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Abstract: Neurostimulation devices applied for the treatment of epilepsy that collect, encode, tem-
porarily store, and transfer electroencephalographic (EEG) signals recorded intracranially from
epileptic patients, suffer from short battery life spans. The principal goal of this study is to implement
strategies for low power consumption rates during the device’s smooth and uninterrupted operation
as well as during data transmission. Our approach is organised in three basic levels. The first level
regards the initial modelling and creation of the template for the following two stages. The second
level regards the development of code for programming integrated circuits and simulation. The third
and final stage regards the transmitter’s implementation at the evaluation level. In particular, more
than one software and device are involved in this phase, in order to achieve realistic performance. Our
research aims to evolve such technologies so that they can transmit wireless data with simultaneous
energy efficiency.

Keywords: epilepsy; deep brain stimulation; responsive neurostimulation; wireless transmission;
Bluetooth Low Energy; Delta encoding; low power

1. Introduction

Neurostimulation is a therapeutic method recently endorsed for the treatment of
central nervous system disorders, such as epilepsy, and acts by applying electrical pulses
in the area of interest [1,2]. It targets neuronal populations that reside in the vicinity of
the implanted electrodes and aims in disrupting the onset and development of epileptic
seizures [3]. In the field of epilepsy, two basic neurostimulation systems that involve
electroencephalographic (EEG) data recording and transmission have been approved and
are available for clinical use: the deep brain stimulation (DBS, Percept Medtronic) system
and the responsive neurostimulation (RNS) system.

The DBS is a neurostimulation device introduced for the treatment of epileptic seizures
in cases where the epileptogenic area is diffuse or is not amenable to focal resective
surgery [4]. The DBS is an open-loop programmable stimulation device, most often placed
subcutaneously in the subclavicular region of the chest, which delivers electrical pulses
through a cable to the electrodes placed in a specific part of the brain in a programmed
periodic fashion with the aim to disrupt abnormal brain activity [5]. Although the DBS
system has been approved to solely target the anterior nucleus of the thalamus, with one
electrode in each nuclei in both hemispheres, it is currently used to treat a wide range of
focal seizures, especially those that involve the frontal and the temporal lobes [6,7]. The
most recent DBS model (Percept Medtronic) incorporates baseline recording of cumulative
spectral EEG data and transmission to an external device for evaluation [8].
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The RNS system is a closed-loop medical device that records electroencephalographic
(EEG) signals, detects seizure patterns, and provides electrical stimulation within the
implanted epileptogenic region [9]. The RNS system implements a strategy to terminate
the ongoing epileptic seizure activity [10,11], and has been approved for adults that are
refractory to both anti-epileptic medication and mainstream surgical treatments. The RNS
device is implanted on the skull and is specifically configured to respond to the seizure
EEG patterns of the implanted patient [12]. The current implantation approach includes
two electrodes placed over the presumed epileptogenic area. The electrodes are connected
to the device amplifier and stimulator in a bidirectional manner, and the programmed
stimulation is applied when a seizure pattern is detected [13]. Each patient is provided with
an external computer to which they can daily transmit snapshots of the the recorded EEG
data through a wireless telemetry probe. The transmitted EEG data are in turn uploaded
to an online patient data management system (PDMS) that the neurologist can access to
evaluate the patient’s epileptic activity [14]. Depending on the physician’s evaluation, the
RNS system detection and stimulation parameters can be reprogrammed until seizure
control noticeably improves [2].

A common problem both neurostimulation systems face is the short life span of their
batteries, which is a combined result of the patient’s seizure frequency, the effective thera-
peutic stimulation intensity applied, and the daily rate of data transmission to the external
computers. Battery replacements require recurrent surgical procedures, introducing sig-
nificant costs for both the patient and the healthcare system [15]. Therefore, low energy
consumption for wireless transmission and autonomy of these implanted devices becomes
a goal worth pursuing. For that purpose, we set out to investigate improved methods to
achieve low power consumption for such devices. We simulated a system for encoding and
storing brain signals similar to the available neurostimulation devices and implemented
data transmission using a low-power communication protocol. Our goal is to achieve EEG
data wireless transmission at a significantly low power level [16].

2. Materials and Methods
2.1. Materials

This subsection includes information on the EEG data used throughout this work,
a short review on encoding algorithms to support the decision on which algorithm to
be used for low-power consumption, and information regarding BLE as a low-energy
transmission protocol.

2.1.1. EEG Data

The EEG data used for the purposes of this work were derived from PhysioNet,
an open access database that contains EEG recordings from 23 children diagnosed with
epilepsy, admitted and evaluated at Boston Children’s Hospital [17]. For each patient,
9–42 one-hour continuous EEG data were used. For data modelling, we randomly selected
a 1-h EEG recording from an 11-year-old patient. The sampling rate was 256 Hz, resulting
in a total of 23,040 samples for 90 s of EEG data. The proposed approach for encoding
EEG-generated data considers the dataset as a whole, without any limitation to the seizure
onset area, resulting lower entropy and better power consumption during serial data
transmission.

2.1.2. Encoding Algorithm

Biosignals may be encoded in a medical application for various reasons, which include
reduction of the required memory size, low-power processing, reduction of the time needed
to transmit data to a network node, or a combination of the previously mentioned. In
order to encode biosignals and especially brain electrical signals, several algorithms may
be applied. These encoding and compression algorithms have various characteristics and
differ in terms of methodology and in terms of the result they produce.
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A data encoding approach, based on Shannon and Fano’s scientific work [18,19], was
presented, on the premise that characters in information streams are encoded according to
their frequency of appearance. A few years later, Huffman proposed a coding algorithm
that appears to be similar to Shannon–Fano at first glance [20]. This belief stems from
the fact that both techniques rely on keeping entropy low, which means that the more
frequently a symbol appears in the coded message, the fewer digits are required to encode
it. Following this, the Lempel Ziv Welch technique was introduced. In this case, the
time-repeated sequences are detected and replaced with new ones until the compressed
data is complete. Among the lossless encoding techniques that create dictionaries, there
are methods based on sliding windows. These methods enable the return to previously
encoded data and relate it to the data to be compressed (Lempel Ziv 77 and Lempel Ziv
78) [21–23]. These algorithms introduced implementation complexity, and although they
achieved reduction of the memory size to store data and reduction of data to be transmitted,
they increased power dissipation during their application on data.

Less complex compression algorithms frequently used in medical applications do
not manage to keep a trade-off between power consumption and processing power. Even
algorithms that apply simple functions, like matrix multiplication, require an increased
memory size and long processing time for calculating the partial products. Such an
example is the Compressive sensing (CS) method [24,25]. A main drawback is the recursive
application of calculation steps, which increases time to produce the result, occupy for
a long time the system’s resources, and dissipate significant energy, which is crucial for
implanted devices.

Considering the above mentioned requirements, the Delta encoding algorithm was
selected as a suitable algorithm for achieving low-power data encoding, keeping the
system’s resources occupied for limited time, maintaining the same memory size of the
device, keeping entropy low, and minimizing application code penalty for embedding
the encoding function. In detail, when a data sequence is available for encoding in the
input buffer, calculating the differences between successive values is performed by a simple
subtraction in one instruction clock and stored directly in memory. Thus, the encoding
process is simple without recursive calculations to a set of data for the calculation of each
encoding value. In other words, the final result is a series of numbers that represent the
interval between one value and the next. When the values are close, the bits of higher
order of their result are most probable to be zero, requiring in fact fewer bits for encoding.
This also affects power consumption during memory write since higher order bits have
a significant probability to be zero, and data bus lines transitions from 0 to 1 are reduced
(affecting dynamic power dissipation).

This method can maintain data quality when compressed, mainly when applied to
brain signals (lossless). Furthermore, its implementation does not necessitate complex
and costly energy calculations because finding differences requires only one operation,
namely, the subtraction, introducing a low penalty to the application code. It is worth
noting that it allows recording signal changes over time rather than the absolute width of
the measurements for each period, which saves storage space and energy for subsequent
transmission [26,27]. Since data transmission is performed using a serial protocol, the
bit transitions are of interest. Because the system that emerges from this study must
temporarily store data and then wirelessly forward it to another network node, the encoding
must reduce computing, storage, and transfer consumption. For all of the reasons stated
above, Delta encoding is deemed most appropriate for this implementation.

2.1.3. Bluetooth Low Energy

According to current literature, WIFI, Bluetooth, Bluetooth Low Energy (BLE), and
Zigbee are the four primary protocols utilised for the communication of medical implant
devices [28]. Zigbee is concerned with the formation of device networks and is used when
several implants are in the same body, but in this study, only one implant is accessible.



Information 2022, 13, 194 4 of 15

On the other hand, BLE is the chosen technology for low-consumption applications. In
particular, it assures up to ten times less consumption than WIFI.

BLE is a communication protocol similar to Bluetooth Classic that operates at 2.4 GHz.
This type of protocol can be found in various devices, including intelligent home automation
systems, medical devices, fitness and navigation systems. These systems have one thing
in common: they all transfer small amounts of data at slow speeds. Furthermore, they
are divided into two parts. The first is concerned with a collection of sensors and other
information recording devices (peripheral). The second is concerned with the computer
systems (central) that process them (laptops, smartphones, PCs, and more). The peripheral
part enters the ‘sleep’ mode more frequently to consume less energy.

To understand why BLE is used, the features that make it unique and necessary will
be considered. Initially, low power consumption is a sufficient reason to use it, as there is a
need for a wide range of devices with long battery life and durability. Due to the low cost of
the modules, construction and installation are also kept to a minimum. Furthermore, there
is a variety of open-access information on this technology that many devices have adopted.
Therefore, in terms of consumption, cost, access to information, and compatibility, BLE
becomes a competitive medium for providing small amounts of data transmission devices,
where high transfer rates are not required. It should be mentioned that the assessment of
the impact of wireless technology and radiation on patients’ health is not the focus of this
work. Finally, BLE is a serial communication protocol, which benefits the transmission of
low magnitude values, such as the case of this work.

2.2. Design Methodology

This work is based on the following three steps. Initially the Delta encoding algorithm
was selected as the one that requires the least complex processing, which contributes
significantly to the system’s power dissipation. A preliminary evaluation of the proposed
encoding is offered, which also depicts the data formation. In the second step, the encoding
system is designed. In this work design details for the buffer used to store the encoded
information is given. The buffer is dynamically accessed from the processing unit for
storing data and by the BLE unit for transmission of data. In the final step a simple
programming and control of the system’s functioning is offered, combining the data format
for the buffer and controlling it for transmission.

2.2.1. System Architecture

This study aims to create a system for encoding and transferring EEG signals recorded
from patients suffering from epilepsy while retaining the signal quality and conserving energy.

As a result, meticulous design is necessary before implementation to avoid omissions,
understand its functioning, and completely describe the device’s constituent subsystems.
First and foremost, the system’s expected input must be determined. As shown in the
diagram (Figure 1), this input consists of four channels of EEG signals; the data correspond
to 90 s recordings that represent 30 s before and 60 s after stimulation, respectively [9]. The
data is then sent through an Analog-to-Digital converter (ADC), which is encoded and sent
to the microcontroller unit (MCU).

In the first sub unit of the MCU, the data is encoded using the Delta technique, which
calculates the differences between the samples. The encoded data is subsequently stored
in system memory, where it is retrieved and transmitted whenever possible or requested.
The communication is wireless and uses the BLE protocol, which divides the information
into data packets stored and analysed on a host computer. The Control Unit supervises
all of these modules, which synchronises them; when a connection signal from the BLE
module alerts the Control Unit that a connection has been established, the system functions
(Figure 1).
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Figure 1. The system modules and interconnection design.

2.2.2. System Memory

After the encoding process, the data must be stored locally in the system and retrieved
before being transmitted to a receiver module outside the implanted device. The original
RNS system wand does not permanently store the data but instead mediates its transfer to
the central computer system [9]. As a result, to implement a single storage unit that will
allow data retrieval from previously stored data, buffers were used to hold the signals until
they are transmitted to the BLE unit, from where they will be wirelessly transmitted. The
buffers were implemented at the modelling and integrated circuit programming levels. To
model in MATLAB how data is stored and read from memory, a First-in-First-Out (FIFO)
buffer, which is a buffer based on the principle that whatever data is placed first is the first
to leave, was simulated. A FIFO buffer is described by two pointers set at the beginning
of the memory and indicates where the data is placed or removed. When pointers reach
the end of the structure, they move to the beginning of the buffer to continue writing or
reading, avoiding the overwriting of data that have not been transmitted and read yet.

2.2.3. Modelling in MATLAB

In the initial simulation of the system for storing and transmitting brain signals, a
function named delta_en was constructed in MATLAB (MATLAB R2021a). This function
takes data as input and calculates the differences between successive values of the EEG
signal in a loop of repetition. It then returns a one-dimensional encoded data array,
transformed into the binary system to compute the necessary bits. The conversion is
performed using the function decimal-to-binary (dec_2_bin), which determines the number
of bits required to represent the integer and decimal parts and uses sequential divisions to
calculate the binary form of the differences. The system determines the selection of all bits
under consideration, and an equal distribution would be preferable (16 bits for integer and
16 bits for decimal).

A part of the modelling is shown in Listing 1. After reading the data file, four channels
are chosen and transformed to binary form. The conversion occurs before encoding to
quantify the transitions. The entire algorithm comprises successive phases such as signal
reading and channel selection. These channels are then transformed to their binary form
(each value is represented by 32 bits) to calculate the initial 0-to-0 (zeros_2_zeros), 1-to-0
(ones_2_zeros), 1-to-1 (ones_2_ones), and 0-to-1 (zeros_2_ones) transitions. Finally, the
data is encoded (delta_en), and the new 0-to-0 (zeros_2_zeros), 1-to-0 (ones_2_zeros), 1-
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to-1 (ones_2_ones), and 0-to-1 (zeros_2_ones) transition measurements are computed to
compare them to the sets from the signal’s decoded state.

Listing 1. MATLAB modelling of decimal to binary conversion and calculation of the total number of
0-to-1 transitions.

c l e a r a l l ;
c l o s e a l l ;
c l c ;

%% reading the eeg from edf f i l e
f i l e = ‘D:\ chb01_03 . edf ’ ;
[ record , hdr ]=readEDF ( f i l e ) ;

%% s e l e c t i o n of 4 channels
%%with duration of 90 s (256 * 90=23 ,040 samples )
channel_1= record ( 2 1 , 2 3 0 4 0 : 4 6 0 8 0 ) ;
channel_2= record ( 2 2 , 2 3 0 4 0 : 4 6 0 8 0 ) ;
channel_3= record ( 2 3 , 2 3 0 4 0 : 4 6 0 8 0 ) ;
channel_4= record ( 2 0 , 2 3 0 4 0 : 4 6 0 8 0 ) ;

%% decimal to binary
bin_ch_1 = [ ] ;
bin_ch_2 = [ ] ;
bin_ch_3 = [ ] ;
bin_ch_4 = [ ] ;
f o r c o l s =1: length ( channel_1 )
out = [ ] ;
out= dec_2_bin ( channel_1 ( c o l s ) ) ;
bin_ch_1= [ bin_ch_1 ; out ’ ] ;
out= dec_2_bin ( channel_2 ( c o l s ) ) ;
bin_ch_2= [ bin_ch_2 ; out ’ ] ;
out= dec_2_bin ( channel_3 ( c o l s ) ) ;
bin_ch_3= [ bin_ch_3 ; out ’ ] ;
out= dec_2_bin ( channel_4 ( c o l s ) ) ;
bin_ch_4= [ bin_ch_4 ; out ’ ] ;
end
bin_ch_1=bin_ch_1 ’ ;
bin_ch_2=bin_ch_2 ’ ;
bin_ch_3=bin_ch_3 ’ ;
bin_ch_4=bin_ch_4 ’ ;

%% count 0−1 t r a n s i t i o n s
count1_z_2_o=zeros_2_ones ( bin_ch_1 )
count2_z_2_o=zeros_2_ones ( bin_ch_2 )
count3_z_2_o=zeros_2_ones ( bin_ch_3 )
count4_z_2_o=zeros_2_ones ( bin_ch_4 )

2.2.4. Buffer Implementation in VHDL

The second step of implementation comprises the methods for programming integrated
circuits and, in particular, the arrangement of the system’s memory. A FIFO buffer was
constructed in VHDL for this purpose, utilising the Quartus platform and ModelSim to write
and simulate the code. Some principles must be followed while designing a FIFO buffer
to fit the transmitting device. Initially, the FIFO buffer entity was built, which contains the
memory capacity and the size of each location in the memory, the clock, the reset variable,
the variables to permit writing and reading (en_w, en_r), the data array, and the buffer (full,
empty) control variables. Then the RAM implementation signals, the record counter (count),
the pointers of the writing and reading locations (input, output), and the auxiliary variables
for signalling the fullness and emptiness of the buffer (full_i, empty_i) were specified.
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In the architecture, the reset control is conducted to initialise the counter and pointer
values. These pointers increase every time data are read or written, and they are controlled
to avoid overwriting. This is accomplished by using the signal named “full” which, when
set to 1, prevents the addition of new values. When a new element is introduced to the
buffer, the counting signal is incremented by one. If an element is read, the counter is
decremented by one, and new memory space is made available to write a new value.
Furthermore, when the reading or writing pointer reaches the end of the buffer, it returns
to the start point, creating a circular motion of the pointers. Listing 2 has the above
requirements and is a part of the VHDL code.

Listing 2. VHDL code of the FIFO buffer.

FIFO_IMPL : process ( c l k ) i s
begin

i f clk ’ event and c l k = ‘1 ’ and clk ’ l a s t _ v a l u e = ‘0 ’
then

i f r s t = ‘1 ’ then
count <= 0 ;
input <= 0 ;
output <= 0 ;
data_read <= ( others => ’ 0 ’ ) ;

e l s e

−−reduct ion of count when a value i s being read
i f ( en_r = ’ 1 ’ ) then

count <= count − 1 ;
end i f ;

−− w r i t t i n g process
i f ( en_w = ’1 ’ and f u l l _ i = ’ 0 ’ ) then

i f input= RAM_L−1 then
input <= 0 ;

e l s e
input <= ( input + 1 ) ;

end i f ;
ram ( input ) <= data ;
count <= count + 1 ;
end i f ;

−−reading pointer update
i f ( en_r = ’1 ’ and empty_i = ’ 0 ’ ) then

i f output = RAM_L−1 then
output <= 0 ;

e l s e
data_read <= ram ( output ) ;
output <= output + 1 ;

end i f ;
end i f ;

end i f ;
end i f ;

end process FIFO_IMPL ;
f u l l _ i <= ’1 ’ when count= RAM_L e l s e ’ 0 ’ ;
empty_i <= ’1 ’ when count = 0 e l s e ’ 0 ’ ;
f u l l <= f u l l _ i ;
empty <= empty_i ;
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2.2.5. Data Transmission with BLE

After the neurostimulator has been implanted and activated for recording, the following
step gathers the EEG data collected by the implanted electrodes. The rod is employed
to initiate the transmission of signals via the RF communication protocol. The bar is
then linked via a USB connection to a portable computer unit, where the data is kept for
monitoring and patient assessment purposes. Many gadgets, including mobile phones,
WIFI devices, satellite communications systems, and Bluetooth, employ electromagnetic
radiation or electromagnetic radio waves to transmit and receive data wirelessly. It is
separated into frequency bands (low, medium, and high) to make tuning the devices more
accessible.

As proof of concept, an Arduino platform was programmed to gather data from
a computer, encode it, store it, and deliver it via the BLE communication protocol to
demonstrate the system’s functioning. The Arduino model used was the Arduino Nano 33
BLE because it already integrates the BLE module. To enable Arduino for data transmission,
each value must be divided from 32 bits of information in the form of four bytes. When
new data arrives on the computer’s serial connection, the Arduino reads it in groups of four
bytes. After transferring a data packet, the Arduino gets a signal indicating that information
is available (Serial. available () > 0). As a result, it begins receiving this data (Serial. read ()),
saving it in a struct that takes quadruple Bytes, which it joins (fourByteMerge) to produce
the 32-bit long integer that represents the same bits as the EEG signal’s equivalent floating-
point element. The integers are then saved in a FIFO buffer (buff.push ()), and when it is full
(buff.size () equals a specific amount), data extraction (buff.pop ()) is enabled as depicted in
Figure 2. The RingBuf.h library contains functions for this type of FIFO buffer. The large
numbers that depart the buffer are broken down into 4-byte clusters and wirelessly sent via
the BLE (valueLevelChar.write value ()) protocol (showing in Listing 3). Simultaneously,
a link has been formed between the Arduino platform and another device (central) that
supports the communication protocol. In our case, the central device was a mobile phone
with the “nRF Connect” application installed. The code appearing below implements what
we describe above.

Figure 2. Evaluation of accurate EEG data transmission with Arduino. The values received by
Arduino from the computer are identical to the values transmitted to the smartphone.
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Listing 3. Arduino code for the evaluation of the transmission with BLE protocol.

void updatevalueLevel ( ) {

byte b1 , b2 , b3 , b4 ;
i n t num1, num2, num3, num4 ;
i f ( ! buf f . i s F u l l ( ) ) {
f o r ( i n t i =0 ; i <64; i ++){

i f ( S e r i a l . a v a i l a b l e ( ) ) {
combined . p ar t s . f i r s t B y t e = S e r i a l . read ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) = = 0 ) {
}
combined . p ar t s . secondByte = S e r i a l . read ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) = = 0 ) {
}
combined . p ar t s . th i rdByte = S e r i a l . read ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) = = 0 ) {
}

combined . p ar t s . fourthByte = S e r i a l . read ( ) ;
// combine a l l the bytes
// to c r e a t e the long i n t e g e r
combined . merged =
( ( unsigned i n t )
( combined . p a r t s . f i r s t B y t e ) < <24)|
( unsigned i n t )
( combined . p a r t s . secondByte <<16)|
( unsigned i n t )
( combined . p a r t s . thirdByte <<8)|
( unsigned i n t )
( combined . p a r t s . fourthByte ) ;
// d e l t a encoding
cur_val= combined . merged ;
d e l t a = cur_val −prev_val ;
buf f . push ( d e l t a ) ;
prev_val=cur_val ;
l ength_buf f ++;

}
}

3. Results

The essential criteria for assessing the specific study is the management of the system’s
functioning in terms of its design parameter, i.e., the low energy consumption. The system
takes a proportion of energy to operate, and the primary purpose is to conserve as much
as possible so that battery replacement and recharges are taking place significantly less
often. The power and how it is consumed in the system are considered for this reason.
However, the question of how the evaluation would be conducted emerges. As described
in earlier sections, the EEG signal transmitter was implemented in three fundamental
ways: modelling, integrated circuit programming, and Arduino programming. Energy
consumption may be calculated both at the modelling and data transmission levels using
Arduino. In the first one, the energy reduction between encoded and non-coded channels
is computed using a virtual technique, while in the other, a reasonably simple method
is to connect the Arduino to a power bank and monitor the time it takes to transmit a
signal before and after processing. No energy evaluation is undertaken in the second level
because the VHDL programming level concerns memory structure.
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Power consumption, in integrated systems, is calculated as a percentage of energy
consumed per unit of time and can take two forms: dynamic consumption and static
consumption. The equation for dynamic consumption is:

PD = CL × V2
DD × Fclk × a (1)

which is related to the proportion of transitions (switching power a) from zero to one,
the capacitance (C), the voltage (VCC), and the frequency (Fclk)) of the circuit. Various
parameters may be addressed to obtain the energy reductions necessary to power circuits.
The transition factor influences the transition frequency. In general, the lower this rate, the
fewer transitions required and less energy spent because the switches 0-to-1 are fewer.

The second type is static power consumption, which occurs while the system is idle.
This type of consumption depends on the leakage currents that occur when the device is
not operating. It is determined by the following equation:

PS = V2
CC × VCC (2)

where ICC and VCC correspond to the average current circulating at the circuit and the voltage.
All transitions affect static consumption almost as much as dynamic consumption.

Voltage and capacitance, for example, are circuit properties, so what can be easily moni-
tored since it depends on the signal are the many forms of transitions. The total number
of transitions was multiplied by an estimated weight to evaluate their contribution to
consumption. The weight for 0-to-1 transitions was calculated by adding the number of
different types of transitions (0-to-1, 1-to-1, 0-to-0, 1-to-0) and the contribution of static
consumption. As a result, the weight for the 0-to-1 transitions was five times greater than
the weight for the other transitions.

In Table 1, the columns correspond to the following:

• A0: The channels being studied.
• A1: Transitions from 0 to 1 prior to Delta coding (calculated by multiplying all transitions).
• A2: The transitions from 0 to 1 following Delta coding (estimated by multiplying the

total transitions by weight). Comparison results are given in Figure 3.
• A3: Total number of transitions prior to coding ((0-0) + (1-1) + (1-0) + 5 * (0-1)).
• A4: The total number of transitions following coding ((0-0) + (1-1) + (1-0) + 5 * (0-1)).

Comparison results are given in Figure 4.
• A5: The percentage of reduction of total transitions.
• A6: The percentage of reduction of transitions 0-1.

As a result of the implementation, the 23 EEG channel consumption presented with an
overall reduction of transitions from 0 to 1, ranging from 5.9114% to almost 23.2% between
non-coded and encoded signals (Figure 5). The reduction was not significant in some
channels (channels 12 and 16), but this can be explained by the fact that power reduction is
also dependent on the signal characteristics from specific leads. The use of Delta coding
reduced the number of transitions by up to 10% (Figure 6), indicating that the specific
solution can extend the power life-cycle of neurostimulation devices.

Table 1. Comparison of the transitions before and after Delta encoding.

A0 A1 A2 A3 A4 A5 A6

1 673,220 549,515 1,264,096 1,164,980 7.8409 18.3751
2 669,515 527,270 1,260,845 1,147,182 9.0148 21.246
3 664,420 513,600 1,257,039 1,136,120 9.6194 22.6995
4 667,430 528,945 1,259,597 1,148,392 8.8286 20.749
5 686,040 571,775 1,274,460 1,182,678 7.2016 16.6557
6 684,600 567,005 1,273,248 1,178,986 7.4033 17.1772
7 667,360 535,950 1,259,546 1,154,084 8.373 19.691
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Table 1. Cont.

A0 A1 A2 A3 A4 A5 A6

8 674,605 561,470 1,265,401 1,174,766 7.1626 16.7706
9 684,020 571,605 1,272,830 1,182,544 7.0933 16.4345

10 685,315 554,900 1,273,815 1,169,322 8.2032 19.0299
11 671,190 542,465 1,262,620 1,159,265 8.1858 8.1858
12 679,765 627,555 1,269,519 1,227,736 3.2912 7.6806
13 674,980 601,435 1,265,526 1,206,553 4.66 10.8959
14 672,665 595,725 1,263,714 1,202,193 4.8683 11.4381
15 673,250 534,130 1,264,391 1,152,470 8.8518 20.6639
16 676,825 636,815 1,267,159 1,235,278 2.5159 5.9114
17 691,235 568,575 1,278,594 1,180,287 7.6887 17.7451
18 685,225 568,765 1,273,732 1,180,522 7.3179 16.9959
19 668,810 513,760 1,260,744 1,136,281 9.8722 23.183
20 661,190 586,285 1,254,508 1,194,316 4.7981 11.3288
21 676,470 584,705 1,266,865 1,193,110 5.8219 13.5653
22 659,300 528,790 1,253,064 1,148,467 8.3473 19.7952
23 673,250 534,130 1,264,391 1,152,470 8.8518 20.6639

Figure 3. Bar chart of 0-1 transitions before and after Delta encoding for all the leads examined.

Summing up the findings of this study, a comparison was performed on three different
configurations of a system sampling EEG signals, storing them and transmitting to an
external device. The implementations under comparison include only the components that
were considered, namely the Input Interface, the Encoder, the Memory, the Compressor
and the Transmission Unit. Specifically, a XILINX PYNQ development board was used (in-
tegrating a ZYNQ-7000 series device), embedding additionally a BLE component (Arduino
compatible) for the transmission. The three system configurations are the following: (1) A
system implementing the Input Interface, a Memory and the Transmission Unit. This is the
case of raw data storage and transmission. (2) A system implementing the Input Interface,
a Memory, a Compressor, and the Transmission Unit. This is the most common case of
raw data storage and compressed data transmission. The compressor that was selected
was the Compressed Sensing (CS), which is widely used for energy consumption and data
compression. (3) The proposed system implementing the Input Interface, a Delta Encoder,
a Memory and the Transmission Unit.
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Figure 4. Bar chart of 0-0, 0-1, 1-0, and 1-1 transitions before and after Delta encoding for all the
leads examined.

Figure 5. Bar chart of % reduction of 0-1 transitions after the encoding.

Figure 6. Bar chart of % reduction of 0-0, 0-1, 1-0, and 1-1 transitions after the encoding.
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Observing the results given in Table 2, we notice that the compression of data benefits
the system since it reduces data to be transmitted; however, overall power consumption
is significantly increased due to the complexity of the algorithm and the time required to
finalise data compression. For this reason, the implanted systems do not transmit data
frequently. In contrast, the proposed work depicts that Delta encoding is not increasing
power consumption and encoding is performed in real-time. Furthermore, it presents
lower power consumption by the other configurations making it suitable for implanted
devices requiring extended battery autonomy. Notice that the power dissipation of the BLE
module is not given by any tool. It was derived by exhaustive measuring of the overall
power dissipation of the system powered by a limited energy source and measuring the
data received to the external device. The data that were used for evaluation is the case
21 depicted in the figures. Any comparison to other systems may not be possible, since they
do not offer details of power consumption for each component but rather the overall power
consumption. Since this is industrial material, there is no access to this information and
our study was focused only in the case of light data encoding for power savings during
wireless transmission of data.

Table 2. Comparison of three configurations in Xilinx ZYNQ-7000 device.

I.I. Encoder Memory Compressor BLE Total

FF LUT
(%)

FF DSP
(%)

BRAM
(%)

Power
(W)

BRAM
(%)

Power
(W)

LUT
(%)

FF DSP
(%)

BRAM
(%)

Power
(W)

Power
(W)

Power
(W)

1 32 - - - - - 40 0.072 - - - - - 0.18 0.252

2 32 - - - - - 40 0.072 42 20 7 30 0.221 0.14 0.433

3 32 16 32 0 0 0.004 40 0.072 - - - - - 0.16 0.236

4. Discussion

The use of neurostimulation for the treatment of epilepsy has markedly increased in the
past decade, especially in the USA where the closed-loop RNS system and the most recent
open-loop DBS Percept Medtronic device have both been approved by the American Food
and Drug Administration (FDA) for use in epilepsy patients and have been evaluated to be
refractory to both anti-epileptic medication and traditional resective surgery [8–10,12,13].
The fact that the use of these devices in clinical trials has been reliably shown to improve
seizure control and the quality of life of epilepsy patients [29–32], has drawn interest in
advancing their technology and extending their potential [33]. Nevertheless, these devices
are facing an important issue of short battery life-cycle, assessed to last between 3 and
5 years for DBS [34] and about 3.5 years for the RNS system [32]. As the battery change in all
implanted neurostimulation devices requires the patient to undergo a brief but non-trivial
surgical procedure under general anesthesia, the power consumption of these devices
becomes a key factor that affects both the healthcare costs and the patient’s well being.

Our study investigated and implemented low power strategies targeted for neurostim-
ulation systems in the field of epilepsy that incorporate EEG recording and transmission
in either open (DBS Percept Medtronic) or closed-loop (RNS) schemes. The wireless data
encoding and transmission system was implemented by means of MATLAB modelling,
VHDL coding for integrated systems, and BLE simulation using an Arduino-based system.
Furthermore, three systems configurations were examined in a development board em-
bedding a Xilinx ZYNQ-7000 device to measure the power consumption of the proposed
system. We used EEG datasets from epilepsy patients, and fed the data through our system.
Our implementation resulted in an overall reduction of 0-to-1 transitions up to 23%, with
the system’s autonomy increasing as a result of Delta encoding. Our results show that the
strategies we employed are directly affecting the energy consumption during BLE trans-
mission; the core concept of this work is focusing on this. However, it should be noted that
power dissipation is not reduced exclusively by this process but additionally from the data
encoding procedures in the system. The Delta encoding is requiring the least processing
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power, as supported by the literature described in the Methods section, and only its effect
on data transmission is considered in this work for extending the system’s autonomy.

The development and implementation of low power techniques to minimise power
consumption in neurostimulation systems for the treatment of epilepsy is an important
step towards the design of more sustainable neurostimulators. Energy efficiency implanted
devices such as these will save the healthcare system from repeated and costly battery
replacement procedures, as well as the patients from being subjected to regular invasive
operations under general anesthesia. Our first approach presented here towards this goal
has been successful and we envision the application of low power strategies so as to include
all functions of a typical neurostimulation device.
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