
Citation: Koritsoglou, K.; Tsoumanis,

G.; Patras, V.; Fudos, I. Shortest Path

Algorithms for Pedestrian Navigation

Systems. Information 2022, 13, 269.

https://doi.org/10.3390/info13060269

Academic Editor: Antonio

Jiménez-Martín

Received: 15 March 2022

Accepted: 16 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Shortest Path Algorithms for Pedestrian Navigation Systems
Kyriakos Koritsoglou 1,* , Georgios Tsoumanis 2 , Vaios Patras 1 and Ioannis Fudos 1,*

1 Department of Computer Science and Engineering, University of Ioannina, GR-45500 Ioannina, Greece;
vpatras@gmail.com

2 Department of Informatics and Telecommunications, University of Ioannina, GR-47100 Arta, Greece;
gtsoum@uoi.gr

* Correspondence: kkoritsoglou@uoi.gr (K.K.); fudos@uoi.gr (I.F.)

Abstract: Efficient shortest path algorithms are of key importance for routing and navigation systems.
However, these applications are designed focusing on the requirements of motor vehicles, and
therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In
addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these
applications may also be interested in alternative routes that, although slightly longer, possess other
desirable features and properties. According to the literature, the search for alternative routes is
carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of
all available alternatives. Even though various KSP algorithms have been proposed, to the best of
our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system.
The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a
penalty-based method which, by increasing certain edge weights, effectively searches for the most
accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present
experimental results on finding the most accessible paths in pedestrian sections of the historical center
of Thessaloniki city.

Keywords: shortest path; k-shortest paths; navigation systems; pedestrian navigation; alternative routes

1. Introduction

Finding the shortest path between two locations on graph datasets that represent trans-
portation networks is a core function of geographic information systems (GIS) applications
that has been intensively studied over the last two decades. Dijkstra’s algorithm [1] and its
variants have thoroughly been used to solve the shortest path issue. However, for users
navigating through pedestrian sections of urban areas, the calculation of the shortest route
is not sufficient, because there are usually alternative routes that, although slightly longer,
abide by other desirable preferences and restrictions (i.e., accessibility, safety, comfort, and
convenience) and therefore are preferable to the shorter one.

Alternative routing, in the literature, has primarily been addressed using the k-shortest
paths (KSP) algorithm [2,3] or by applying penalties to graph edges [4,5] to generate
alternative graphs (AGs) to calculate alternative paths from them. However, alternative
routes are computed entirely based on their similarity to the shortest path in these works,
resulting in alternative paths that are quite similar to one another as they share many
graph edges.

A significant parameter that should be considered is that routing applications that
make use of the algorithms above have been implemented to compute routes mainly on road
networks and not on pedestrian areas. A key difference between these two networks is that
the former is mapped with directed graphs while the latter with undirected, which makes
the calculation of alternative paths a more complex process [6]. In addition, navigating
through pedestrian sections of urban areas is not an easy task for specific population groups
(i.e., people using wheelchairs, elderly people with walking stick/cane, parents with baby

Information 2022, 13, 269. https://doi.org/10.3390/info13060269 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13060269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-4041-5169
https://orcid.org/0000-0001-9010-3422
https://orcid.org/0000-0002-4137-0986
https://doi.org/10.3390/info13060269
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13060269?type=check_update&version=1

Information 2022, 13, 269 2 of 25

strollers, etc.), and therefore, before suggesting alternative paths, a GIS application must be
able to assess the needs and priorities of those people, in terms of safety and accessibility [7].

Most routing algorithms to date employ only the actual distances of the urban sections
registered in their databases, which correspond to edge weights of the graphs they traverse,
and eventually return the routes having the lower total weight cost (total distance) [8]. As
a result, existing algorithms should be modified to take into account additional factors
other than the distance between two points on the map, so as to provide more personalized
results that will better meet the user needs. If the level of accessibility of each pedestrian
section is known in advance, this factor should be considered when calculating the shortest
accessible paths instead of the absolute shortest paths. In addition, the total number of
ramps contained in each route should also be considered as it indicates equal number
of crossings, which require more effort, and therefore muscle strain, from wheelchair
users. Hence, alternative routes that contain fewer crossings, even if they are longer, are
usually preferable.

The motivation behind the proposed study was to improve accessibility level of people
with mobility problems and especially wheelchair users. The daily movement of these
people in the inhospitable centers of modern cities is a process with many challenges,
especially when navigating in unknown or less familiar areas. In the pedestrian sections
of urban areas, there are various obstacles (very narrow sidewalks, broken pavement
tiles, stairs, bus stops, etc.) that restrict or possibly exclude the possibility of access for
wheelchair users.

Therefore, the contribution of the present study is the implementation of a routing
algorithm, exclusively for navigation in the pedestrian sections of urban areas, which will
take into account the information on the level of pedestrian accessibility to ultimately route
from the safest and most comfortable route, thus improving the level of mobility of specific
population groups.

The purpose of this paper is to present the development of a heuristic algorithm,
providing several improvements on the penalty-based alternative route calculation method
by increasing certain edge weights depending on their level of accessibility or whether
they represent a ramp, to effectively suggest the most accessible alternative paths for multi-
route cases. We then present experimental results on finding the most accessible paths in
pedestrian sections of the historical center of Thessaloniki city.

The remainder of the paper is organized as follows. Section 2 briefly presents previous
related work on alternative path algorithms. Section 3 presents our proposed improvements
for producing alternative graphs using the penalty-based method for alternative route
calculation. Section 4 presents a thorough experimental evaluation of our proposed method,
and finally, conclusions are offered in Section 5.

2. Related Work

In this section, various algorithmic approaches are analyzed, along with higher-level
solutions and their disadvantages as mentioned in the literature. The first approach to
be analyzed is the most common technique, the k-shortest paths computation between a
source s and a target t [9] in order of increasing cost. As the weight of each edge is defined
only by the actual distance between the nodes of the graph, some serious disadvantages
occur. The computed alternative paths share many edges, which in many cases makes
them difficult to be distinguished. Moreover, KSP algorithm does not take into account
other preferences and characteristics, which can be important selection criterions for a GIS
application user. One way to deal with this issue is assigning a very large value to k, but
at the expense of a rather high computational cost, that can be prohibitive for real-time
applications. Therefore, in the KSP method, due to the several similar paths that can occur,
the candidate result set should be evaluated and further filtered with respect to a number of
constraints such as the accessibility, their total length or the number of changes of pavement
through ramps according to each use case scenario and subsequently determine the final
result set [3].

Information 2022, 13, 269 3 of 25

In general, better results could be achieved under using penalty-based methodologies.
In this way, the generated paths become dissimilar to the shortest path by adding a penalty
on the weights of certain edges [10]. Each time the weight of some edges is updated,
repeated shortest path queries are executed on the alternate graph, thus calculating the
alternate paths using mostly Dijkstra’s algorithm or a speedup variation of it. Then the
shortest path edges are penalized, and a new query is executed. If the newly calculated
shortest path meets the desired requirements and characteristics, it is added to the solution
set. This process is repeated until a sufficient number of alternative paths is computed [11].
Akgün et al. [4] proposed a method which doubles the weight of each edge that lies on the
shortest path. A similar method is used in [12], where the penalty is computed in terms of
both the path overlap and the total turning cost. In [13] Schultes et al. propose a speedup
technique for shortest path computation including edge weight changes. Finally, Jian Pu
et al. propose a variation of the Dijkstra’s shortest path algorithm using a logarithmic edge
weight increment procedure [14].

The initial penalty value before each subsequent iteration is arbitrary and can result
in poor performance, so this is a disadvantage for penalty-based methods that needs
consideration and experimentation. On the one hand, high initial penalty values seem to
result in different but, often, very long alternative routes. On the other hand, small penalty
values require more iterations in order to compute the desired results. There are also cases
where the calculated alternative routes are not satisfactory enough when compared with
the initial shortest path.

Another work on alternative route problem for road networks that can be used for
pedestrian routing is [8]. This work is focused on finding several reasonable routes and
suggesting new ways to measure the quality of a solution of alternative routes by mathe-
matical definitions based on the graph structure. In addition, several heuristic techniques
are presented, such as Pareto optimality, Disjoint Paths and Plateau method for computing
alternative routes as determining an optimal solution is NP-hard in general.

Moreover, in [9], a formal solution for the search of alternative paths problem in
road networks is presented. The tested algorithms in this work are mostly under the
concept of local optimality to find the best alternative paths; moreover, it is optimized and
simplified enough for real-time applications. Therefore, the presented methodology takes
into consideration various functions, such as fuel consumption, that can be transformed
to more pedestrian variables, such as accessibility and safety. Although it seems that it is
suitable to solve the pedestrian routing problem, the concept of local optimality does not
work so well for short distance routing.

A different perspective on the routing problem can be found in [15] where a ranking
system for the traditional computed routes is developed. This integrated solution uses
governmental data, OpenStreetMap database and other similar web services. The main idea
is to create a more personalized route suggestion based on users’ individual preferences.
Thus, the end user can dynamically change the contribution of the above sources to the
overall ranking mechanism. At the same research work, a road scene complexity scoring
mechanism is proposed that combines geospatial data, traffic, even sensors and Street view
images as input to deep neural networks. The scoring mechanism estimates the perceived
and the descriptive complexity of the road which can be used as an input for the routing
systems to further filter and personalize their results. This more personalized approach is
developed for driving circumstances, but theoretically, it can be used on pedestrian routing
where the user needs may vary (i.e., wheelchair or walking stick users).

In contrast with the most solutions mentioned above, in this work the proposed
method for finding accessible alternative paths accepts common edges with the shortest
route as long as these edges are classified as accessible, because not all the sections of
the pedestrian network have this classification. The main idea is to find alternative paths
that have as many accessible edges as possible compared to the shortest one. Thus, if the
accessibility ratio (number of accessible edges/total alternative path edges) is improved,
then the alternative path is preferable as long as it does not exceed some experimentally

Information 2022, 13, 269 4 of 25

determined thresholds (for example, alternative path total length may not exceed 50% of
the shortest path length).

In addition, the data of the pedestrian network representing the historic center of
the city of Thessaloniki, collected for the purposes of this study, cannot be used by the
algorithms referenced, as the graph dataset that represents road networks is different from
the corresponding that represents the pedestrian networks. In the second case, each part
of this network can be accessed in any direction from its starting point to its end one
and vice versa. This does not happen in road networks that even if they are two-way
must have a different traffic flow for each direction and therefore a different edge in the
graph that represents them. This fact significantly increases the complexity in the case of
pedestrian navigation. As for each starting point and destination, there is a large number
of alternative routes, something that does not happen in road networks that the other
referenced algorithms deal with.

Therefore, according to the data above, the results of the proposed algorithm cannot
be compared with the other state-of-the-art algorithms described in the current section. In
summary, the two most important features that are the advantages of the proposed method
will be further emphasized. First, as mentioned in the summary of this study, this algorithm
successfully addresses an issue of pedestrian navigation, based on the accessibility charac-
teristics of the pedestrian network, that even the largest routing platforms have not been
able to resolve effectively to date. Second, due to its smart design, the proposed algorithm
has theoretically better performance in the process of calculating the alternative paths in
relation to the algorithms mentioned in this section.

The following section describes in detail the principles and the innovation points of
the proposed penalty-based algorithm for calculating accessible k-shortest paths.

3. Algorithm Description

In this section, the proposed algorithm and the parameters that affect its operation
are described in detail. A pedestrian section network is a graph G = (V, E) consisting of an
edge set E and a vertex set V that contains n vertices. Each edge e ∈ E is represented as an
ordered pair of vertices, in the form “from vertex i to vertex j”, denoted by e = (i,j), and it
is associated with a calculated weight w(e), which in this work’s use-case represents not
only the actual distance between them but the resultant of some additional characteristics
as well, found in urban sidewalks (e.g., accessibility level, if current section represents a
crosswalk between two ramps, etc.).

A k-shortest path query, given two vertices s, t ∈ V, looks for k sequences of edges,
that each one connects s to t so that the sum of the calculated weights of these routes is
minimized. Let Pk be the kth shortest path from s to t. Then,

pk =
[
uk(1), uk(2), . . . , uk(qk)

]
(1)

where uk(1) is s and uk(qk) is t.
Note that the graph dataset for this study was collected from the mapping of pedestrian

routes of the historic center of Thessaloniki city. A penalty-based strategy is used to find the
shortest available alternative paths on nondirectional graphs G. In addition to the distance
between the nodes linked, the edges of the graph include two more highly useful features
for this purpose.

The first of them determines if the current edge represents a crosswalk between two
ramps, allowing the number of crosswalks (crosswalks_no) contained in each alternative
route to be known after a graph traversal. The second feature is related to the level of
accessibility of each pedestrian section. For a wheelchair user to cross a portion of this
network, this must be at least 1.5 m wide and free of impediments (e.g., trees, bus stops,
stairs, etc.) for the wheelchair to move. If the above conditions are met, then the specific
edge of the graph is characterized as accessible, and its level of accessibility is equal to
1 (access_level = 1).

Information 2022, 13, 269 5 of 25

Additionally, if a graph edge has one or more of the above-mentioned obstacles, or if its
width is less than 1.5 m but more than 0.90 m (according to the UN accessibility directives
for wheelchair users [16]), and it can be accessed even if it is difficult, the graph edge is
characterized as less accessible, and its level of accessibility is equal to 4 (access_level = 4).
Finally, if a segment is inaccessible, its accessibility level is set to 0 (access_level = 0), and the
algorithm ignores it while calculating alternate routes.

According to United Nations’ Convention on the Rights of Persons with Disabilities,
a pedestrian section is considered accessible only when its width is more than 1.5 m, its
surface is smooth and there are no obstacles into it that make the wheelchair movement
difficult or completely inaccessible. However, there is a significant number of sidewalks
where navigation, under certain conditions, is possible but clearly more difficult for people
with limited mobility. These sections are classified as less accessible, but they are still
included in the graph dataset as for some routes it is mandatory to pass through them [17].

Such cases are observed when in a single point or along the entire length of a section its
width is less than 1.5 m but at least 0.9 m. Otherwise this section is considered inaccessible.
This case concerns the movement in only one direction as the user cannot rotate the
wheelchair, because a width of at least 1.5 m is required. A similar case arises when the
surface of a section is not completely smooth (pebbles, broken pavement slabs, etc.) but
does not prevent access to it. Finally, pedestrian sections that contain various floor elements
creating elevation differences such as stairs or surface slopes (slopes of more than 10% are
not accessible without the help of an attendant) are also characterized as less accessible.

Based on the above data, it is very clear how the pedestrian sections are categorized.
Those that have been considered as accessible are not penalized, and the weight of their
edges is equal to their actual length in meters. On the contrary, in those that have been
characterized as less accessible, a penalty with a specific factor is applied in order to increase
their edge weight and finally to be selected by the routing algorithm as part of an alternative
route only when it is really necessary to traverse them.

The access_level parameter for the less accessible parts was set to 2 in the first version of
the algorithm, but after the field measurements performed, it was discovered that a value
of 4 produces more accurate results in each use case. This change was made to address the
usual case in which one side of an urban block is less accessible than the other three and
the algorithm must route the user of the application from point A to point B through the
three accessible ones. As a result, after the penalty application procedure, the length of the
least accessible side must be more than the sum of the three accessible sides. To satisfy this
condition, the value of the access_level parameter was changed to 4.

The value of the penalty factor cannot be too high because on the one hand, it would
completely exclude the less accessible edges of the graph, while there are cases where the
wheelchair user has to pass through them, and on the other hand, the algorithm would
suggest routes which in many cases are much longer than the shortest one. In the following
section, a comparison of the operation of the algorithm with a value of the parameter
access_level equal to 2 and with a value of access_level equal to 4 is made in the same areas
that were used as use cases during the presentation of the first version of this algorithm.
Then the operation of the two versions of the algorithm will be presented in another 2 new
use cases where the first version did not effectively produce the most accessible routes.
This was the reason that led us to adjust the value of the access_level factor to 4.

The presented approach searches for the k = 10 shortest paths and selects the one that
is the most accessible. As a result, in addition to the total cost of each alternate path, a
separate total cost is calculated as well. The sum of all the products of the actual distance
of each graph edge with the property access_level of the corresponding edge yields this
additional total cost. In order to avoid the less accessible edges as much as possible in
the proposed routes, the above total effectively weights them in relation to the accessible
ones. At the same time, the total number of crosswalks included in each alternate path is
calculated to be evaluated later during the next steps of the algorithm.

Information 2022, 13, 269 6 of 25

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes. The
average path length increased by an average edge length (avg_edge_length) is the threshold
(ap_length_threshold) for accepting alternative paths of a total weight less than that value
(i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set because
wheelchair users are unable to cover long distances within urban areas, especially without
the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section 2
penalize the weights of the shortest path after the end of the first iteration and successively
the weights of every alternative path at the end of each iteration. The downside of these
methods is that they must generate a separate alternative graph for each iteration, increas-
ing their complexity and total execution time. In contrast to other approaches, the proposed
k-shortest path penalty-based algorithm has been implemented in such a way that the
weights of all graph edges are penalized by default before its execution rather than after
each iteration if their accessibility level is equal to 4 or if a specific edge corresponds to
a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its acces-
sibility level (edge_weight = edge_distance × access_level), meaning that the less accessible
parts’ distance is substantially quadrupled. In addition, if a graph edge corresponds to
a crosswalk, the average edge length (avg_edge_length) is added to its length. Using the
generated alternative graph, the weights of the 10 alternative shortest paths found earlier
are recalculated, so in the end, the route of the lowest total score is considered as the most
accessible and returns as a result of the algorithm. The proposed algorithm is shown in
detail in Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm

1: procedure PROPOSED-ALGORITHM
2: G = (V, E)

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

Creation of Graph G representing the pedestrian sections of C
the study area

3: avgEdgeLength = 0

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

Average edge length initialization
4: edgeCounter = 0

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

Initialization of edges counter
5: source = source
6: destination = dest
7: for i← 0 to E − 1 do

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

For all nodes
8: for j← 0 to eE(i) − 1 do

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10)

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

Calculate the 10 shortest paths
15: avgPathLength = 0

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

Initialization of the average path length
16: for i← 0 to 9 do

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10
20: apLengthThreshold = avgEdgeLength + avgPathLength
21: for i← 0 to 9 do

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

For the 10 shortest paths calculated
22: if P[i].length > apLengthThreshold then

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

If a path length exceeds the
Threshold

23: P[i].remove

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

Remove current path from the result list
24: end if

Information 2022, 13, 269 7 of 25

Algorithm 1 The Proposed Algorithm

25: end for
26: Rp = 0

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

Initialization of paths calculated weights
27: for i← 0 to P.size do

28:
Rp[i] = di × li + ri ×
avgEdgeLength

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

d: edge distance, l: access level,

r: presence of ramp
29: end for
30: return min(Rp)

Information 2022, 13, x FOR PEER REVIEW 6 of 24

proposed routes, the above total effectively weights them in relation to the accessible ones.
At the same time, the total number of crosswalks included in each alternate path is calcu-
lated to be evaluated later during the next steps of the algorithm.

The following step is to calculate the alternative paths, with the most accessible being
the one that is returned to the user as a result. Once this search is completed, the average
path length (avg_path_length) is determined as the average cost of all alternative routes.
The average path length increased by an average edge length (avg_edge_length) is the
threshold (ap_length_threshold) for accepting alternative paths of a total weight less than
that value (i.e., ap_length_threshold = avg_path_length + avg_edge_length). This limit was set
because wheelchair users are unable to cover long distances within urban areas, especially
without the assistance of an attendant.

In order to calculate paths with as many non-overlapping edges as possible, the ap-
proaches of the penalty method for calculating the k-shortest paths mentioned in Section
2 penalize the weights of the shortest path after the end of the first iteration and succes-
sively the weights of every alternative path at the end of each iteration. The downside of
these methods is that they must generate a separate alternative graph for each iteration,
increasing their complexity and total execution time. In contrast to other approaches, the
proposed k-shortest path penalty-based algorithm has been implemented in such a way
that the weights of all graph edges are penalized by default before its execution rather
than after each iteration if their accessibility level is equal to 4 or if a specific edge corre-
sponds to a crosswalk.

The proposed implementation results in the generation of a single alternative graph
AG, in which each edge weight is determined by multiplying its distance by its accessibil-
ity level (edge_weight = edge_distance × access_level), meaning that the less accessible parts’
distance is substantially quadrupled. In addition, if a graph edge corresponds to a cross-
walk, the average edge length (avg_edge_length) is added to its length. Using the generated
alternative graph, the weights of the 10 alternative shortest paths found earlier are recal-
culated, so in the end, the route of the lowest total score is considered as the most accessi-
ble and returns as a result of the algorithm. The proposed algorithm is shown in detail in
Algorithm 1 and in Flow Scheme 1.

Algorithm 1 The Proposed Algorithm
1: procedure PROPOSED-ALGORITHM

2:
G = (V, E) ► Creation of Graph G representing the pedestrian sections of
C

 the study area
3: avgEdgeLength = 0 ► Average edge length initialization
4: edgeCounter = 0 ► Initialization of edges counter
5: source = source
6: destination = dest
7: for i ← 0 to E − 1 do ► For all nodes
8: for j ← 0 to eE(i) − 1 do ► For all selected node’s edges
9: avgEdgeLength + = ej
10: edgeCounter + = 1
11: end for
12: end for
13: avgEdgeLength = avgEdgeLength/edgeCounter
14: P = ShortestPaths (AG,source,dest,10) ► Calculate the 10 shortest paths
15: avgPathLength = 0 ► Initialization of the average path length
16: for i ← 0 to 9 do ► For the 10 shortest paths calculated
17: avgPathLength + = P[i].length
18: end for
19: avgPathLength = avgPathLength/10

Return the minimum calculated weight
31: end procedure

Given the above, the k paths that are found in Equation (1) are then applied on the
alternative graph AG. Let d be the edge distance and l be the access level. In addition, r
will denote the presence of a ramp while d is the average edge length. Given that the initial
k = 10 paths were calculated based on the actual distances d then the paths are re-calculated
for AG,

R
(

Pk
)
=

n

∑
0

dn × ln + rn × d (2)

where R(Pk) is the new calculated weight of the previously found Pk path and n denotes
the edges traveled when the path is the kth. Then, the purpose is to find the minimum
r ⊂ R. In this sense,

r = min
(

Pk
)

(3)

The innovation of the proposed algorithm focuses mainly on two points. The first
of these is the ability to search for alternative routes with criteria that best suit the profile
and preferences of each user in addition to the total distance of a route. The alternative
route search algorithms mentioned in Section 2 are based only on the actual distances of
the sections, which correspond to the edge weights of the graphs they cross and ultimately
return the routes with the lowest total weight cost. The proposed method manages to more
effectively meet the needs of disabled people that face mobility problems.

The other algorithms based on the penalty method, after the calculation of each
alternative path, increase the weights of the graph edges contained in it in order to exclude
it from the next traversal of the graph, but any change in weights implies the creation
of a new alternative graph, a process that requires computing resources. Therefore, to
calculate k paths, an equal number of alternative graphs must be created. The second
innovation point of the algorithm presented is the creation of only one alternative graph for
any number of k parameter leading to significantly shorter calculation times for the output
of the produced results.

The following section presents in detail the results of the proposed penalty-based
algorithm and explains its operation in four different use cases within the area where the
experiments were performed. In addition, in the last two use cases a comparison is made
between the current and the first version of the algorithm that did not perform as expected
in specific cases.

Information 2022, 13, 269 8 of 25Information 2022, 13, x FOR PEER REVIEW 8 of 24

Scheme 1. Algorithm’s Flowchart.

4. Research Results
The application of the proposed algorithm for the seach of the most accessible route

in the historic center of the city of Thessaloniki gave, in most cases, very good results, two
of which are presented in this section. However, there were specific cases when the start-
ing point or destination was within a less accessible section, where the results were not as
expected. That was the reason for the correction of the penalty factor. In this section, we
will first present two use cases where both versions of the algorithm worked as expected
and then two use cases in which the initial version of the algorithm fails to provide ac-
ceptable results.

In the following figures, the graph nodes are shown with red markers. Within each
marker, its ID is displayed. The accessible edges are represented in green, while the less
accessible ones are represented in yellow. Finally, the crosswalks are marked in blue. In
each of the following use-cases, the graph of the specific area is initially presented on the
Google maps web service, followed by the shortest route between the source and the tar-
get node, as well as the most accessible of the ten alternatives paths. In addition, the last

Scheme 1. Algorithm’s Flowchart.

4. Research Results

The application of the proposed algorithm for the seach of the most accessible route
in the historic center of the city of Thessaloniki gave, in most cases, very good results,
two of which are presented in this section. However, there were specific cases when
the starting point or destination was within a less accessible section, where the results
were not as expected. That was the reason for the correction of the penalty factor. In this
section, we will first present two use cases where both versions of the algorithm worked
as expected and then two use cases in which the initial version of the algorithm fails to
provide acceptable results.

In the following figures, the graph nodes are shown with red markers. Within each
marker, its ID is displayed. The accessible edges are represented in green, while the less
accessible ones are represented in yellow. Finally, the crosswalks are marked in blue. In
each of the following use-cases, the graph of the specific area is initially presented on the
Google maps web service, followed by the shortest route between the source and the target
node, as well as the most accessible of the ten alternatives paths. In addition, the last two

Information 2022, 13, 269 9 of 25

use cases show the most accessible paths returned by both versions of the algorithm so that
they can be compared. Finally, for each case, a corresponding table lists all the calculated
weights of each of the k shortest routes. These tables show how the results shown in the
figures below have been calculated.

4.1. Use Case I

In the first use-case (Figure 1), the transition from node 84 to node 245 is considered.
As shown in Table 1, the shortest route passes through the following nodes: 84, 10, 9, 2, 80,
246, 254, 253, 252, 245 and has a total length of 353.3 m (Figure 2). However, we observe
that a significant part of this route passes through sections that have been characterized as
less accessible.

Information 2022, 13, x FOR PEER REVIEW 9 of 24

two use cases show the most accessible paths returned by both versions of the algorithm
so that they can be compared. Finally, for each case, a corresponding table lists all the
calculated weights of each of the k shortest routes. These tables show how the results
shown in the figures below have been calculated.

4.1. Use Case I
In the first use-case (Figure 1), the transition from node 84 to node 245 is considered.

As shown in Table 1, the shortest route passes through the following nodes: 84, 10, 9, 2,
80, 246, 254, 253, 252, 245 and has a total length of 353.3 m (Figure 2). However, we observe
that a significant part of this route passes through sections that have been characterized
as less accessible.

Figure 1. Use case I graph dataset.

When the weight of the specific route is recalculated in the alternative graph that has
been produced, as described in the previous section, this will be equal to 518.4 m, while
the route that crosses the nodes, 84, 197, 205, 198, 209, 199, 244, 243, 245, has a total weight
of 514.50 m so it finally returns as the most accessible routes as shown in Table 1. In addi-
tion, the sum of the total weights of each route can be calculated using Table A1. We notice
that in the second version of the algorithm, the most accessible path is the same as shown
in the right part of Figure 2 but has a different weight due to the change in the penalty
ratio. For a better understanding of the results in the following tables, it is pointed out that
the shortest path appears with an orange background while the most accessible with light
blue.

Figure 1. Use case I graph dataset.

When the weight of the specific route is recalculated in the alternative graph that has
been produced, as described in the previous section, this will be equal to 518.4 m, while the
route that crosses the nodes, 84, 197, 205, 198, 209, 199, 244, 243, 245, has a total weight of
514.50 m so it finally returns as the most accessible routes as shown in Table 1. In addition,
the sum of the total weights of each route can be calculated using Table A1. We notice that
in the second version of the algorithm, the most accessible path is the same as shown in the
right part of Figure 2 but has a different weight due to the change in the penalty ratio. For a
better understanding of the results in the following tables, it is pointed out that the shortest
path appears with an orange background while the most accessible with light blue.

Information 2022, 13, 269 10 of 25Information 2022, 13, x FOR PEER REVIEW 10 of 24

Figure 2. Shortest (left) and most accessible (right) path between nodes 84 and 245.

Table 1. k-shortest paths for use case I.

Alternative Paths
Actual

Distance
Crosswalk

Counter
Calculated

Distance V1
Total

Weight V1
Calculated

Distance V2
Total

Weight V2
84, 10, 9, 2, 80, 246, 254, 253, 252, 245 353.3 2 442.6 518.4 621.2 697.0

84, 10, 9, 2, 1, 268, 267, 310, 245 372.0 4 372.0 523.6 372.0 523.6
84, 85, 81, 9, 2, 1, 268, 267, 310, 245 385.2 4 462.3 613.9 616.5 768.1

84, 85, 81, 196, 208, 199, 244, 243, 245 432.0 2 640.2 716 1056.6 1132.4
84, 197, 204, 196, 208, 199, 244, 243, 245 432.4 2 641.2 717 1058.8 1134.6
84, 197, 205, 198, 209, 199, 244, 243, 245 438.7 2 438.7 514.5 438.7 514.5

84, 197, 205, 198, 200, 201, 242, 241, 243, 245 482.6 2 482.6 558.4 482.6 558.4
84, 10, 9, 81, 196, 208, 199, 244, 243, 245 591.6 2 722.7 798.5 984.9 1060.7

84, 10, 9, 2, 80, 246, 244, 243, 245 592.0 2 592.0 667.8 592.0 667.8
84, 85, 81, 9, 2, 80, 246, 244, 243, 245 605.2 2 682.3 758.1 836.5 912.3

The first column of Table 1 lists the sequences of nodes in each alternative path and
the second column reports its actual distance. The third column contains the total cross-
walk number of each route, and the fourth one indicates the distance resulting from the
traversal of the alternative graph depending on the level of accessibility of each edge. The
fifth column denotes the total weight of every route from which we determine which is
the most accessible one. The fourth and fifth columns refer to the first version of the algo-
rithm while the last two correspond to the same values in the current one.

4.2. Use Case II
In the second use case (Figure 3), the transition from node 258 to node 264 is exam-

ined. As shown in Table 2, the shortest route passes through the following nodes—258,
257, 260, 265, 288, 264—and has a total length of 218.93 m (Figure 4). Moreover, in this use-

Figure 2. Shortest (left) and most accessible (right) path between nodes 84 and 245.

Table 1. k-shortest paths for use case I.

Alternative Paths Actual
Distance

Crosswalk
Counter

Calculated
Distance V1

Total
Weight V1

Calculated
Distance V2

Total
Weight V2

84, 10, 9, 2, 80, 246, 254, 253, 252, 245 353.3 2 442.6 518.4 621.2 697.0

84, 10, 9, 2, 1, 268, 267, 310, 245 372.0 4 372.0 523.6 372.0 523.6

84, 85, 81, 9, 2, 1, 268, 267, 310, 245 385.2 4 462.3 613.9 616.5 768.1

84, 85, 81, 196, 208, 199, 244, 243, 245 432.0 2 640.2 716 1056.6 1132.4

84, 197, 204, 196, 208, 199, 244, 243, 245 432.4 2 641.2 717 1058.8 1134.6

84, 197, 205, 198, 209, 199, 244, 243, 245 438.7 2 438.7 514.5 438.7 514.5

84, 197, 205, 198, 200, 201, 242, 241,
243, 245 482.6 2 482.6 558.4 482.6 558.4

84, 10, 9, 81, 196, 208, 199, 244, 243, 245 591.6 2 722.7 798.5 984.9 1060.7

84, 10, 9, 2, 80, 246, 244, 243, 245 592.0 2 592.0 667.8 592.0 667.8

84, 85, 81, 9, 2, 80, 246, 244, 243, 245 605.2 2 682.3 758.1 836.5 912.3

The first column of Table 1 lists the sequences of nodes in each alternative path and the
second column reports its actual distance. The third column contains the total crosswalk
number of each route, and the fourth one indicates the distance resulting from the traversal
of the alternative graph depending on the level of accessibility of each edge. The fifth
column denotes the total weight of every route from which we determine which is the most
accessible one. The fourth and fifth columns refer to the first version of the algorithm while
the last two correspond to the same values in the current one.

Information 2022, 13, 269 11 of 25

4.2. Use Case II

In the second use case (Figure 3), the transition from node 258 to node 264 is examined.
As shown in Table 2, the shortest route passes through the following nodes—258, 257, 260,
265, 288, 264—and has a total length of 218.93 m (Figure 4). Moreover, in this use-case, a
significant part of this route passes through sections that have been characterized as less
accessible. Moreover, the sum of the total weights of each path can be calculated using
Table A2.

Information 2022, 13, x FOR PEER REVIEW 11 of 24

case, a significant part of this route passes through sections that have been characterized
as less accessible. Moreover, the sum of the total weights of each path can be calculated
using Table A2.

Figure 3. Use case II graph dataset.

Table 2. k-shortest paths for use case II.

Alternative Paths
Actual

Distance
Crosswalk

Counter
Calculated

Distance V1
Total

Weight V1
Calculated

Distance V2
Total

Weight V2
258, 257, 260, 265, 288, 264 218.9 1 322.6 360.5 530.0 567.9
258, 262, 260, 265, 288, 264 222.5 1 326.2 364.1 533.6 571.5

258, 262, 268, 269, 260, 265, 288, 264 244.2 3 347.9 461.6 555.3 669.0
258, 261, 287, 259, 257, 260, 265, 288, 264 292.7 1 396.4 434.3 603.8 641.7

258, 261, 346, 354, 353, 336, 263, 264 307.4 2 307.4 383.2 307.4 383.2
258, 257, 260, 265, 266, 263, 264 370.2 1 475.4 513.3 685.8 723.7
258, 262, 260, 265, 266, 263, 264 373.8 1 479.0 516.9 689.4 727.3

258, 262, 268, 269, 260, 265, 266, 263, 264 395.5 3 500.7 614.4 711.1 824.8
258, 261, 346, 354, 352, 351, 335, 336, 263, 264 417.2 2 417.2 493.0 417.2 493.0
258, 261, 346, 345, 352, 351, 335, 336, 263, 264 437.2 2 437.2 513.0 437.2 513.0

Respectively, the route that crosses the nodes 258, 261, 346, 354, 353, 336, 263, 264 as
depicted in Figure 5 will have a total weight of 307.4 m so it eventually returns as the most
accessible of the alternative routes. We notice again that in the second version of the algo-
rithm, the most accessible path is the same.

Figure 3. Use case II graph dataset.

Table 2. k-shortest paths for use case II.

Alternative Paths Actual
Distance

Crosswalk
Counter

Calculated
Distance V1

Total
Weight V1

Calculated
Distance V2

Total
Weight V2

258, 257, 260, 265, 288, 264 218.9 1 322.6 360.5 530.0 567.9

258, 262, 260, 265, 288, 264 222.5 1 326.2 364.1 533.6 571.5

258, 262, 268, 269, 260, 265, 288, 264 244.2 3 347.9 461.6 555.3 669.0

258, 261, 287, 259, 257, 260, 265, 288, 264 292.7 1 396.4 434.3 603.8 641.7

258, 261, 346, 354, 353, 336, 263, 264 307.4 2 307.4 383.2 307.4 383.2

258, 257, 260, 265, 266, 263, 264 370.2 1 475.4 513.3 685.8 723.7

258, 262, 260, 265, 266, 263, 264 373.8 1 479.0 516.9 689.4 727.3

258, 262, 268, 269, 260, 265, 266, 263, 264 395.5 3 500.7 614.4 711.1 824.8

258, 261, 346, 354, 352, 351, 335, 336, 263,
264 417.2 2 417.2 493.0 417.2 493.0

258, 261, 346, 345, 352, 351, 335, 336, 263,
264 437.2 2 437.2 513.0 437.2 513.0

Respectively, the route that crosses the nodes 258, 261, 346, 354, 353, 336, 263, 264 as
depicted in Figure 5 will have a total weight of 307.4 m so it eventually returns as the
most accessible of the alternative routes. We notice again that in the second version of the
algorithm, the most accessible path is the same.

Information 2022, 13, 269 12 of 25
Information 2022, 13, x FOR PEER REVIEW 12 of 24

Figure 4. Shortest path between nodes 258 and 264.

Figure 5. Most accessible path between nodes 258 and 264.

4.3. Use Case III
In the first two use cases, both versions of the algorithm calculated the same accessi-

ble paths as result. However, in the use cases that follow, the first version did not give the
best results among the alternative ones, and therefore, after experimental tests on the pen-
alty factor, its value was changed from 2 to 4. To make this difference clearer to the reader,
an additional image was added, one for each version of the algorithm, which displays
their results. In this use case (Figure 6), the transition from node 401 to node 446 is exam-
ined. As shown in Table 3, the shortest route passes through the following nodes—401,
400, 398, 405, 419, 424, 425, 426, 445, 446—and has a total length of 180.7 m (Figure 7).

Figure 4. Shortest path between nodes 258 and 264.

Information 2022, 13, x FOR PEER REVIEW 12 of 24

Figure 4. Shortest path between nodes 258 and 264.

Figure 5. Most accessible path between nodes 258 and 264.

4.3. Use Case III
In the first two use cases, both versions of the algorithm calculated the same accessi-

ble paths as result. However, in the use cases that follow, the first version did not give the
best results among the alternative ones, and therefore, after experimental tests on the pen-
alty factor, its value was changed from 2 to 4. To make this difference clearer to the reader,
an additional image was added, one for each version of the algorithm, which displays
their results. In this use case (Figure 6), the transition from node 401 to node 446 is exam-
ined. As shown in Table 3, the shortest route passes through the following nodes—401,
400, 398, 405, 419, 424, 425, 426, 445, 446—and has a total length of 180.7 m (Figure 7).

Figure 5. Most accessible path between nodes 258 and 264.

4.3. Use Case III

In the first two use cases, both versions of the algorithm calculated the same accessible
paths as result. However, in the use cases that follow, the first version did not give the best
results among the alternative ones, and therefore, after experimental tests on the penalty
factor, its value was changed from 2 to 4. To make this difference clearer to the reader, an
additional image was added, one for each version of the algorithm, which displays their
results. In this use case (Figure 6), the transition from node 401 to node 446 is examined.
As shown in Table 3, the shortest route passes through the following nodes—401, 400, 398,
405, 419, 424, 425, 426, 445, 446—and has a total length of 180.7 m (Figure 7).

Information 2022, 13, 269 13 of 25
Information 2022, 13, x FOR PEER REVIEW 13 of 24

Figure 6. Use case III graph dataset.

Figure 7. Shortest path between nodes 401 and 446 and also most accessible path between nodes
401.

Figure 6. Use case III graph dataset.

Information 2022, 13, x FOR PEER REVIEW 13 of 24

Figure 6. Use case III graph dataset.

Figure 7. Shortest path between nodes 401 and 446 and also most accessible path between nodes
401.

Figure 7. Shortest path between nodes 401 and 446 and also most accessible path between nodes 401.

Information 2022, 13, 269 14 of 25

Table 3. k-shortest paths for use case III.

Alternative Paths Actual
Distance

Crosswalk
Counter

Calculated
Distance V1

Total
Weight V1

Calculated
Distance V2

Total
Weight V2

401, 400, 398, 405, 419, 424, 425, 426, 445,
446 180.7 2 252.1 327.9 394.9 470.7

401, 402, 409, 414, 423, 422, 421, 424, 425,
426, 445, 446 262.7 2 414.6 490.4 718.4 794.2

401, 402, 409, 414, 423, 451, 450, 449, 447,
446 263.0 2 305.3 381.1 389.9 465.7

401, 402, 381, 382, 383, 396, 398, 405, 419,
424, 425, 426, 445, 446 379.5 2 421.8 497.6 506.4 582.2

401, 400, 398, 405, 419, 424, 421, 422, 423,
451, 450, 449, 447, 446 400.2 2 581.2 657.0 943.2 1019.0

401, 402, 381, 380, 212, 213, 219, 220, 385,
384, 383, 396, 398, 405, 419, 424, 425, 426,

445, 446
462.5 6 504.8 732.2 589.4 816.8

401, 400, 398, 396, 383, 382, 381, 402, 409,
414, 423, 422, 421, 424, 425, 426, 445, 446 519.7 2 700.7 776.5 1062.7 1138.5

401, 400, 398, 396, 383, 382, 381, 402, 409,
414, 423, 451, 450, 449, 447, 446 520.0 2 591.4 667.2 734.2 810.0

401, 402, 381, 382, 383, 396, 398, 405, 419,
424, 421, 422, 423, 451, 450, 449, 447, 446 599.0 2 750.9 826.7 1054.7 1130.5

Because the starting point of the route is located on a part of the sidewalk that is
characterized as less accessible (Figure 6), the preferred result is the one that minimizes
the passage on it. Therefore, it should go from node 401 to 402 and then continue from the
accessible sections of the pavement to the destination at node 446. However, in this case,
for the first version of the algorithm, the most accessible path is the same as the shortest
one. As shown in the first line of Table 3, the value of the actual distance field for this
route is the lowest of the rest so it is the shortest path. Using Table A3 the sum of the total
weights of each route can be calculated. In addition, when the weight of the specific route
is recalculated using the first version of the alternative graph produced, this will be equal
to 327.9 m (Total Weight V1). In this column, the value calculated is also the lowest, so this
path is characterized as the most accessible.

After changing the penalty ratio, as shown in Figure 8, crossing the least accessible
part is now the minimum possible. This fact is also reflected in the column Total Weight
V2 of Table 3 where we observe that in the third line the value of this field becomes the
minimum, and therefore, the new most accessible route passes through the nodes 401, 402,
409, 414, 423, 451, 450, 449, 447, 446.

Information 2022, 13, 269 15 of 25
Information 2022, 13, x FOR PEER REVIEW 15 of 24

Figure 8. Most accessible path between nodes 401 and 446 using 2nd version of the algorithm.

4.4. Use Case IV
In the final use case (Figure 9) presented, the transition from node 458 to node 478 is

examined. As shown in Table 4, the shortest route passes through the following nodes—
458, 459, 470, 471, 479, 478—and has a total length of 165.8 m (Figure 10). In this use-case,
a significant part of this route passes through sections that have been characterized as less
accessible. Moreover, in this case, for the first version of the algorithm, the most accessible
path is the same as the shortest one.

Figure 9. Use case IV graph dataset.

Figure 8. Most accessible path between nodes 401 and 446 using 2nd version of the algorithm.

4.4. Use Case IV

In the final use case (Figure 9) presented, the transition from node 458 to node 478 is
examined. As shown in Table 4, the shortest route passes through the following nodes—458,
459, 470, 471, 479, 478—and has a total length of 165.8 m (Figure 10). In this use-case, a
significant part of this route passes through sections that have been characterized as less
accessible. Moreover, in this case, for the first version of the algorithm, the most accessible
path is the same as the shortest one.

Information 2022, 13, x FOR PEER REVIEW 15 of 24

Figure 8. Most accessible path between nodes 401 and 446 using 2nd version of the algorithm.

4.4. Use Case IV
In the final use case (Figure 9) presented, the transition from node 458 to node 478 is

examined. As shown in Table 4, the shortest route passes through the following nodes—
458, 459, 470, 471, 479, 478—and has a total length of 165.8 m (Figure 10). In this use-case,
a significant part of this route passes through sections that have been characterized as less
accessible. Moreover, in this case, for the first version of the algorithm, the most accessible
path is the same as the shortest one.

Figure 9. Use case IV graph dataset.

Figure 9. Use case IV graph dataset.

Information 2022, 13, 269 16 of 25
Information 2022, 13, x FOR PEER REVIEW 16 of 24

Figure 10. Shortest path between nodes 458 and 478 and the most accessible path between them
using 1st version of the algorithm.

Table 4. k-shortest paths for use case IV.

Alternative Paths
Actual

Distance
Crosswalk

Counter
Calculated

Distance V1
Total

Weight V1
Calculated

Distance V2
Total

Weight V2
458, 459, 470, 471, 479, 478 165.8 0 260.8 260.8 450.8 450.8

458, 746, 750, 757, 756, 755, 754, 729, 752, 748,
499, 478

363.8 3 363.8 475.4 363.8 475.4

458, 746, 750, 757, 756, 755, 754, 729, 752, 514,
516, 517, 539, 518, 499, 478

415.8 6 415.8 639.0 415.8 639.0

458, 746, 750, 757, 756, 755, 754, 729, 752, 514,
515, 516, 517, 539, 518, 499, 478

433.5 6 433.5 656.7 433.5 656.7

458, 746, 750, 757, 777, 812, 807, 817, 810, 809,
526, 525, 524, 515, 514, 752, 748, 499, 478

546.3 6 546.3 769.5 546.3 769.5

458, 746, 750, 757, 777, 812, 807, 817, 810, 809,
526, 525, 524, 515, 516, 514, 752, 748, 499, 478

560.2 6 560.2 783.4 560.2 783.4

458, 746, 750, 757, 777, 812, 807, 817, 810, 809,
526, 525, 524, 515, 516, 517, 539, 518, 499, 478

568.0 7 568.0 828.4 568.0 828.4

458, 746, 750, 757, 777, 812, 807, 814, 818, 817,
810, 809, 526, 525, 524, 515, 514, 752, 748, 499,

478
581.1 6 581.1 804.3 581.1 804.3

458, 746, 750, 757, 777, 812, 816, 814, 807, 817,
810, 809, 526, 525, 524, 515, 514, 752, 748, 499,

478
581.4 6 581.4 804.6 581.4 804.6

Figure 10. Shortest path between nodes 458 and 478 and the most accessible path between them
using 1st version of the algorithm.

Table 4. k-shortest paths for use case IV.

Alternative Paths Actual
Distance

Crosswalk
Counter

Calculated
Distance V1

Total Weight
V1

Calculated
Distance V2

Total Weight
V2

458, 459, 470, 471, 479, 478 165.8 0 260.8 260.8 450.8 450.8

458, 746, 750, 757, 756, 755, 754, 729, 752, 748,
499, 478 363.8 3 363.8 475.4 363.8 475.4

458, 746, 750, 757, 756, 755, 754, 729, 752, 514,
516, 517, 539, 518, 499, 478 415.8 6 415.8 639.0 415.8 639.0

458, 746, 750, 757, 756, 755, 754, 729, 752, 514,
515, 516, 517, 539, 518, 499, 478 433.5 6 433.5 656.7 433.5 656.7

458, 746, 750, 757, 777, 812, 807, 817, 810, 809,
526, 525, 524, 515, 514, 752, 748, 499, 478 546.3 6 546.3 769.5 546.3 769.5

458, 746, 750, 757, 777, 812, 807, 817, 810, 809,
526, 525, 524, 515, 516, 514, 752, 748, 499, 478 560.2 6 560.2 783.4 560.2 783.4

458, 746, 750, 757, 777, 812, 807, 817, 810, 809,
526, 525, 524, 515, 516, 517, 539, 518, 499, 478 568.0 7 568.0 828.4 568.0 828.4

458, 746, 750, 757, 777, 812, 807, 814, 818, 817,
810, 809, 526, 525, 524, 515, 514, 752, 748, 499,

478
581.1 6 581.1 804.3 581.1 804.3

458, 746, 750, 757, 777, 812, 816, 814, 807, 817,
810, 809, 526, 525, 524, 515, 514, 752, 748, 499,

478
581.4 6 581.4 804.6 581.4 804.6

458, 746, 750, 757, 777, 812, 816, 814, 818, 817,
810, 809, 526, 525, 524, 515, 514, 752, 748, 499,

478
581.8 6 581.8 805.0 581.8 805.0

Information 2022, 13, 269 17 of 25

As shown in the first line of Table 4, the value of the actual distance field for this route
is the lower one. In addition, when the weight of the specific route is recalculated using the
first version of the alternative graph that has been produced, this will be equal to 260.8 m
(Calculated Distance V1). In this column, the value calculated is also the lowest, so this path
is characterized as the most accessible. Using the new penalty ratio to calculate the weight
of alternative routes, as the most accessible, as shown in Figure 11, is the one indicated in
the second row of the Table 4.

Information 2022, 13, x FOR PEER REVIEW 17 of 24

458, 746, 750, 757, 777, 812, 816, 814, 818, 817,
810, 809, 526, 525, 524, 515, 514, 752, 748, 499,

478
581.8 6 581.8 805.0 581.8 805.0

As shown in the first line of Table 4, the value of the actual distance field for this route
is the lower one. In addition, when the weight of the specific route is recalculated using
the first version of the alternative graph that has been produced, this will be equal to 260.8
m (Calculated Distance V1). In this column, the value calculated is also the lowest, so this
path is characterized as the most accessible. Using the new penalty ratio to calculate the
weight of alternative routes, as the most accessible, as shown in Figure 11, is the one indi-
cated in the second row of the Table 4.

Figure 11. Most accessible path between nodes 458 and 478 using 2nd version of the algorithm.

This fact is also reflected in the column Calculated Distance V2 of the same table where
we observe that in the value of this field becomes the minimum and therefore the new
most accessible route passes through the nodes 458, 746, 750, 757, 756, 755, 754, 729, 752,
748, 499, 478. This path, although longer, does not include any yellow sections (less acces-
sible) unlike the first version of the algorithm, most of which was yellow. Therefore, with
the change of the penalty ratio, in this case as well, the proposed algorithm behaves more
efficiently. Using table A4 the sum of the total weights of each path can be calculated.

Although the value of Calculated Distance V2 of the second line of Table 4 is the min-
imum and the path depicted in Figure 11 consists of only accessible parts, this route, due
to the fact that it crosses three ramps, does not have the lowest total weight (Total Weight
V2) in relation to what the 1st version of the algorithm resulted. Therefore, the burden on
the total weight of each alternative route due to the ramps enclosed in it should be studied
and evaluated in subsequent versions of the proposed algorithm.

5. Conclusions
In this paper, we have proposed and described a penalty-based k shortest paths al-

gorithm to search for the most accessible routes in the pedestrian sections of urban areas.

Figure 11. Most accessible path between nodes 458 and 478 using 2nd version of the algorithm.

This fact is also reflected in the column Calculated Distance V2 of the same table where
we observe that in the value of this field becomes the minimum and therefore the new most
accessible route passes through the nodes 458, 746, 750, 757, 756, 755, 754, 729, 752, 748,
499, 478. This path, although longer, does not include any yellow sections (less accessible)
unlike the first version of the algorithm, most of which was yellow. Therefore, with the
change of the penalty ratio, in this case as well, the proposed algorithm behaves more
efficiently. Using Table A4 the sum of the total weights of each path can be calculated.

Although the value of Calculated Distance V2 of the second line of Table 4 is the
minimum and the path depicted in Figure 11 consists of only accessible parts, this route,
due to the fact that it crosses three ramps, does not have the lowest total weight (Total
Weight V2) in relation to what the 1st version of the algorithm resulted. Therefore, the
burden on the total weight of each alternative route due to the ramps enclosed in it should
be studied and evaluated in subsequent versions of the proposed algorithm.

5. Conclusions

In this paper, we have proposed and described a penalty-based k shortest paths
algorithm to search for the most accessible routes in the pedestrian sections of urban areas.
The experimental tests that took place in the graph dataset representing pedestrian routes
of the historic center of Thessaloniki city showed that the proposed algorithm returns,
as a result, as the most accessible of the ten shortest paths between two nodes of this
graph. To achieve this, the presented heuristic algorithm uses some additional features

Information 2022, 13, 269 18 of 25

found in the pedestrian sections apart from the actual distance (e.g., accessibility level, if
current section represents a crosswalk between two ramps, etc.). The initial version of the
algorithm proved effective in most cases. In order to work optimally in the whole urban
pedestrian network, the penalty factor was corrected, and now the proposed algorithm
manages to route through paths that pass through the minimum possible number of less
accessible pedestrian sections. In a future version, the burden on the total weight of each
alternative route due to the ramps enclosed in it will be studied. At the same time, the
user will be allowed to choose if he wants the ramps to burden the overall result because,
while it is a deterrent for wheelchair riders, the same does not happen for other categories
of pedestrians.

Author Contributions: Conceptualization, K.K.; data curation, K.K.; methodology, K.K. and G.T.;
software, V.P.; supervision, I.F.; writing—review and editing, K.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research has been co-financed by the European Regional Development Fund of the
European Union and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation, under the call Research—Create—Innovate (project code: T1EDK-
00108).

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the figures presented in Section 4, the actual or calculated weights of every edge
either of the initial or the alternate graph cannot be displayed due to constraints in the
google maps platform API. For this purpose, four tables will be listed in this section, one
for each use case, that will list the three properties (Actual Length, Accessibility Level, Is
Ramp or Not) of every edge according to which the total and the total calculated route
weights were calculated. The first feature corresponds to the actual length of the sidewalk
between two nodes of the graph. The second identifies the level of accessibility of each
segment, and the values it can receive are 1 or 2 for the first version of the algorithm and 1
or 4 for the second one. Finally, the third property gives the information whether an edge
corresponds to a ramp or not.

Using this information, it will be possible to verify the results presented in Tables 1–4.
That is, from the sequence of nodes of each route, it will be possible to calculate both the
shortest and the most accessible path for each use case. For the calculation of the shortest
path only, the first property (Actual Length) is used, while for the calculation of the most
accessible, all three properties using the Equations (2) and (3) were found in Section 3.

Table A1. Use Case I.

Source
Node

Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

1 2 97.1 0 1

1 268 9.9 1 1

2 1 97.1 0 1

2 9 6.5 1 1

2 80 100.8 0 1

9 2 6.5 1 1

9 10 69.4 0 1

9 81 86.4 0 1

10 9 69.4 0 1

Information 2022, 13, 269 19 of 25

Table A1. Cont.

Source
Node

Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

10 84 80.9 0 1

80 2 100.8 0 1

80 246 6.4 1 1

81 9 86.4 0 1

81 85 58.9 0 2

81 196 5.9 1 1

84 10 80.9 0 1

84 85 18.2 0 2

84 197 5.7 1 1

85 81 58.9 0 2

85 84 18.2 0 2

196 81 5.9 1 1

196 204 59.1 0 2

196 208 10.8 0 2

197 84 5.7 1 1

197 204 18.6 0 2

197 205 79.9 0 1

198 200 19.7 0 1

198 205 51.3 0 1

198 209 41.3 0 1

199 201 21.2 0 1

199 208 120.3 0 2

199 209 42.6 0 1

199 244 6.6 1 1

200 198 19.7 0 1

200 201 83.7 0 1

201 199 21.2 0 1

201 200 83.7 0 1

201 242 6.6 1 1

204 196 59.1 0 2

204 197 18.6 0 2

205 197 79.9 0 1

205 198 51.3 0 1

208 196 10.8 0 2

208 199 120.3 0 2

209 198 41.3 0 1

209 199 42.6 0 1

241 242 83.1 0 1

241 243 22.9 0 1

242 201 6.6 1 1

Information 2022, 13, 269 20 of 25

Table A1. Cont.

Source
Node

Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

242 241 83.1 0 1

242 244 20.9 0 1

243 241 22.9 0 1

243 244 81.6 0 1

243 245 129.7 0 1

244 199 6.6 1 1

244 242 20.9 0 1

244 243 81.6 0 1

244 246 116.7 0 1

245 243 129.7 0 1

245 252 25.9 0 2

245 310 10 1 1

246 80 6.4 1 1

246 244 116.7 0 1

246 254 19.6 0 2

252 245 25.9 0 2

252 253 26.7 0 2

253 252 26.7 0 2

253 254 17.1 0 2

254 246 19.6 0 2

254 253 17.1 0 2

267 268 91.5 0 1

267 310 6.7 1 1

268 1 9.9 1 1

268 267 91.5 0 1

310 245 10 1 1

310 267 6.7 1 1

Table A2. Use Case II.

Source
Node

Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

257 258 69.7 0 1

257 259 38.6 0 1

257 260 38.5 0 1

258 257 69.7 0 1

258 261 36.1 0 1

258 262 43.1 0 1

259 257 38.6 0 1

259 287 50.6 0 1

260 257 38.5 0 1

Information 2022, 13, 269 21 of 25

Table A2. Cont.

Source
Node

Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

260 262 68.7 0 1

260 265 7 1 1

260 269 10.8 1 1

261 258 36.1 0 1

261 287 18.2 0 1

261 346 10.6 1 1

262 258 43.1 0 1

262 260 68.7 0 1

262 268 10.2 1 1

263 264 71.7 0 1

263 266 105.2 0 2

263 336 10.5 1 1

264 263 71.7 0 1

264 288 65.3 0 2

265 260 7 1 1

265 266 78.1 0 1

265 288 38.4 0 2

266 263 105.2 0 2

266 265 78.1 0 1

268 262 10.2 1 1

268 269 69.4 0 1

269 260 10.8 1 1

269 268 69.4 0 1

287 259 50.6 0 1

287 261 18.2 0 1

288 264 65.3 0 2

288 265 38.4 0 2

335 336 51.9 0 1

335 351 72.5 0 1

336 263 10.5 1 1

336 335 51.9 0 1

336 353 69.6 0 1

345 346 73 0 1

345 352 75.3 0 1

346 261 10.6 1 1

346 345 73 0 1

346 354 71.2 0 1

351 335 72.5 0 1

351 352 35.6 0 1

351 353 51.7 0 1

Information 2022, 13, 269 22 of 25

Table A2. Cont.

Source
Node

Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

352 345 75.3 0 1

352 351 35.6 0 1

352 354 57.1 0 1

353 336 69.6 0 1

353 351 51.7 0 1

353 354 37.7 0 1

354 346 71.2 0 1

354 352 57.1 0 1

354 353 37.7 0 1

Table A3. Use Case III.

Source Node Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

381 382 93.9 0 1

381 402 53.9 0 1

382 381 93.9 0 1

402 381 53.9 0 1

382 383 25.1 0 1

383 382 25.1 0 1

383 428 5.1 1 1

383 384 6 1 1

384 385 24.6 0 1

384 383 6 1 1

385 220 5.7 1 1

385 384 24.6 0 1

398 405 6 1 1

405 398 6 1 1

383 396 17.1 0 1

396 383 17.1 0 1

396 398 37.9 0 1

398 396 37.9 0 1

404 405 44.5 0 0

405 404 44.5 0 0

404 406 46.5 0 0

406 404 46.5 0 0

419 406 43.4 0 0

406 419 43.4 0 0

419 405 46.5 0 1

405 419 46.5 0 1

398 400 44.4 0 2

400 398 44.4 0 2

400 401 27 0 2

401 400 27 0 2

Information 2022, 13, 269 23 of 25

Table A3. Cont.

Source Node Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

401 402 42.3 0 2

402 401 42.3 0 2

402 409 6.7 1 1

409 402 6.7 1 1

409 414 47 0 1

414 409 47 0 1

408 409 60.2 0 0

409 408 60.2 0 0

407 408 46.5 0 0

408 407 46.5 0 0

407 414 58.4 0 0

414 407 58.4 0 0

414 423 6.4 1 1

423 414 6.4 1 1

422 423 32.9 0 2

423 422 32.9 0 2

421 422 36 0 2

422 421 36 0 2

421 424 40.7 0 2

424 421 40.7 0 2

419 424 6.1 1 1

424 419 6.1 1 1

423 451 51.8 0 1

451 423 51.8 0 1

450 451 38.8 0 1

451 450 38.8 0 1

449 450 36.2 0 1

450 449 36.2 0 1

447 449 11.1 0 1

449 447 11.1 0 1

446 447 22.7 0 1

447 446 22.7 0 1

445 446 8.9 0 1

446 445 8.9 0 1

445 426 13.7 0 1

426 445 13.7 0 1

425 426 9.5 0 1

426 425 9.5 0 1

424 425 18.6 0 1

425 424 18.6 0 1

Information 2022, 13, 269 24 of 25

Table A4. Use Case IV.

Source Node Destination
Node

Actual Length of
Pedestrian Section Is Ramp? Accessibility Level of

Pedestrian Section

458 459 70.8 0 1

459 458 70.8 0 1

459 470 13.7 0 2

470 459 13.7 0 2

470 471 6.6 0 2

471 470 6.6 0 2

471 479 33.8 0 2

479 471 33.8 0 2

478 479 40.9 0 2

479 478 40.9 0 2

478 499 56.2 0 1

499 478 56.2 0 1

746 458 15.9 0 1

458 746 15.9 0 1

746 750 6.3 1 1

750 746 6.3 1 1

750 749 78.5 0 0

749 750 78.5 0 0

746 747 78.9 0 0

747 746 78.9 0 0

747 748 60.2 0 0

748 747 60.2 0 0

748 499 5.4 0 1

499 748 5.4 0 1

749 751 53.9 0 0

751 749 53.9 0 0

729 752 7.2 1 1

752 729 7.2 1 1

729 751 4.3 0 1

751 729 4.3 0 1

748 752 6.9 1 1

752 748 6.9 1 1

750 757 98.5 0 1

757 750 98.5 0 1

756 757 15.2 0 1

757 756 15.2 0 1

755 756 60.4 0 1

756 755 60.4 0 1

754 755 72.9 0 1

755 754 72.9 0 1

754 729 18.9 0 1

729 754 18.9 0 1

Information 2022, 13, 269 25 of 25

References
1. Dijkstra, E.W. A note on two problems in connection with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
2. Abraham, I.; Delling, D.; Goldberg, A.V.; Werneck, R.F. Alternative routes in road networks. In International Symposium on

Experimental Algorithms; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–34.
3. Bader, R.; Dees, J.; Geisberger, R.; Sanders, P. Alternative route graphs in road networks. In International Conference on Theory and

Practice of Algorithms in (Computer) Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–32.
4. Akgün, V.; Erkut, E.; Batta, R. On finding dissimilar paths. Eur. J. Oper. Res. 2000, 121, 232–246. [CrossRef]
5. Chen, Y.; Bell, M.G.; Bogenberger, K. Reliable pretrip multipath planning and dynamic adaptation for a centralized road

navigation system. IEEE Trans. Intell. Transp. Syst. 2007, 8, 14–20. [CrossRef]
6. Patras, V.; Fudos, I.; Koritsoglou, K.; Tsoumanis, G. Revisiting shortest path algorithms for navigation systems. In Proceedings of

the 2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference
(SEEDA-CECNSM), Preveza, Greece, 24–26 September 2021; pp. 1–5.

7. Zhang, Q.; Northridge, M.E.; Jin, Z.; Metcalf, S.S. Modeling accessibility of screening and treatment facilities for older adults
using transportation networks. Appl. Geogr. 2018, 93, 64–75. [CrossRef] [PubMed]

8. Dees, J.; Geisberger, R.; Sanders, P.; Bader, R. Defining and computing alternative routes in road networks. arXiv 2010,
arXiv:1002.4330.

9. Eppstein, D. Finding the k shortest paths. SIAM J. Comput. 1998, 28, 652–673. [CrossRef]
10. Chondrogiannis, T.; Bouros, P.; Gamper, J.; Leser, U. Exact and approximate algorithms for finding k-shortest paths with limited

overlap. In Proceedings of the 20th International Conference on Extending Database Technology: EDBT 2017, Venice, Italy, 21–24
March 2017; pp. 414–425.

11. Paraskevopoulos, A.; Zaroliagis, C. Improved alternative route planning. In Proceedings of the ATMOS-13th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems-2013, Sophia Antipolis, France, 5 September
2013; Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik. Volume 33, pp. 108–122.

12. Lim, Y.; Kim, H. A shortest path algorithm for real road network based on path overlap. J. East. Asia Soc. Transp. Stud. 2005, 6,
1426–1438.

13. Schultes, D.; Sanders, P. Dynamic highway-node routing. In International Workshop on Experimental and Efficient Algorithms;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 66–79.

14. Pu, J.; Manning, E.; Shoja, G.C.; Srinivasan, A. A new algorithm to compute alternate paths in reliable OSPF (ROSPF). In
Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2001),
Las Vegas, NV, USA, 25–28 June 2001; pp. 299–304.

15. Bock, J.D.; Verstockt, S. SmarterROUTES—A data-driven context-aware solution for personalized dynamic routing and navigation.
ACM Trans. Spat. Algorithms Syst. 2020, 7, 1–25. [CrossRef]

16. UN Habitat. Accessibility of Housing. Available online: https://unhabitat.org/sites/default/files/download-manager-files/
Accessibility%20of%20Housing%20_%20web.pdf (accessed on 15 March 2022).

17. Laskas, P.; Dimitriadis, S.; Koritsoglou, A.; Koritsoglou, K.; Fudos, I. A data model for pedestrian routes. In Proceedings of the
2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference
(SEEDA-CECNSM), Preveza, Greece, 24–26 September 2021; pp. 1–4.

http://doi.org/10.1007/BF01386390
http://doi.org/10.1016/S0377-2217(99)00214-3
http://doi.org/10.1109/TITS.2006.889437
http://doi.org/10.1016/j.apgeog.2018.02.013
http://www.ncbi.nlm.nih.gov/pubmed/29556112
http://doi.org/10.1137/S0097539795290477
http://doi.org/10.1145/3402125
https://unhabitat.org/sites/default/files/download-manager-files/Accessibility%20of%20Housing%20_%20web.pdf
https://unhabitat.org/sites/default/files/download-manager-files/Accessibility%20of%20Housing%20_%20web.pdf

	Introduction
	Related Work
	Algorithm Description
	Research Results
	Use Case I
	Use Case II
	Use Case III
	Use Case IV

	Conclusions
	Appendix A
	References

