they should foster an emphatic
connection with the candidate. For a reliable assessment, a successful tuning in the first
phases of the interaction before proceeding into technical assessment is advisable. Secondly,
the setting condition is relevant. Especially for positions that require social skills, available
data suggests the employment of a face-to-face interview, in which the richness of social
cues allows for a deeper attunement between recruiter and candidate and, therefore, for a
more reliable evaluation.

The study is, however, not exempt from limitations. Firstly, the strength of current
results would benefit from replication and investigation with bigger samples. Furthermore,
interviews were simulated and the use of research tools might have impacted the setting and
the individuals’ interaction (i.e., observer bias) in terms of ecological validity. Psychometric
data (e.g., personality traits) were not gathered in this work. Further research could use
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them to confront self-report measures and neurophysiological correlates. In replications
studies, other factors could also be employed as covariates to ensure higher internal validity
such as the recruiter’s experience, interviewing style, and job position. Furthermore, in the
future, other potentially relevant factors modulating the quality and efficacy of mediated
vs. presence communication could be considered in addition. For instance, individual and
socio-demographic factors play a role in acceptance and user experience with technology-
mediated communication and should be explored. Moreover, the use of a deep-learning-
based job interview solution was recently proposed [58], based on voice and video data.
Personality, aptitude, and neurophysiological data could be further fed into the algorithm.
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