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Abstract: Preterm birth (PTB) is the leading cause of infant mortality in the U.S. and globally. The goal
of this study is to increase understanding of PTB risk factors that are present early in pregnancy by
leveraging statistical and machine learning (ML) techniques on big data. The 2016 U.S. birth records
were obtained and combined with two other area-level datasets, the Area Health Resources File and
the County Health Ranking. Then, we applied logistic regression with elastic net regularization,
random forest, and gradient boosting machines to study a cohort of 3.6 million singleton deliveries
to identify generalizable PTB risk factors. The response variable is preterm birth, which includes
spontaneous and indicated PTB, and we performed a binary classification. Our results show that
the most important predictors of preterm birth are gestational and chronic hypertension, interval
since last live birth, and history of a previous preterm birth, which explains 10.92, 5.98, and 5.63% of
the predictive power, respectively. Parents’ education is one of the influential variables in predicting
PTB, explaining 7.89% of the predictive power. The relative importance of race declines when
parents are more educated or have received adequate prenatal care. The gradient boosting machines
outperformed with an AUC of 0.75 (sensitivity: 0.64, specificity: 0.73) for the validation dataset.
In this study, we compare our results with seminal and most related studies to demonstrate the
superiority of our results. The application of ML techniques improved the performance measures
in the prediction of preterm birth. The results emphasize the importance of socioeconomic factors
such as parental education as one of the most important indicators of preterm birth. More research is
needed on these mechanisms through which socioeconomic factors affect biological responses.

Keywords: racial disparities; education; statistical analysis; neural networks; socioeconomic factors

1. Introduction

Preterm birth (PTB), defined as a birth before 37 weeks of pregnancy, is the leading
cause of infant mortality in the U.S. and the world [1]. In 2013, PTB accounted for 36%
of U.S. infant deaths in their first year of life [2,3]. In addition to the monetary cost of
PTB, which exceeds 25 billion dollars annually, these babies may suffer from life-long
deficiencies [4,5]. Many current interventions for reducing the probability of preterm
delivery, like progesterone therapy, are effective only if administered early—between 16
and 24 weeks of gestation—in the pregnancy [6]. In prenatal care settings, patients can be
enrolled in effective interventions to reduce behavioral risks without significant disruption
of services [7]. Therefore, it is critical to study risk factors of a preterm delivery that are
present early or even before pregnancy. In addition, identifying the risk factors might
help define a population useful for studying specific interventions. Identifying risk factors
might also provide insight into the mechanisms of preterm birth, which remain largely
unknown [8–12].

A large and growing body of literature has focused on locating the individual risk
factors of preterm birth [8,10,13,14]. The most important individual risk factor for predicting
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preterm delivery is a history of a previous PTB (both indicated and spontaneous) [15–18].
Race is another significant predictor of a PTB. The preterm birth rate (PBR) among the non-
Hispanic (NH) Black population is 52% more than the NH White population—13.77 vs. 9.04%,
respectively [19]. Other significant risk factors of preterm birth include age [20], short
cervix between 16 to 28 weeks of pregnancy [21], and chronic medical disorders like
hypertension [22] or diabetes [23]. Some studies attempted to increase the generalizability
of the risk factors by including large cohorts [24].

Machine learning techniques are extensively used in advancing the understand-
ing of spontaneous PTB risk factors [25–29]. Initial applications of ML techniques have
assisted experts in better predicting PTB [28,30]. Studies have continuously used up-
dated ML techniques on a more diverse obstetric population to extract generalizable
PTB predictors [18,31–33]. Such efforts proved to have the potential to significantly benefit
women’s and children health by identifying significant risk factors [34].

Despite the vast body of literature on the risk factors of PTB, very few interventions
have been proven to effectively prolong gestational age in at-risk women [17,35]. This is
partly because two-thirds of preterm deliveries happen to women with no risk factors [36].
The current risk assessment in the obstetrical population shows limitations because of
the low prevalence of individual risk factors in the general obstetric population [37]. For
example, the most important risk factor for preterm birth in singleton pregnancies is the
history of a previous PTB [19,37]. However, the history of a previous PTB is not applicable
to the women without a prior birth (nulliparous) which includes more than a third of the
total births. Many of the proposed studies consider only the main effect of the individual
risk factor of PTB while controlling for a limited number of confounding variables and
interactions that were selected manually [14,25,36,38]. In sum, previous studies have not
examined PTB risk factors present in early pregnancy on a dataset representative of the
whole population while controlling for diverse confounding factors and their interactions.

To address these issues, we investigate the risk factors of preterm birth (PTB) in one
of the largest obstetric populations in this field. By applying the latest statistical and
machine learning techniques, we study the PTB risk factors that are both generalizable and
identifiable during the early stages of pregnancy. We also implement novel techniques, such
as variable importance and partial dependence plots, to interpret and explain the results.

The remainder of the paper is structured as follows. In Section 2, we define the study
population and data elements. In Section 3, we outline the model development steps. We
also discuss the handling of missing values and the interpretation techniques for getting
insights from ML model outputs. Section 4 evaluates the results and compares them with
other seminal studies. We further discuss our findings in Section 5 and provide a conclusion
in Section 6.

2. Materials and Methods
2.1. Study Population

We obtained the 2016 birth records collected by the CDC [39]. We then combined
the birth records with other data sources, including the County Health Rankings and the
Area Health Resources File. The FIPS county codes linked all datasets using a common
geographical identifier. This allowed us to integrate and examine multiple influences on
preterm birth. We performed the data cleaning and preparation in STATA 14.0, and the
processing was coded in R 4.0.3.

2.2. Data Elements

The CDC reports about 380 variables for every birth in the U.S. Some of these variables
are recoded a few times for the same feature. For example, the mother’s age is reported
in four types of recoding. Therefore, we only included 77 main variables. The CDC
dataset contains variables collected through self-reported surveys from practitioners and
parents at the time of birth. Therefore, we need to ensure that the quality of observation is
suitable before using it in the model. To detect the data points that contain random errors
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or have a significant difference from the other data points, we trained an unsupervised
autoencoder deep neural network (DNN), then used it in an anomaly detection model [40].
The autoencoder-based anomaly detector (AD) outperforms the other methods that are
based on distance, density, clustering, or the support vector machine (SVM) [41,42]. We
also used a grid search to find the parameters of the autoencoder that minimizes the mean
square error (MSE). The final neural net that minimizes the MSE has three hidden layers
with 20, 10, and 20 neurons, respectively. We also used the hyperbolic tangent function
(“Tanh”) as the activation function for the neurons in the hidden layers. In addition, the
model passes the training dataset in batches through the neural network 30 times (the
number of epochs).

Figure 1 shows the reconstruction mean square error (Reconstruction.MSE) for all of
the observations in the dataset calculated by the anomaly detection method. The figure
shows that the majority of observations have an MSE of 0.035 or less; therefore, we remove
the observations with a greater value than this threshold.
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Figure 1. Histogram of Reconstruction. MSE for birth records after using autoencoders.

After applying the noise removal steps, 5.07% of the initial 3,803,484 observations are
removed. The proportion of singleton preterm birth at 7.73% in the final dataset remains
close to the initial distribution at 8.02%. The final dataset includes 3,610,827 observations
with 77 variables. Figure 2 shows all of the data preparation steps.

Note that “n1” is the number of observations, and “m1” is the number of variables in
the CDC dataset; “n2” and “n3” shows the number of counties in CHR and AHRF, respec-
tively. “m2” and “m3” shows the number of variables in CHR and AHRF, respectively.

Data visualization is a challenging but insightful task in this study due to a large
number of observations. We used Violin graphs from the ggplot2 package in R to plot the
data and gain more information about the features and their relationship with preterm
birth. The violin graph shows the density of data points at each level. Figure 3 shows two
samples of these graphs. Figure 3a shows the kernel distribution of “History of Preterm”
vs. “Gestational Age”. This graph shows that mothers with a history of preterm delivery
(represented as 1 in the graph) have a lower average gestational age (represented with a
red dot) compared to those without such a history. In addition, the dotted vertical line
separates the preterm and full-term births. Preterm births are at the left side of the vertical
line, and full-term births are on the right. Figure 3b shows the kernel distribution of “Age
of Mother” vs. “Gestational Age”.
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3. Model Development

Our dataset has five characteristics that guide us in the selection of the methods.
First, the distribution of the response variable is imbalanced. Preterm birth in singleton
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pregnancies occurs only in eight percent of the deliveries, and the remaining are full-term.
Second, many of the features, such as age and education, have collinearity (Pearson’s
correlation coefficient = 0.41). Figure 4 shows the pair of variables with an absolute
correlation coefficient of 0.5 or more. This limited the use of methods like logistic regression,
which has the assumption of little or no multicollinearity between independent features.
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Third, we were interested in finding significant interactions among the variables. One
of the best methods for learning the interactions with minimal supervision is the use of
decision trees [43]. Fourth, our dataset had 3.6 million records with 77 variables, which
limited the use of methods that are memory intensive, like support vector machines. Fifth,
the dataset has 20 categorical variables. This limited the application of distance-based
methods like the K-Nearest Neighbor algorithm. Based on these five characteristics, we
applied regularized logistic regression [44], random forest (RF) [43,45,46], gradient boosting
machines (GBM) [23,47], and LightGBM on our dataset [48].

We used a grid search to find the best hyperparameters of models. We used early
stopping methods to prevent overfitting and reduce run-time (1 × 10-4 after five rounds).
We used a system equipped with a Core I 7 2.50 GHz processor and 32.0 GB memory, with
an Ubuntu 18.04.3 operating system.

3.1. Handling Missing Values and Categorical Variables

Handling missing data points and categorical variables in both methods is based
on the capabilities of algorithms. Logistic regression needs to have a value for all data
points, or it will drop any observation with a missing value. Therefore, we use the mean of
each variable to impute the missing values. For the decision trees, however, the missing
data points carry some type of information, and the method will keep such observations
and consider them as one category. Table 1 shows the number of missing words for each
variable. The number of missing values for most of the variables is zero. Table 1 shows the
number and percentage of missing values for variables with more than 1% missing values.
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Table 1. The number of missing values in the dataset.

Name Number of Missing Values Percent Missing

Father’s Age (Age_F) 450,617 11.85
Number of prior live births (priorlive) 6608 0.17

Number of prior dead births (priordead) 13,552 0.36
Number of daily cigarettes before

pregnancy (cig_before) 18,119 0.48

Number of daily cigarettes during the
first trimester of pregnancy (cig_1) 18,481 0.49

Number of daily cigarettes during the
second trimester of pregnancy (cig_2) 18,734 0.49

Body mass index (BMI) 102,932 2.71
Sexually transmitted disease (STD) 6592 0.17

Nutrition Program for Women, Infants,
and Children (WIC) 46,744 1.23

Access_to_Exercise 3441 0.09
Alchohol_Driving_Death 536 0.01

Prev_Hospital_Stays 45,901 1.21

Many of the variables in our dataset are categorical. The typical method to handle
categorical variables is to create N new columns for categorical features with N levels.
This method is called creating dummy variables or hot-encoding. However, we use a
more efficient and interpretable method for handling the categorical variables. Instead of
hot-encoding, we use a method called “Enum_Limited” in which the strings are internally
mapped to integers and splits are done over these integers.

3.2. Interpretation Techniques

To obtain the ‘effect size’ of each variable on the response, we use partial dependence
plots (PDP). This is useful for our study, particularly because we consider high-order
interactions between our independent variables. A partial dependence plot returns the
marginal ‘effect size’ of each variable on the response after accounting for the effect (average)
of other responses:

fs(Xs) =
1
N ∑N

i=1 f (Xs, xic)

where Xc and Xs complement the set of X, and {x1c, x2c, . . . ., xNc} are the values of Xc
occurring in the training dataset of X.

It is important to note that the PDP does not ignore the effect Xc. The latter case can
be estimated by

f̃s(Xs) =
1
N ∑N

i=1 f (Xs, xic|Xs )

The quantities fs and f̃s will be the same only if the two events of c and s are indepen-
dent, which is an unlikely situation.

4. Results

We randomly separated 75% of the data for the training set and the remaining 25% for
validation purposes. The performance metrics are reported for the test set that is not part
of the training process. The number of cross-validations for the methods is five-fold.

4.1. Study Design

The parameters for Logistic Regression with Elastic Net regularization (LR-EN) are
set as α = 0.25, and λ = 2.125× 10−4 after performing a grid search. The tuned hyper-
parameters are shown in Table 2. The results of tuning the parameters of GBM return
800 decision trees (ntrees) with a learning rate of η = 0.04 and an annealing rate of 0.99. The
maximum depth is 13 for each tree. This means that each tree checks up to 13 interactions
among variables. Each tree is trained on a random sample of observations, n = 0.55 × N,



Information 2022, 13, 310 7 of 15

and each split of the tree is performed on a random sample of features, p = 0.80 ×M. The
grid search result for LightGBM returns ntrees =280, η = 0.08, and a maximum depth of 14.
We also used “Lossguide” for the “grow” policy, “dart” for booster type, and “histogram”
for the tree method in the LightGBM method.

Table 2. Hyperparameters.

Method Parameter Optimal Value Range

RF
Number of trees 220 [20, 500]

Max depth 13 [5, 20]
Sample rate 0.65 [0.1, 1]

GBM
Learning rate 0.04 [0.001, 0.05]

Learning rate annealing 0.99 [0.9, 1]
Number of trees 800 [50, 1000]

Max depth 13 [5, 15]
Sample rate 0.55 [0.1, 1]

Min child row 50 [10, 100]
Column sample rate 0.8 [0, 1]

LightGBM
Learning rate 0.08 [0.01, 1]

Number of trees 280 [50, 600]
Max depth 14 [5, 15]
Sample rate 0.55 [0.2, 0.8]

Min child row 20 [10, 100]
Column sample rate 0.80 [0.1, 1]

4.2. Results of the Machine Learning Algorithms

The results of the machine learning algorithms in Table 3 provide the performance
metrics for each method. Sensitivity, specificity, and accuracy are a function of the cut-off
threshold. Therefore, we report these metrics corresponding to the threshold that returns
the highest mean per-class accuracy for all of the methods. Logistic regression with elastic
net regularization (LR-EN) and RF return very close testing and training AUC, which
shows that they do not overfit to the noise. However, their AUC metrics are less than
the gradient boosting machines (GBM) and the LightGBM on both testing and training
datasets.

Table 3. Performance metrics for machine learning models.

Method Train AUC
(%)

Test AUC
(%)

Sensitivity
(%)

Specificity
(%) Accuracy (%)

LR-EN 66.59 66.61 51.98 71.68 70.22
RF 70.24 70.78 57.36 73.01 71.78

GBM 77.94 75.58 64.82 73.01 72.37
LightGBM 78.34 75.91 62.24 73.93 72.99

The LightGBM returns the highest testing AUC at 75.91%. We pick the GBM with an
AUC at 75.58% as the best model for the prediction of preterm birth because it returns a
slightly higher sensitivity (TPR) at 64.82% while maintaining the specificity at a comparable
rate (73.01%) with LightGBM (73.93%). Figure 5 shows the validation ROC curve for the
GBM with an AUC of 75.58%.
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4.3. Comparison with Other Studies

There are few similar studies that used high-dimensional datasets in their studies.
Weber, Darmstadt, Gruber, Foeller, Carmichael, Stevenson and Shaw [25] developed their
model on a high dimensional dataset with 1000 initial features and 2.7 million observations.
However, they developed their predictive model for the early spontaneous preterm birth,
which occurred at a much lower rate of 1.02% compared to the singleton preterm deliveries
at 7.63% in our study. Another study by Alleman, Smith, Byers, Bedell, Ryckman, Murray
and Borowski [24] had the closest setup in terms of developing the predictive model for
singleton pregnancies but has a smaller dataset compared to our study.

Table 4 compares the performance of our best GBM with the most relevant preterm
birth studies. The criteria for inclusion of a paper were that it had to (1) use data with
a large sample size that includes demographical information as predictors, or (2) it has
used machine learning techniques for building a predictive model for preterm birth. We
report each study’s sample size, the prevalence of the positive class, test AUC, sensitivity,
and specificity. As shown in Table 4, the best performance of past studies for the AUC
was 72% by Goodwin, et al. [49] on a relatively small population. Alleman, Smith, Byers,
Bedell, Ryckman, Murray and Borowski [24] only reported the training AUC at 69.5%.
Weber, Darmstadt, Gruber, Foeller, Carmichael, Stevenson and Shaw [25] reported 67%
AUC for a large cohort study. Our best GBM model outperforms all of these models by
improving the AUC to 75.58% for the largest population size. This is a more than 5%,
9%, and 13% improvement in AUC compared to the work of Goodwin, Iannacchione,
Hammond, Crockett, Maher and Schlitz [49], Alleman, Smith, Byers, Bedell, Ryckman,
Murray and Borowski [24] and Weber, Darmstadt, Gruber, Foeller, Carmichael, Stevenson
and Shaw [25], respectively.

We also improved the sensitivity for preterm birth prediction compared to Weber,
Darmstadt, Gruber, Foeller, Carmichael, Stevenson and Shaw [25], which has the most
comparable population size to our study. Our model correctly identifies 2.82% more of
the actual preterm births compared to Weber, Darmstadt, Gruber, Foeller, Carmichael,
Stevenson and Shaw [25] and outperforms the other models. The improvement in the
combined AUC, sensitivity, and accuracy stems from pre-processing steps that remove
anomaly and noise removal, regularization methods, an optimized set of hyperparameters,
and the superior ability of the GBM algorithms in the extraction of high-level features in
the data.
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Table 4. Performance comparison with the most related studies.

Model Method Sample Size
(n)

Prevalence of
Positive Class (%)

Test AUC
(%)

Sensitivity
(%)

Specificity
(%)

Goodwin, Iannacchione,
Hammond, Crockett,

Maher and Schlitz [49]

Neural nets,
Stepwise LR 19,970 22.20 72.00 NR NR

Vovsha, et al. [50] SVM with Radial
Basis kernel 3002 NR NR 57.60 62.10

Alleman, Smith, Byers,
Bedell, Ryckman, Murray

and Borowski [24]
LR 2509 7.50 69.50 ** 31.20 90.60

Weber, Darmstadt,
Gruber, Foeller,

Carmichael, Stevenson
and Shaw [25] *

Super learner
(Combination of
RF, lasso, ridge)

336,214 1.02 * 67.00 62.00 65.00

Best model in this study GBM 3,610,827 7.73 75.58 64.82 73.01

* Early (before 32 weeks) spontaneous preterm; ** Training AUC; NR = Not reported, LR = Logistic regression,
RF = Random forest, SVM = Support vector machine

4.4. Interpretations

Figure 6 shows the scale importance of the top 15 variables in predicting preterm
birth in the obstetric population. The relative importance, scaled importance, and scaled
percentage importance of these variables are also shown in Table 5. Hypertension (“hyper”),
interval since last live birth (“interval”), and history of PTB (“Previous_preterm”) are the
most important predictors of preterm birth that can respectively explain 10.92, 5.98, and
5.63% of the predictive power. Mothers’ pre-pregnancy BMI (“bmi”) is also a significant
predictor of preterm birth.
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Variable Relative Importance Scaled Importance Scaled Percentage

hyper 312,937.2813 1 0.1092
interval 171,301.625 0.5474 0.0598
Previous_preterm 161,489.9844 0.516 0.0563
bmi 154,535.0781 0.4938 0.0539
Education_F 121,954.1797 0.3897 0.0425
Education_M 104,375.5859 0.3335 0.0364
Age_M 96,351.9531 0.3079 0.0336
Adequate 84,977.4063 0.2715 0.0296
Age_F 72,292.6953 0.231 0.0252
Race_F 56,246.9297 0.1797 0.0196
Race_M 54,843.5078 0.1753 0.0191
Healthcare_Cost 49,813.7344 0.1592 0.0174
priorlive 43,385.2227 0.1386 0.0151
Females_Under_65_no_Health_Ins 42,884.2578 0.137 0.015



Information 2022, 13, 310 10 of 15

The outcomes in Table 5 show this interesting result that race has less relative impor-
tance when considering factors like parents’ education, age, and adequacy of care during
pregnancy. The predictive power of a parent’s race is 3.87%, while education explains 7.89%
of the power.

Building the model on a high-dimensional dataset that is representative of almost
all the deliveries in the U.S. indicates that the level of parent education is a more im-
portant predictor than demographic characteristics like race. If considered as the single
explanatory variable, race is a significant predictor of both preterm birth and infant mortal-
ity, where African American mothers have consistently been at a higher risk of preterm
delivery [19,51]. In 2016, 10.88% of Black singleton pregnancies resulted in a preterm baby
versus 7.11% for White mothers. Our results in Figure 7 show that this probability is 7.02%
(p-Value < 0.001) for Black versus 6.32% (p-Value < 0.001) for White mothers when we
account for the (average) effect of all factors such as education and age of parents, and
adequacy of care during pregnancy in each class. A partial dependence plot shows the
marginal ‘effect’ of a variable on the response—the probability of preterm birth—while
accounting for the effect of other variables.
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Figure 8 shows two examples of partial dependence plots (PDP). Figure 8a shows the
relationship between a mother’s BMI and the probability of preterm delivery. The PDP
shows that mothers with very low BMI—less than 19—are at higher risk of delivering a
preterm baby. Figure 8b shows the relationship between the parent’s education and the
probability of preterm birth. The probability of having a preterm infant for fathers decreases
as their level of education increases. However, mothers with a bachelor’s degree are the
least likely group to have a preterm baby (6.24% with p-value < 0.001), and the probability
increases for any degree more or less than that. The graph also shows an important insight
into the interpretation of missing values. A missing value in the education of a father or
mother carries an important information showing that the probability of preterm delivery
for these types of observations is the highest (6.92% with p-value < 0.001) compared to
other groups. Supplementary Materials include the PDP for three more variables.
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5. Discussion

In this study, we deployed statistical and machine learning techniques to first build a
predictive model and then extract the risk factors of preterm birth (PTB) that are present
during the early stages of pregnancy. This study is novel in that the application of ML
techniques to a large cohort increases the generalizability of the risk factors. We included
both nulliparous and multiparous mothers, spontaneous and indicated preterm birth, but
excluded multifetal pregnancies that also increase the generalizability of our PTB prediction
model. We reported the variable importance and partial dependence plots for the first time
in the study of PTB.

The reported metrics indicate that our best GBM model improves the performance of
preterm prediction compared to the similar works shown in Table 4 that combined maternal
characteristics with important biological markers like serum analytes [24,49]. We obtained
better results in AUC, sensitivity, and accuracy by (1) implementing the pre-processing
steps that remove anomaly and noise removal, (2) optimizing the set of hyperparameters,
and (3) applying the superior ability of the GBM algorithms in the extraction of high-level
features in the data.

One of the major findings of this study is that the importance of race in predicting
preterm birth can be explained when both individual risk factors such as interval since
live birth, education of parents, and whether the person received adequate care during
pregnancy, and their interactions are added to the model. This analytical finding is consis-
tent with the theory of Lifecourse for addressing the racial disparities in the preterm birth
outcomes [52–54]. The theory of Lifecourse emphasizes the socioeconomic factors as the
main determinants of health that can result in a positive shift in the long-term individual’s
health trajectory.

Hypertension is the most important predictor of preterm birth in a large cohort study,
where 10.92 percent of the predictive power is attributed to this variable. The relative
importance of hypertension is partly because of the deliveries that are scheduled preterm
to prevent further complications in the pregnancy, especially when the placenta is not
providing enough nutrients and oxygen to the baby [55]. The other important finding
of this paper is that history of a previous PTB is not the most important variable in the
prediction of PTB and it can only explain 5.63 percent of the predictive power. This finding
can be explained in two ways. First, a history of preterm is useful only when the mother
had a previous pregnancy. Second, the frequency of hypertension among the preterm
population is almost two times the population of those with a history of a PTB in singleton
pregnancies. In 2016, the number of singleton pregnancies that resulted in preterm birth
was 290,584. Among this population, 56,768 were hypertension positive, while a much
smaller group—28,501—had a history of PTB.

The results of our GBM model agree with the findings of previous studies. The
variables like hypertension (“hyper”), interval since last live birth (“interval”), and history
of PTB (“Previous_preterm”) are among the most important predictors of a preterm birth,
which is consistent with past studies [8,37]. The variable importance plot (VIP) reveals
a novel and insightful finding compared to the previous studies. While the plot shows
that the variables like a previous preterm are important predictors for preterm birth, it
attributes larger relative importance to factors like hypertension or interval since last live
birth in the prediction of preterm in the general obstetric population. This new finding
can be explained by the limitation of traditional studies. Logistic regression models have
no direct way to provide variable importance plots. This capability of the DTs provides
insights about the variables that can explain a larger portion of the AUC. The new hierarchy
of the important variables in the prediction of PTB can address a gap in literature where
already known risk factors cannot predict many actual preterm deliveries.

This study contributes to the literature in several ways. First, the results are generaliz-
able to the US population. Past studies lacked generalizability for different reasons [24,25].
For example, some studies used a majority White population or their sample was from one
geographical location to assess the PTB risk factors [24,26]. A major strength of this study
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was the application of data science on a population-based linked singleton births in the
U.S. to address this gap. However, using the U.S. birth dataset had its own challenges like
the existence of anomalous observations and random errors. To mitigate this problem, we
applied one of the advanced machine learning techniques, auto-encoders with deep neural
nets, to perform data cleaning and preparation. This study also contributes to the literature
of preterm birth study by providing important insights by using advanced visualization
techniques. The initial visualization of variables like the mother’s age versus gestational
age (see Figure 3b) shows a clear relationship between these two variables in which the risk
of a preterm delivery is the highest at the extremes of maternal age. These findings match
the results of known concepts available from decades of research on PTB analyses [20,56].
Partial dependence plots (PDP) are the other insightful tool that we used in this analysis.
The PDPs, like the mother’s BMI in Figure 8, show that the extremes of pre-pregnancy
BMI is associated with increased rates of PTB, which is compatible with the finding of
other studies [37,57]. The PDP provides a better estimation of this association compared to
previous studies [58] because it takes the (average) interdependent effect of other variables
into account. The PDPs also show that the relationship between parent’s education and
PTB risk is not linear. The risk of delivering a PTB baby is the lowest for mothers with a
Bachelor’s degree and increases at both ends of the education level as discussed by other
studies [59–61].

There is still significant room for improving the precise study of preterm birth in large
cohort studies. Positive predictive value (precision) of the past studies varied between 17
to 30 percent, depending on the sample used in the analysis [36,62]. Our model shows
a maximum precision of 28.13% in a national-level dataset, which approaches the best
practices of similar studies. However, this metric is still relatively low. This low precision is
due to the lack of knowledge regarding the cause(s) of PTB and the absence of important
predictors of preterm birth (e.g., cervical length) in the CDC dataset [36]. Our study was
subject to other limitations. Despite using the obstetric estimation for categorization of the
PTB, there remains potential for errors [63]. However, we used large samples and multifold
cross-validations that minimize the effect of the incorrect categorization. In addition, some
of the biomarkers like cervical length or fetal fibronectin that are routinely measured in the
obstetrical screenings were unavailable in the U.S. linked birth datasets. The association
of these biomarkers and their interactions on the probability of a PTB can be assessed in
future research.

6. Conclusions

In this article, we used state-of-the-art statistical and machine learning techniques
to enhance our understanding of the influential risk factors of preterm birth (PTB). We
used the high-dimensional dataset of U.S. birth records in 2016 and combined it with two
other major area-level datasets to increase the number of potential predictors of PTB that
are present in early pregnancy—before the second trimester. Analyzing national-level
data with machine learning techniques increases the generalizability of the risk factors
in the obstetric population. Test AUC and sensitivity of our predictive models exceed
the highest test accuracy reported by previous studies. Performing pre-processing steps,
removing anomalies and random errors, tuning hyperparameters, and employing the
boosting techniques were the key factors to attain such performance.

Given the high sensitivity of our model compared to other studies, it can be deployed
for early detection of at-risk pregnancies as an important tool for better utilizing the
healthcare services among resource-constrained and vulnerable populations. We also
showed that socioeconomic factors such as parent education are more important than
generally known factors such as race in the prediction of PTB. This finding is significant
evidence for theories like Lifecourse, which postulate that the main determinants of a health
trajectory are the social scaffolding that addresses the upstream roots of health. However,
much remains to be understood about the preterm birth risk factors and the relative impact
of interventions that can control these factors.
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