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Abstract: Mobile edge computing (MEC) has the potential to realize intensive applications in 5G
networks. Through migrating intensive tasks to edge servers, MEC can expand the computing
power of wireless networks. Fifth generation networks need to meet service requirements, such
as wide coverage, high capacity, low latency and low power consumption. Therefore, the network
architecture of MEC combined with ultra-dense networks (UDNs) will become a typical model in the
future. This paper designs a MEC architecture in a UDN, which is our research background. First,
the system model is established in the UDN, and the optimization problems is proposed. Second,
the action classification (AC) algorithm is utilized to filter the effective action in Q-learning. Then,
the optimal computation offloading strategy and resource allocation scheme are obtained using
a deep reinforcement learning-based AC algorithm, which is known as the DQN-AC algorithm.
Finally, the simulation experiments show that the proposed DQN-AC algorithm can effectively
reduce the system weighted cost compared with the full local computation algorithm, full offloading
computation algorithm and Q-learning algorithm.

Keywords: mobile edge computing; ultra-dense network; computation offloading; deep reinforce-
ment learning

1. Introduction

In recent years, with the vigorous development of mobile internet and pervasive
computation, the number of mobile users has increased rapidly, and an increasing number
of users select compute-intensive applications [1]. At present, 5G networks are rising to
support the massive connections between humans, machines and various services. The
rapid development of new application fields, such as interactive games, augmented reality,
virtual reality, driverless cars and smart grid, in 5G networks requires stronger computing
power and higher energy efficiency [2]. For users, they pose higher requirements for
indicators, such as computation latency, energy consumption and the number of equipment
connections [3]. Mobile user devices (MUDs), such as mobile phones, laptops and tablets,
have limited battery power and computing capacity. It is difficult for MUDs to meet these
requirements, and they may not be able to process a large number of applications in a short
time. More importantly, due to their limited battery power, it has become an obstacle for
MUDs to provide higher requirements. Similarly, they cannot meet the needs of ultra-low
delay, ultra-low energy consumption and high reliability in 5G scenarios [4].

To solve this problem, a feasible solution is to offload these compute-intensive tasks to
the remote centralized cloud, which provides computing power and storage resources [5].
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The task of uploading to the cloud requires more computation time, which leads to a
longer delay. Mobile edge computing (MEC) deploys computing and storage resources at
the edge of mobile networks, and provides service environments and cloud computing
capabilities for MUDs with ultra-low latency and high bandwidth [6]. As one of the key
technologies in MEC, computation offloading sends all or some of the computing tasks
to MEC servers through a wireless channel, to solve the deficiencies of MUDs in resource
storage, computing performance and energy efficiency [7].

Ultra-dense network (UDN) technology achieves a hundredfold increase in system
capacity in local hot spots [8]. Through deploying more low-power small base stations
in UDNs, space multiplexing is improved, and end-to-end transmission delay is reduced.
UDNs can also reduce the pressure of large-scale mobile connections, thus improving the
overall performance of the network [9]. At present, the UDN is becoming an effective
solution to improve data traffic by up to 1000 times and user experience rate by up to 10 to
100 times in 5G networks [10], and UDNs combined with MEC network architecture will
become a typical model of wireless networks [11].

In a MEC architecture-based UDN, MUDs are covered by multiple small base stations,
and they can access multiple MEC servers at the same time. MEC servers have different
resources and transmission environments, which leads to the problem of resource com-
petition and MEC server selection [12]. Therefore, it is of great significance to select the
offloading MEC server and allocate computing resources to meet the service requirements.

This paper studies the problems of MEC computation offloading and resource alloca-
tion in the UDN scenario. Considering the impact of computing resource and task delay
constraints on system performance, the joint optimization of computation offloading and
resource allocation is analyzed and discussed. The main contributions are as follows:

(1) A MEC architecture-based UDN is designed, and a task weighted cost model based
on execution delay and energy consumption is established. The task offloading and
resource allocation are combined into an NP-hard optimization problem.

(2) An action classification (AC) algorithm is developed to select the most suitable edge
server, which can reduce the possible values of offloading decisions and improve
learning efficiency.

(3) A deep Q network-based AC algorithm (DQN-AC) is proposed to solve the task
offloading and resource allocation problems. First, according to the execution delay
and computing resource constraints, the AC algorithm is adopted to select effective
actions. Then, the DQN algorithm is used to solve the optimization problem, and
the optimal task offloading and resource allocation scheme is obtained through finite
iterations.

The remainder of this paper is organized as follows. We review the related work in
Section 2. Section 3 describes the system model and problem formulation. In Section 4, the
proposed DQN learning strategy with action classification is described in detail. Section 5
presents extensive simulation experiments and results to evaluate the performance of the
DQN-AC. Finally, Section 6 concludes this paper.

2. Related Work

Researchers have proposed some computation offloading and resource allocation
schemes for different optimization objectives. In general, relevant research has been carried
out with three goals: to reduce execution delay, to reduce energy consumption and to reduce
the total cost of weighed time delay and energy consumption. To reduce execution delay,
in Ref. [13], the problem of mobile user equipment performing offloading calculations in
computing tasks is studied, and the Markov process method is adopted to deal with the
problem. Online task offloading methods aiming at optimizing delay are proposed. In
Ref. [14], the low complexity online algorithm optimized by Lyapunov is used to solve the
offloading decision problem. In Ref. [15], an online computation offloading mechanism is
designed to minimize the average expected execution delay of tasks under the constraint of
average energy consumption in the moving edge computing system. In [16], how to quickly
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solve the problem of task offloading decisions and resource allocation joint optimization
in channel coherence time is studied, and an online offloading algorithm based on deep
reinforcement learning is proposed. Simulation results show that the three algorithms can
effectively reduce the execution delay. In Ref. [17], the application scenarios of the Internet
of Things is studied, and execution latency is reduced by reasonably allocating computing
resources for computing tasks, and a complete polynomial-time approximation scheme
is proposed. In Ref. [18], the offloading calculation problem of delay sensitivity of the
Internet of Things is studied, and an iterative heuristic algorithm is proposed to dynamically
allocate resources. In Ref. [19], computing offloading and resource allocation are addressed
in multiple mobile user systems. In Ref. [20], the application of MEC technology in regional
distribution networks is considered, and an asynchronous dominant participant-critic
algorithm is proposed.

The above literature all focuses offloading decisions to reduce time delay. However,
the battery capacity of MUDs is low, which may influence the offloading policy. Researchers
continue to explore and study offloading decisions to minimize energy consumption. In
Ref. [21], a D2D-assisted MEC system is considered to improve equipment energy efficiency.
In Ref. [22], the computation offloading problem of a MEC system based on a cooperative
multi-carrier relay is studied, and an efficient energy consumption optimization algorithm
is proposed. In Ref. [23], the computing offloading problem of moving edge computing in
the scenario of the Internet of Vehicles is studied, and a game algorithm based on a deep Q
network is proposed. Additionally, deep reinforcement learning is adopted to minimize
the energy consumption of MEC systems. In Ref. [24], the joint optimization of computing
offloading and resource allocation in multi-user dynamic MEC systems is studied, and a
dual depth Q network algorithm is proposed to minimize the energy consumption of MEC
systems. In Ref. [25], the computational offloading of IoT devices in a dynamic MEC system
composed of multiple edge servers is studied, and an end-to-end deep reinforcement
learning method is proposed.

There are also many studies on how to develop computation offloading strategies that
balance execution delay and energy consumption. In Ref. [26], the offloading scheduling
problem of multiple independent tasks in the MEC system is studied, and a low complexity
suboptimal algorithm with alternating minimization is proposed. In Ref. [27], computing
offloading and resource allocation in multi-user and multi-task scenarios are addressed.
In Ref. [28], the computation offloading problem of multi-user MEC systems is studied,
and [28,29] take the combined time delay and the weighted sum cost of energy consumption
as the optimization objectives. The offloading strategy based on the deep reinforcement
learning algorithm is utilized. In Ref. [30], the MEC network for the intelligent Internet
of Things is considered, and the offloading decision is automatically learned by the DQN
algorithm to optimize the system performance. Task offloading and cache integration are
described as a nonlinear problem in Ref. [31], which is solved by the Q-learning and DQN
algorithms. An optimization framework of wireless MEC resource allocation based on
reinforcement learning was proposed in Ref. [32], and Q-learning and DQN algorithms
were, respectively, used in simulation experiments. In contrast to the single-channel MEC
system in Ref. [32], multi-user and multi-channel MEC systems are designed in Ref. [33].

A comparative analysis of the previous work is illustrated in Table 1. In general, most
of these works focused on the offloading problem in MEC. In this paper, we focus on a
MEC scenario in a UDN, where heterogeneous computational tasks with random arrivals
require scheduling to different edge servers with varying delay constraints, and propose
an improved DQN-AC algorithm to optimize the long-term utility of the whole system.
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Table 1. The comparative analysis of different work (“+”: involved; “−”: not involved).

Ref.

Constraints Infrastructure

Method
Time Delay Energy

Consumption
Multiple

Users
Multiple Edge

Servers
Cloud
Server

[15] + + + + − lyapunov optimization

[16] + + + − − deep Reinforcement learning

[18] + − + + + iterative heuristic

[21] + + + − − iterative algorithm

[22] + + − − − convex approximation

[24] − + + − − double deep Q network

[25] − + + + + deep Reinforcement Learning

[27] + + + − + semidefinite relaxation approach

[29] + + + − − exact line search algorithm

[30] + + + + − deep reinforcement learning

this paper + + + + − deep reinforcement learning

3. Problem Formulation

The major abbreviations and symbols used in this paper are defined in Tables 2 and 3,
respectively.

Table 2. List of abbreviations.

Abbreviation Description

MEC Mobile Edge Computing
UDN Ultra-Dense Network
MUD Mobile User Device
DRL Deep Reinforcement Learning
DQN Deep Q Network
AC Action Classification
DQN-AC Deep Q Network with Action Classification
FLC Full Local Computation
FOC Full Offloading Computation

Table 3. Symbol definitions.

Symbol Definition

N the set of all MUDs
S the set of all MEC servers
an,s whether MUD n chooses MEC server s for computation offloading
rn,s the data transmission rate of MUD n accessing to MEC server s
W the wireless channel bandwidth
pn,s the transmission power
gn,s the channel gain
Ad the antenna gain
fc the carrier frequency
ln,s the distance between MUD n and MEC server s
ξ the path loss exponent
σ2 the white Gaussian noise
Rn the intensive task of MUD n
Bn the data size of task Rn
Dn the total number of CPU cycles required for completing the task
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Table 3. Cont.

Symbol Definition

Tmax
n the maximum delay for computing task Rn

Tl
n, Te

n,s local or edge execution delay
El

n, Te
n,s local or edge energy consumption

Cl
n, Ce

n,s the weighted cost of local computing or edge computing
f l
n the local computing power of MUD n

zn energy consumption density
θ1, θ2 the weight parameters of execution delay and energy consumption

3.1. System Model

As shown in Figure 1, the system model under the UDN scenario consists of multiple
small base stations and multiple MUDs. Each small base station is equipped with a MEC
server, named a MEC small base station. All MEC small base stations cover their service
areas in an overlapping manner. The set of all MUDs and MEC servers is defined as
N = {1, 2, . . . , N} and S = {1, 2, . . . , S}. In the UDN scenario, it is assumed that each
MUD has a compute-intensive task, and all computing tasks can be offloaded to one MEC
server through the wireless channel. Due to the ultra-dense coverage of small base stations,
MUDs will be in the service areas of multiple small base stations. To achieve the minimum
system cost, small base stations communicate with each other to determine who performs
the computing tasks, and then transmit it to the corresponding MEC server for processing.
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3.2. Communication Model

The offloading decision variable is defined as an,s ∈ {0, 1}, indicating whether MUD n
chooses the MEC server s for computation offloading. If the MUD n chooses to offload, the
data transmission rate of access to the MEC server s can be expressed as:

rn,s = anW log2(1 +
pn,sgn,s

σ2 + ∑S
k=1,k 6=s ∑N

j=1,j 6=n pj,sgj,s
) (1)

where an =
S
∑

s=1
an,s = {0, 1}; W is the wireless channel bandwidth; pn,s represents the

transmission power of the MUD n for uploading data; σ2 is white Gaussian noise during
data transmission; and gn,s is the channel gain in the wireless channel, which is expressed
by (2).

gn,s = Ad(
3 · 108

4π fcln,s
)

ξ

(2)

where Ad denotes the antenna gain, fc denotes the carrier frequency, and ln,s is the distance
between MUD n and MEC server s and ξ is the path loss exponent [16].



Information 2022, 13, 271 6 of 15

3.3. Computation Model

Assume the intensive task of MUD n is Rn = {Bn, Dn,Tmax
n }, where Bn is the data size,

Dn is the total number of CPU cycles required for completing the task, and Tmax
n indicates

the maximum delay for computing task Rn; that is, the task latency of each MUD cannot
exceed Tmax

n . The task can be executed using a local computing model or edge computing
model, which are introduced in the following sections.

3.3.1. The Local Computing Model

If the MUD n chooses to perform Rn locally, the cost includes local execution delay
Tl

n and energy consumption El
n. f l

n is defined as the local computing power of the MUD n,
which is expressed by the CPU cycles per second.

The local execution delay is:

Tl
n =

Dn

f l
n

(3)

The local energy consumption is:

El
n = zn( f l

n)
2
Dn (4)

In the above equation, zn is energy consumption density, and specific values can be
obtained according to [34]. The parameter gaps of zn between different equipment kinds
are very small. The weighted cost of local computing is:

Cl
n = θ1Tl

n + θ2El
n (5)

where 0 ≤ θ1, θ2 ≤ 1 represent the weight parameters of execution delay and energy
consumption, respectively.

3.3.2. The Local Computing Model

The MUD n chooses to perform the task through a MEC small base station. The whole
execution process includes three parts: First, the MUD n needs to upload data to the small
base station s, then from the small base station to the MEC server. Second, the MEC server
allocates certain computing resources to perform the task. Finally, the MEC server returns
the result to the MUD n.

According to the above process, the first part is the transmission delay, which is
expressed as:

Tu
n,s =

Bn

rn,s
(6)

The energy consumption corresponding to the first part is:

Eu
n,s = pn,sTu

n,s =
pn,sBn

rn,s
(7)

The second part is the processing delay of the MEC server. fn,s is the computing re-
sources allocated by the MEC server s for MUD n. The processing delay can be expressed as:

Tc
n,s =

Dn

fn,s
(8)

The MUD n waits while the MEC server performs the task. The idle power of the
mobile user’s device in this state is set to Pw

n ; then, the energy consumption during this
period is:

Ew
n,s = Pw

n Tc
n,s =

Pw
n Dn

fn,s
(9)

For the last part, according to [35], the return rate of the wireless network is generally
much higher than that of the offloaded data, and the execution result is much smaller
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than that of the input data. The execution delay and energy consumption are, therefore,
generally ignored. The execution delay and energy consumption are, respectively:

Te
n,s = Tu

n,s + Tc
n,s =

Bn

rn,s
+

Dn

fn,s
(10)

Ee
n,s = Ee

n,s + Ew
n,s =

pn,sBn

rn,s
+

Pw
n Dn

fn,s
(11)

In sum, the weighted cost of edge computing is:

Ce
n,s = θ1Te

n,s + θ2Ee
n,s (12)

According to Equations (2)–(11), the weighted cost of all users can be obtained; namely,
the system objective function is:

Call =
N

∑
n=1
{(1−∑s∈S an,s)Cl

n+∑s∈S an,sCe
n,s} (13)

3.4. Problem Formulation

To minimize the total system cost, it is necessary to find the best offloading decision
and resource allocation scheme. The problem is described as follows:

minCall
(A, f )

(A, f ) = min
(A, f )

N
∑

n=1
{(1−∑s∈S an,s)Cl

n+∑s∈S an,sCe
n,s}

s.t. C1 : an,s ∈ {0, 1}, ∀n ∈ N, ∀s ∈ S
C2 : ∑

s∈S
an,s ≤ 1, ∀s ∈ S

C3 : Tl
n, Te

n,s ≤ Tmax
n , ∀n ∈ N, ∀s ∈ S

C4 : fn,s ≥ 0, ∀n ∈ N, ∀s ∈ S

C5 :
S
∑

s=1
fn,s ≤ f max

s , ∀s ∈ S

(14)

In Equation (14), A = {a1, a2, . . . , aN} is the offloading decision vector, and f =
{ f1, f2, . . . , fN} is the resource allocation vector. C1 and C2 indicate that each MUD performs
the task only by local computing or by edge computing, respectively. C3 means neither
local computing delay nor edge computing delay can exceed the maximum tolerance delay
Tmax

n . C4 and C5 indicate that the computing resources allocated to MUDs are non-negative,
and the total allocated resources cannot exceed f max

s .
The reasons that the optimization function is difficult to solve directly are as fol-

lows: Equation (14) is a mixed integer nonlinear programming problem. The existence
of binary variables makes them nonconvex functions, which cannot be solved via the
conventional solution of convex optimization. At the same time, the complexity of the
optimization function is too high. If the two optimization variables (A = {a1, a2, . . . , aN}
and f = { f1, f2, . . . , fN}) are binary variables, the complexity of the original optimization
problem is O (N2).

4. Proposed Method

Based on the above problem model, DRL was adopted to solve the problem. On
the one hand, reinforcement learning allows agents to obtain rewards in the process of
interaction with the environment in a “trial and error” manner to guide behavior and
improve decision making, which is suitable for the joint optimization of offloading decision
and resource allocation in this model. On the other hand, deep learning can avoid the
storage difficulties caused by excessive state space and action space. In this paper, we
utilized the deep Q network (DQN), which is a typical DRL algorithm, to solve the problem.
Combined with the problem model, the three elements of DQN are defined in detail:
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state, action and reward. Then, an action classification (AC) algorithm was proposed to
filter effective execution actions, which partially improved the DQN, named the DQN-
AC algorithm. The offloading decision and resource allocation scheme-based DQN-AC
algorithm was proposed to minimize the objective function.

4.1. The Definition of State, Action and Reward

DQN is made up of a deep neural network and value-based Q-learning algorithm. Q
is Q(S, a), which represents the expectation that action a can be selected under the state S at
a certain moment. The environment responds to the agent’s actions with a reward R(S, a).

The system state S consists of two parts S = (X, Y). X = Call represents the system
cost. Y = {y1, y2, . . . , yS} indicates the idle resource on each MEC server. We can obtain ys
from (15).

ys = f max
s −

N

∑
n=1

fn,s, s ∈ S (15)

The system action is defined as a = {a1, a2, . . . , aN , f1, f2, . . . , fN}, which combines
the offloading decision vector A = {a1, a2, . . . , aN} and the resource allocation vector
f = { f1, f2, . . . , fN}. The reward function is set to R(S, a) which is expressed by (16).

R(S, a) =
Xlocal − X(S, a)

Xlocal
(16)

The larger the R(S, a), the smaller the X(S, a) in the current state.

4.2. Action Classification Algorithm

According to the constraint conditions C4 and C5, the AC algorithm was added to the
action selection part of the DQN algorithm to filter effective actions and improve learning
efficiency. The process of AC algorithm is described in Algorithm 1:

Algorithm 1 AC algorithm

input st, at
output bool //reasonable judgment of Boolean value by action
initialization bool = False
if an,s = 0 // UM chooses to perform calculations locally

if Tl
n ≤ Tn

max // whether local computing latency constraints are met
bool = True // action allows execution
else:

an,s = 1
if an,s = 1 //offloading computation

if s = j // select the j-th MEC for offloading computation
if Te

n,s > Tn
max

bool = False

elif Te
n,s ≤ Tmax

n and
N
∑

n=1
fn,s > Fs:

bool = False
else

s! = j //select new MEC small base station
else

if Te
n,s ≤ Tmax

n and
N
∑

n=1
fn,s ≤ Fs:

bool = True
end if

4.3. DQN-AC Algorithm

The main aim of Q-learning is to build a Q-table of states and actions, and select the
action that can obtain the maximum reward according to the Q value. Q-learning needs to
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calculate each state–action group and store its corresponding Q value in the table. A deep
neural network was introduced to solve the dimension disaster problem of Q-learning. The
state and action were taken as the input of the neural network, and then the Q value was
obtained after the analysis of the neural network. Then, the AC algorithm was combined
with the DQN algorithm. When meeting the execution delay and resource constraints, at
was performed. Otherwise, the action was selected based on the greedy policy. The specific
implementation process is described in Algorithm 2:

Algorithm 2 DQN-AC algorithm

initialize replay memory D to capacity N
initialize Q, θ, Q′, θ′

for episode = 1, M do
initialize sequence s1 = {x1} and preprocessed φ1 = φ(x1)
for t = 1, T do

if rand() > ε then
at = rand(a);

else
at = argmax

a∈A
Q(φ(st), a|θ)

end if
if AC(st, at) then //filtering actions using AF algorithm

st+1 = st, at, xt+1;
φt+1 = φ(st+1);
store transition (φt, at, rt, φt+1) in D

if t ≡ 0modK then
sample random minibatch of transitions (φj, aj, rj, φj+1) from D

set yj =

{
rj for terminal φj+1
rj + γmax

a′∈A
Q′(φj+1, a′ | θ′) for non-terminal φj+1

perform a gradient descent step on ∆θ = (yj −Q(φj, aj|θ))2

update θ = θ + ∆θ

end if
update the network weight every C steps: θ′ = θ

end for
end for

4.4. The Performance Evaluation of DQN-AC

The computational complexity analysis of the DQN-AC was evaluated as follows.
There are S MEC servers and N MUDs. The total caching capacity of all MEC servers is

F =
S
∑

s=1
f max
s , and the total size of all intensive tasks in MUDs is B =

N
∑

n=1
Bn. The number of

computation offloading strategies for N MUDs and resource allocation decision for S MEC
servers are 2N and 2S, respectively. Thus, the complexity of the exhaustive search for the
optimal solution is O(2N+SNB+S), which is an extremely difficult task. For the proposed
DQN-AC algorithm, the computational complexity is O(N · S · F · B). Consequently, the
proposed algorithm holds lower computational complexity than the exhaustive search.
Additionally, if there exists one more states in the final policy, the proposed algorithm will
keep updating until the state does not change, which clearly shows that the policy is not
the final one. Therefore, the proposed algorithm is stable.

5. Experimental Results and Analysis

This paper evaluated the performance of the proposed DQN-AC algorithm through
the Python platform, compared with the full local computation (FLC) algorithm, which
indicates that all users select local computing; the full offloading computation (FOC)
algorithm, which indicates that all users choose edge computing; and the Q-learning
algorithm. Assume that 20 MEC small base stations cover an area of 300 m2, and there are
60 MUDs in the area. The size of the computing task for each user is randomly distributed
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between 300 and 500, the number of computing resources required by each user is randomly
distributed between 900 and 1100, and the computing resource of the MEC server is evenly
allocated to each user. Detailed simulation parameters are shown in Table 4.

Table 4. The system simulation parameters.

Parameter Description Parameter Value Domain

wireless channel bandwidth W 10 MHz

thermal noise of wireless environment system σ2 −100 dBm

the path fading factor ξ 3

the antenna gain Ad 4

the carrier frequency fc 915 MHz

UMD transmission power pn,s 100 mw

UMD idle power Pw
n 10 mw

the size of input data Bn 300 Kb–500 Kb

MEC computing capability f max
s 20 GHz/s

UMD computing ability f l
n 1 GHz/s

number of computing resources Dn 900 hz–1100 hz

maximum tolerance delay Tmax
n 3 × 10−3 s

weight θ1, θ2 0.5, 0.5

Figure 2 shows the relationship between the system weighted cost and the number
of MUDs with 20 MEC small base stations. As the number of MUDs increased, all curves
showed an upward trend. For the same number, the DQN-AC algorithm had the minimum
system weighted cost. When the number of MUDs was less than 20, the system weighted
costs of the other three algorithms were similar, except for the FLC algorithm. In this
case, the computation resources of the MEC servers were sufficient, and the users were
more inclined to conduct edge computing. With the further increase in the number of
MUDs, which was close to 80, there was not much difference between the FOC and Q-
learning algorithms, but there was a big gap between the two algorithms and the DQN-AC
algorithm. When the number of MUDs was larger than 80, the gap between the FOC and
Q-learning algorithms gradually increased. However, the performance of the DQN-AC
was still stable and had the best effect. This is because edge computing users compete
with each other for the limited resources in MEC servers. In the FOC algorithm, all users
chose to compute the task in the MEC server, which led to the rapid increase in the system
weighted cost. The DQN-AC algorithm made full use of local terminal resources, reduced
competition among users and allocated computing resources reasonably.

Figure 3 shows the curve of system weighted cost with the number of MEC small base
stations for 30 MUDs. The curve of FLC algorithm was almost unchanged because the task
was executed in a local terminal, which has nothing to do with MEC small base stations.
When the number of MEC small base stations was small, there was a small gap between
the FOC, Q-learning and DQN-AC algorithms. This is because there were few options for
offloading. As the number of MEC small base stations increased, the FOC, Q-learning and
DQN-AC algorithms all showed a downward trend. They had a greater chance to select the
best MEC small base station for offloading, so the system weighted costs were gradually
reduced. However, when the number of MEC small base stations was approximately over
30, the curves of these three algorithms converged gradually, because when the number
of MEC small base stations reaches a certain amount, the optimal MEC small base station
they choose will not change anymore. It can be seen from the figure that the curve of the
DQN-AC algorithm was always at the bottom, and could achieve the best effect.
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Figure 4 shows a diagram of the system weighted cost versus the capacity of the MEC
server for 50 MUDs and 20 MEC small base stations (assume that the capacity of all base
stations is the same). With the increase in the capacity of the MEC server, the curves of the
other three algorithms showed a downward trend, except the FLC algorithm. The curve of
the FLC algorithm was almost unchanged, because the capacity of the MEC server did not
affect the local computing process. While for edge computing, users could allocate enough
resources as the capacity increased, thus reducing delay and energy consumption, it can
be seen that the DQN-AC algorithm had the best effect. The changing trend of the curve
shows that it is not easy to complete offloading computation when the capacity of MEC
server is small. However, when computing resources were sufficient, the system weighted
costs changed slightly, which is because there were extra resources unused by Q-learning.
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As shown in Figures 5 and 6, all four methods showed an upward trend as the
horizontal axis increased. The larger amount of data/CPU cycles required more time
to transmit, which also increased the energy consumption. With the increase in input
data/CPU cycles, the gap between the FLC algorithm and the other three algorithms
became larger. The system weighted cost was always higher than those of the Q-learning
and DQN-AC algorithms. It is difficult to complete complex tasks using local computing,
which results in the continuous increase in the system weighted cost. It can be seen that
the DQN-AC algorithm had the best effect and the slowest rise compared with the other
three algorithms.

Information 2022, 13, x FOR PEER REVIEW  16  of  19 

 

 

 

Figure 5. The impact of data size of task on system weighted cost. 

 

Figure 6. The impact of CPU cycles of task on system weighted cost. 

6. Conclusions 

In this article, we first designed a MEC architecture based on a UDN; then estab‐

lished a system weighted cost based on execution delay and energy consumption; and 

finally proposed an offloading decision and resource allocation scheme‐based DQN‐AC, 

which can balance  the near optimal  system utility and computational complexity. The 

simulation  results validate  the effectiveness of  the DQN‐AC and demonstrate  that  the 

DQN‐AC outperforms the FLC, FOC and Q‐learning algorithms. 

In our future work, with the rapid development of code decomposition and parallel 

computing, we will consider more complicated scenarios, such as partial offloading, band‐

width fluctuation and server failure. Moreover, our future work will further investigate 

the problem of offloading security in wireless networks. 

Figure 5. The impact of data size of task on system weighted cost.



Information 2022, 13, 271 13 of 15

Information 2022, 13, x FOR PEER REVIEW  16  of  19 

 

 

 

Figure 5. The impact of data size of task on system weighted cost. 

 

Figure 6. The impact of CPU cycles of task on system weighted cost. 

6. Conclusions 

In this article, we first designed a MEC architecture based on a UDN; then estab‐

lished a system weighted cost based on execution delay and energy consumption; and 

finally proposed an offloading decision and resource allocation scheme‐based DQN‐AC, 

which can balance  the near optimal  system utility and computational complexity. The 

simulation  results validate  the effectiveness of  the DQN‐AC and demonstrate  that  the 

DQN‐AC outperforms the FLC, FOC and Q‐learning algorithms. 

In our future work, with the rapid development of code decomposition and parallel 

computing, we will consider more complicated scenarios, such as partial offloading, band‐

width fluctuation and server failure. Moreover, our future work will further investigate 

the problem of offloading security in wireless networks. 

Figure 6. The impact of CPU cycles of task on system weighted cost.

6. Conclusions

In this article, we first designed a MEC architecture based on a UDN; then established
a system weighted cost based on execution delay and energy consumption; and finally
proposed an offloading decision and resource allocation scheme-based DQN-AC, which
can balance the near optimal system utility and computational complexity. The simulation
results validate the effectiveness of the DQN-AC and demonstrate that the DQN-AC
outperforms the FLC, FOC and Q-learning algorithms.

In our future work, with the rapid development of code decomposition and parallel
computing, we will consider more complicated scenarios, such as partial offloading, band-
width fluctuation and server failure. Moreover, our future work will further investigate the
problem of offloading security in wireless networks.
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