
����������
�������

Citation: Gkamas, T.; Karaiskos, V.;

Kontogiannis, S. Performance

Evaluation of Distributed Database

Strategies Using Docker as a Service

for Industrial IoT Data: Application

to Industry 4.0. Information 2022, 13,

190. https://doi.org/10.3390/

info13040190

Academic Editor: Habtamu Abie

Received: 16 March 2022

Accepted: 7 April 2022

Published: 9 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Performance Evaluation of Distributed Database Strategies
Using Docker as a Service for Industrial IoT Data: Application
to Industry 4.0

Theodosios Gkamas, Vasileios Karaiskos and Sotirios Kontogiannis *

Laboratory Team of Distributed Microcomputer Systems, Department of Mathematics, University of Ioannina,
45110 Ioannina, Greece; tgkamas@gmail.com (T.G.); vaskaraiskos@gmail.com (V.K.)
* Correspondence: skontog@uoi.gr; Tel.: +30-26510-0-8252

Abstract: Databases are an integral part of almost every application nowadays. For example, applica-
tions using Internet of Things (IoT) sensory data, such as in Industry 4.0, are a classic example of an
organized storage system. Due to its enormous size, it may be stored in the cloud. This paper presents
the authors’ proposition for cloudcentric sensory measurements and measurements acquisition.
Then, it focuses on evaluating industrial cloud storage engines for sensory functions, experimenting
with three open-source types of distributed Database Management Systems (DBMS); MongoDB and
PostgreSQL, with two forms of PostgreSQL schemes (Javascript Object Notation (JSON)-based and
relational), against their respective horizontal scaling strategies. Several experimental cases have been
performed to measure database queries’ response time, achieved throughput, and corresponding
failures. Three distinct scenarios have been thoroughly tested, the most common but widely used:
(i) data insertions, (ii) select/find queries, and (iii) queries related to aggregate correlation functions.
The experimental results concluded that PostgreSQL with JSON achieves a 5–57% better response
than MongoDB for the insert queries (cases of native, two, and four shards implementations), while,
on the contrary, MongoDB achieved 56–91% higher throughput than PostgreSQL for the same set up.
Furthermore, for the data insertion experimental cases of six and eight shards, MongoDB performed
13–20% more than Postgres in response time, achieving × 2 times higher throughput. Relational
PostgreSQL was × 2 times faster than MongoDB in its standalone implementation for selection
queries. At the same time, MongoDB achieved 19–31% faster responses and 44–63% higher through-
put than PostgreSQL in the four tested sharding subcases (two, four, six, eight shards), accordingly.
Finally, the relational PostgreSQL outperformed MongoDB and PostgreSQL JSON significantly in
all correlation function experiments, with performance improvements from MongoDB, closing the
gap with PostgreSQL towards minimizing response time to 26% and 3% for six and eight shards,
respectively, and achieving significant gains towards average achieved throughput.

Keywords: database systems; performance evaluation; containers as a service; docker; MongoDB;
PostgreSQL; industrial systems; IoT data; industrial IoT; big data

1. Introduction

Industry 4.0 [1] is progressing at a significant pace nowadays. Information is gath-
ered from numerous machines, devices, sensors, or embedded systems [2]. Through the
industrial internet of things (IIoT), such as wireless sensors and actuators, the digital era
has been followed by the intelligent one [3]. Consequently, advanced manufacturing based
on network and application data must be considered.

Smart objects can communicate with each other as part of an internet of everything
(IoE) deployment architecture [4] and can provide tools such as big data analytics and cloud
computing [5], leading to the creation of cyber–physical production systems (CPPS) [6].
CPPSs have a great impact on machine to machine (M2M) coordination, interaction, and
interoperability [7]. Furthermore, there are additional advantages of using smart sensors,

Information 2022, 13, 190. https://doi.org/10.3390/info13040190 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13040190
https://doi.org/10.3390/info13040190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1360-3367
https://doi.org/10.3390/info13040190
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13040190?type=check_update&version=2

Information 2022, 13, 190 2 of 16

including their low cost, faster decision making, and the optimization of supply chain
management [8].

Gathering the measurements of a set of IIoT sensors requires an appropriate control
system. Two main concepts exist in the industry, DCS and PLCs. A decentralized control
system (DCS) is a control method with some independent CPUs. If one fails, the other
CPUs will continue executing their function (exhibiting fault tolerance). DCS is more
appropriate for continuous processes, including many analog/digital sensors/signals and
PID (proportional, integral, derivative) control loops. Programmable logic controllers
(PLCs) use a single CPU capable of controlling the whole process. Therefore, PLCs are
more suitable for discrete processes’ automation, such as an automobile assembly line
in which there are lots of digital signals and a few analog signals. Through their open
source communications using fiber optics or Ethernet networks, PLC based systems can
be designed as autonomous and communicate over the network to other autonomous
controllers. That wide reaching communication would allow one control system to be in
charge of a single or multiple processes.

Distributed database systems are compulsory in order to handle massive datasets and
perform big data analytics. These storage systems are protrusive due to three main factors:
(a) system scalability (horizontally or vertically), meaning that the created database must be
able to manage and store a huge and incremental in time amount of spatial or time variant
data, allowing applications to fetch them efficiently; (b) interactive performance upon
fetching client requests; and (c) properly secured operations. The authors of [9], highlighted
a few challenges in managing and querying the massive scale of spatial data, such as the
high computation complexity of spatial queries and the efficient handling of their big data
nature. Benchmarks are fundamental in examining the performance and functionality of
spatial databases and distributed database deployments. Such deployments are examined
in this paper using an open source NoSQL implementation of MongoDB and open source
PostgreSQL and its NoSQL JSON field. Moreover, the authors of [10] highlighted the im-
portance of security, both for relational and NoSQL databases, by exposing the underlying
vulnerability of open databases in three Baltic countries. In this direction, ref. [11] discusses
cyberattacks that have taken place, targeting unsecured MongoDB servers.

MongoDB [12] is an open source, document based NoSQL database. In these systems,
data entities are saved in collections, called documents, which provide some structure and
encoding of the collected data. Each document is an associative array of scalar values, lists,
or nested arrays. As in every NoSQL system, in MongoDB, there are no schema restrictions
and it can support semistructured data and multiattribute lookups in records with different
kinds of key–value pairs [13]. Sharding [14] is MongoDB’s process for distributing data
across multiple machines. MongoDB’s sharding deploys very large datasets and high
throughput operations. The sharding method divides the system dataset and loads over
multiple servers, meaning additional servers are combined with increased capacity, as
required. In cases where a single machine’s overall speed or capacity may not be high, using
sharding, we enable each machine to process a subset of the overall workload, potentially
achieving better efficiency than a single high speed, high capacity server. Adding additional
servers will eventually expand deployment capacity with a lower overall cost than having a
single high end machine. In this case, the trade off is increased complexity in infrastructure
and deployment maintenance. It is worth mentioning that MongoDB sharding is supported
natively by MongoDB and requires no additional libraries.

PostgreSQL is an open source object relational database management system (OR-
DBMS), started in 1986 at the University of California at Berkeley and with more than
35 years of effective development on the core platform [15]; it is transactional by default
(it does not support read uncommitted isolation). In addition, there are several extensions
available online that integrate specific data and support a diversity of properties, such
as TimescaleDB [16] for time series comprising and storing enormous amounts of data
for cloud infrastructure metrics, products, web analytics, and IoT devices. Regarding
PostgreSQL scaling, an open source extension of PostgreSQL is used, called Citus [17].

Information 2022, 13, 190 3 of 16

Citus distributes data and queries across multiple nodes in a cluster, thus transforming
PostgreSQL into a distributed DBMS, enhanced with features such as sharding, replication,
a distributed SQL engine, and reference and distributed tables. Although Citus extends
PostgreSQL with distributed functionality, it is not a drop in replacement that scales out
all workloads. A performant Citus cluster involves considering the data model, tooling,
and choice of SQL features to be used. Furthermore, Citus is not supported natively by
PostgreSQL and requires additional libraries to be installed. Other useful extensions are
PostgreSQL pg-stat-statements [18], which tracks statistics on the queries executed by a
PostgreSQL database, and PostGIS [19], which extends PostgreSQL to handle spatial data
and data types, also supporting geographically separated objects.

For the deployment of distributed database nodes, Docker containers are utilized that
communicate over OpenVPN secure channels. Docker [20] is an open source platform
allowing developers to package their applications and offer services into containers, en-
abling the separation of applications from their originally created infrastructure, increasing
application portability, and guaranteeing that the containerized application is installed and
executed with an identical result on every system.

In this paper, the authors evaluate the performance in terms of response time, achieved
throughput, and loss between scalable distributed datastores, utilizing MongoDB [21] and
two modifications of the open source OR-DBMS, a PostgreSQL [22] one with relational,
and one with JSON, files. Each system has been evaluated as a standalone server with a
native installation of each DBMS against four deployments of their distributed clustered
servers, deployed as containers on the physical server utilizing Docker as a builder and
orchestrator. MongoDB will be using one query router server, one configuration server, and
shard servers of two, four, six, and eight nodes, respectively, while PostgreSQL will be using
one coordinator node with worker nodes of two, four, six and eight nodes, respectively.

The rest of this manuscript is organized as follows. Section 2 contains the bibliography
about Industry 4.0 and relational and nonrelational databases. Section 3 presents the
Industry 4.0 architecture and capabilities. Section 4 describes the selected performance
evaluation using industrial data and the obtained results, Section 5 further discusses the
findings and Section 6 presents the application to Industry 4.0. Finally, Section 7 concludes
this paper.

2. Related Work

According to the authors’ previous work [23], MongoDB is between 19–30% faster
than PostgreSQL at insert queries, achieving 51–55% higher throughput. At the same
time, relational PostgreSQL is four times faster than MongoDB and two times faster than
Postgres JSON at selection queries, achieving 31–35% higher throughput. The Relational
PostgreSQL performed equally to Postgres JSON in terms of response time to correlation
function queries, while both of them outperformed MongoDB by 3.6 times. MongoDB
achieved 19–24% higher throughput than Relational PostgreSQL and Postgres JSON for
aggregation function queries. Rossman [24] determined that the PostgreSQL database
was measured to be 4–15 times faster than MongoDB in transaction performance testing
conducted by OnGres [25]. The tests concluded that PostgreSQL is the leading choice if
a fast performance with lower latency is required. For example, suppose an application
relies on a relational database with a scale-up architecture or delivers thousands of queries
from hundreds of tables. In that case, PostgreSQL is the most suitable solution [26].
Martins et al. [27] compared seven NoSQL databases, such as MongoDB, Cassandra,
HBase, OrientDB, Voldemort, Memcached, and Redis, by measuring the execution time
of seven workloads through the Yahoo Cloud Serving Benchmarking (YCSB) Tool, which
provides the execution of put and get operations. According to their evaluation, Redis,
Memcache, and Voldemort achieved the best performance due to their fast in-memory,
although expensive operations, while document-based OrientDB and MongoDB showed
the slowest performance. Additionally, the authors concluded by creating two groups of
databases: (a) MongoDB, Redis, Memcached, OrientDB, and Voldemort being optimized

Information 2022, 13, 190 4 of 16

for reading operations; and (b) Cassandra and HBase for updates/writes. Two years later,
Martins et al. [28] extended their previous work, concluding that Cassandra outperformed
in all testing cases, while, on the other hand, MongoDB achieved slightly better results
than Cassandra in cases where hardware resources are limited. Seghier and Kazar [29]
compared three NoSQL databases, Redis, MongoDB and Cassandra. Redis was found to be
more efficient in reading operations, while MongoDB confirmed its superior performance
in write operations.

Additionally, the scaling process depends on if a read or write operation is performed.
It is based on scale-up architectures, where the primary machine must be made powerful
enough to scale. For reads, functional scale-out is performed by creating replicas, where
each replica must contain a full database copy.

There are usually three models of cloud service to compare: (a) software as a service
(SaaS), e.g., Google Workspace, Dropbox, Salesforce, Cisco WebEx, Concur, GoToMeeting;
(b) platform as a service (PaaS), e.g., AWS Elastic Beanstalk, Windows Azure, Heroku,
Force.com, Google App Engine, Apache Stratos, OpenShift; and (c) infrastructure as a
service (IaaS), e.g., DigitalOcean, Linode, Rackspace, Amazon Web Services (AWS), Cisco
Metapod, Microsoft Azure, Google Compute Engine (GCE) [30]. With SaaS, vendors man-
age all potential technical issues, such as data, middleware, servers, and storage, resulting
in streamlined maintenance and support for businesses. PaaS delivers a framework for
developers to build upon and use to create customized applications.

All servers, storage, and networking can be managed by the enterprise or a third-party
provider, while the developers can manage the applications. A platform is delivered via
the web, giving developers the freedom to concentrate on implementing software without
concern about operating systems, software updates, storage, or infrastructure. IaaS is
entirely self-service for accessing and monitoring computers, networking, storage, and other
services. IaaS allows businesses to purchase resources on-demand and as needed, instead
of investing in hardware outright. IaaS delivers cloud computing infrastructure, including
servers, networks, operating systems, and storage, through virtualization technology. These
cloud servers are commonly provided to organizations through a dashboard or an API,
giving IaaS clients complete control over the entire infrastructure. IaaS provides the same
technologies and capabilities as a traditional data center, without physically maintaining or
managing everything from scratch. IaaS clients can still access their servers and storage
directly, but it is all outsourced through a “virtual data center” in the cloud. As opposed to
SaaS or PaaS, IaaS clients manage aspects such as applications, runtime, OSes, middleware,
and data. However, providers of IaaS manage the servers, networking, virtualization, and
storage. Some providers even offer more services beyond the virtualization layer, such as
databases or message queues.

3. DBMS System Architecture for Industry 4.0 Standards

An industrial environment contains sensors that communicate with the corresponding
concentrators via control PLCs or DCS controllers. Such an environment allows data to
be transferred to the cloud distributed DB system from the controllers. This is performed
over a cloud based MQTT broker, which continuously receives measurements as encrypted
(Base 64) encoded JSON strings, handled asynchronously by the DB service. Primarily for
data storage, an intermediate service, MQTT to DB, exists, which decodes the obtained
encrypted IIoT data.

Secondly, an application server is used, offering real time and visualization services to
end-users. Such functionality is implemented via SDKs that issue PUT, POST, and GET
HTTP secure requests, permitting them to process, analyze and manage the collected DB
sensory information via HMIs over the web or mobile devices. In addition, application
tools such as Grafana and Telegraf or arbitrary custom implemented push notifications are
also utilized for visualization, statistical trends, and alert instances.

Such application services can also respond to incidents, apply AI smart agents and bots
generating mass notifications, and perform other capabilities, such as operation suggestions

Information 2022, 13, 190 5 of 16

or maintenance requests. Augmented reality is also incorporated into such application
services, with annotations for monitoring close to real time sensory measurements, as
illustrated in Figure 1.

Figure 1. Architecture of the proposed simulated infrastructure.

4. Database Performance Evaluation

This section presents the selected performance evaluation scenarios, dataset overview
and metrics used to experiment on IIoT data. The subsections that follow present the IIoT
dataset and evaluation metrics used, as well as the examined scenarios and results.

4.1. Dataset Overview

The used dataset, in order to perform the DBMS testing scenarios, was an industrial
compressor indexed by a hashed _id sensory data collection of 1 M records stored in one
table (for PostgreSQL) or one collection (for MongoDB) of equal size. The dataset consisted
of randomly generated data utilizing the same procedural method. Each record contained
23 attributes, such as a unique identifier that each DBMS would generate at successful
data insertion. A “tag ID” field containing the tag identifier for the simulated device, a
subcollection named “rxInfo” containing the simulated device’s informational fields, and
a subcollection named “data”, which includes the sensor measurements, were included.
The informational fields consisted of the received signal strength indicator (RSSI), the GPS
location coordinates of the physical device, the collector’s gateway ID, and the timestamp
of each measurement. The sensor measurements consisted of the rotation per minute (RPM)
measurements, temperature measurements around the engine axis and engine frame,
measured in ◦C, and 3D Cartesian plane vibration vectors of four acceleration sensors
placed on the NW, NE, SW, SE of the simulated engine frame, measured in m/s2.

The constructed dataset has been used to consider real world applications and needs,
utilizing a variety of information necessary for daily operations in an industrial setting.
The total size of the records was decided to be 1 M in order to fit both the criteria of being
large enough for an IoT database set consisting of millions of network packet transactions
between the IoT devices and database servers, and small enough to perform a simulation
of a real world deployed platform, as part of the proof of concept.

4.2. Evaluation Metrics

The paper follows the example of [23,31]; for their performance evaluation experiments
using industrial IoT sensory data, the authors used the following metrics: (a) average
response time, (b) jitter, (c) average achieved throughput, and (d) failure, meaning either
database inability to process a query, or to set a unique key to the record during the
insertion time.

Information 2022, 13, 190 6 of 16

4.3. Performance Evaluation Set Up

The selected clustering system consists of 20 client nodes and a server. Each client
node is a PC running Linux Slax 4.9.0-11-686 SMP Debian 4.9.189-3 in a virtual box with
an AMD Ryzen 32,200 G CPU and 1.5 GB RAM, while the server is a PC running Linux
Ubuntu 20.04.3 with an Intel Xeon E5-2640 2.5 GHz (24 cores) CPU and 32 GB RAM.
PostgreSQL version 14.1 and MongoDB version v5.0.3 were used for the native installation
on the server, while, on the distributed DBMS, Docker v20.10.12 was used to build and run
the containerized clustered servers of the same version, respectively. The DBMS testing
scenarios were designed to simulate real world case scenarios. For this experiment, three
separate use cases were selected, composed of:

• Nonrelational MongoDB document styled records.
• Nonrelational JSON Postgres document styled records.
• Relational PostgreSQL table row styled records.

For each case, three separate scenarios were selected for testing purposes:
(Q1) Insert query: data records will be generated and inserted into the DBMS using

the network of 20 computers in multithreaded order consisting of five test cases S =
{native, 2, 4, 6, 8} shards with T = {10 K} inserts per second on each of the DBMS use cases.

(Q2) Select query: Utilizing the databases constructed in the previous test scenarios,
selection queries will be performed on the DBMS to fetch data that match the filtering
condition. For this case, the query’s dataset returns all matching records(lines/documents)
from the table/collection. All fields are procured only if the “tag ID” is matched from the
variables set that the executing algorithm produces. The variable set is randomly selected
from a list containing all tables/collections paired with each unique “tag ID” within said
table/collection. The queries will be performed in a similar structured algorithm as in
“Data insertion”, utilizing the same network in a similar multi-threaded order to the S test
cases of T QPS, up to the maximum network throughput.

(Q3) Correlation function query: In order to perform a complex type of querying, the
same setup as will be the “Data querying” is used, differentiating, in the expected dataset
containing one single record, only the arithmetic mean of each “data” subcollection field
(sensor measurements). Data correlation queries will be performed in the same network as
before, in similar multithreaded order to the S testing cases of T QPS, up to the maximum
network throughput.

All testing scenarios will be evaluated and confirmed by replicating the same results.
Results are stored in JSON trace files for ease of access and processing.

4.4. Experimental Results

Prior to the experimentation, we shall introduce some generic comments. The size of
each of the three databases is a total of 1 M records. Every scenario is executed 50 K times
for verification.

4.4.1. Scenario (Q1)—IIoT Data Insertion

According to Table 1, Postgres with JSON data types achieved a better response
time than MongoDB, in the first three out of five tested deployments, by 57% in native
deployment, and 5%, and 7% in the distributed deployments of two and four servers,
respectively, while MongoDB achieved an overwhelming throughput performance against
PostgreSQL in all deployments: by 56–61% in native deployment and 88–91%, 69% and × 2
in the distributed deployments. Postgres JSON data types performed slightly better than
relational data types in native and two worker node deployment while converging on the
four/six/eight worker node deployments, thus achieving similar throughput. Due to the
high client achieved throughput (10 K), Postgres with JSON appeared to produce failures
in the standalone version, in the order of 0.0002%, as a result of its inability to assign a
unique key to the record in a reasonable time.

Information 2022, 13, 190 7 of 16

Table 1. Average of response time and throughput, jitter and failure in MongoDB, Postgres JSON and
Relational PostgreSQL for the representative case of 10 K client throughput in the insert (Q1) case.

Scenarios Database Type Average Response Jitter Failure Average Achieved
Time (s) (%) TP

Native
MongoDB 0.149 0.044 0.00 390
Post-JSON 0.095 0.043 0.0002 250

Post-Rel. 0.103 0.046 0.00 243

Two shards
MongoDB 0.185 0.145 0.00 332
Post-JSON 0.177 0.042 0.00 177

Post-Rel. 0.182 0.043 0.00 174

Four shards
MongoDB 0.210 0.084 0.00 279
Post-JSON 0.196 0.051 0.00 165
Post-Rel. 0.196 0.052 0.00 165

Six shards
MongoDB 0.180 0.057 0.00 320
Post-JSON 0.216 0.061 0.00 155
Post-Rel. 0.215 0.056 0.00 156

Eight shards
MongoDB 0.190 0.069 0.00 305
Post-JSON 0.232 0.064 0.00 148
Post-Rel. 0.231 0.073 0.00 149

4.4.2. Scenario (Q2)—IIoT Data Selection

In this scenario, the authors fetch 0.1% of 1 M records in each database (around 1 K
records). Table 2 shows that PostgreSQL with relational data types was × 2 times faster
than MongoDB in terms of response time, achieving 35% higher throughput on the native
deployment, while MongoDB outperformed PostgreSQL with relational data types in all
distributed deployments by a 19% and 25% better response time, with 44% and 63% better
throughput in two and four shards/worker nodes, and 27% and 31% response time with
almost 63% and 50% higher throughput in six and eight shards, respectively.

Table 2. Average of response time and throughput, jitter and failure in MongoDB, Postgres JSON and
Relational PostgreSQL for the representative case of 10 K client throughput in the select (Q2) case.

Scenarios Database Type Average Response Jitter Failure Average Achieved
Time (s) (%) TP

Native
MongoDB 4.28 1.33 0.00 17
Post-JSON 4.55 3.17 0.00 12
Post-Rel. 2.13 1.74 0.00 23

Two shards
MongoDB 5.69 1.80 0.00 13
Post-JSON 11.41 2.64 0.00 6
Post-Rel. 6.78 1.58 0.003 9

Four shards
MongoDB 5.97 2.05 0.00 13
Post-JSON 12.49 3.92 0.003 5
Post-Rel. 7.47 1.42 0.00 8

Six shards
MongoDB 5.88 2.14 0.00 13
Post-JSON 13.12 4.69 0.00 5
Post-Rel. 7.46 1.76 0.00 8

Eight shards
MongoDB 6.35 2.58 0.00 12
Post-JSON 13.90 6.24 0.00 5
Post-Rel. 8.34 2.55 0.00 8

Postgres with JSON data types did not perform well (especially with Citus/sharding,
where it was found to be 2+ times slower than MongoDB), proving that it should not be
used in applications with big data querying.

Information 2022, 13, 190 8 of 16

Negligible failures, in the order of 0.003%, appeared in both Relational Postgres using
two shards and in Postgres JSON with four shards, due to the high client throughput
resulting in the incapability of the database to fetch the results in time.

4.4.3. Scenario (Q3)—IIoT Correlation Functions

Table 3 highlights that PostgreSQL with relational data types performed the best in all
deployments, achieving × 4 times, 57% and 15% better response time, with × 3.25 times
and 31% better, and a slightly worse throughput than MongoDB, on the native, two/four/
six/eight shards/worker nodes. As the distribution factor increased, MongoDB displayed
constant improvement, converging on the performance of PostgreSQL with relational
data types in both the throughput and the response time. Postgres with JSON data types
improved as well on 4+ worker nodes, although still not providing any additional benefit.

Table 3. Average of response time and throughput, jitter and failure in MongoDB, Postgres JSON
and Relational PostgreSQL for the representative case of 10 K client throughput in the correlation
(Q3) case.

Scenarios Database Type Average Response Jitter Failure Average Achieved
Time (s) (%) TP

Native
MongoDB 3.77 1.03 0.00 16
Post-JSON 5.05 1.29 0.00 11
Post-Rel. 0.93 0.23 0.00 52

Two shards
MongoDB 3.67 0.56 0.00 16
Post-JSON 6.72 1.45 0.00 8
Post-Rel. 2.34 0.40 0.00 21

Four shards
MongoDB 3.51 0.70 0.00 17
Post-JSON 4.36 0.87 0.00 12
Post-Rel. 3.06 0.47 0.00 16

Six shards
MongoDB 3.56 0.49 0.00 17
Post-JSON 4.77 1.09 0.00 12
Post-Rel. 2.83 0.56 0.00 17

Eight shards
MongoDB 3.57 0.47 0.00 17
Post-JSON 4.33 1.05 0.00 13
Post-Rel. 3.47 0.51 0.00 15

5. Discussion

Throughout this experiment, some key elements were observed. The native coun-
terpart outperformed every distributed DBMS due to additional calculations (overhead)
needed for every distributed query that was performed on each system. A detailed discus-
sion of the experimental results follows. In the Q1 and Q2 testing cases, every horizontal
scaling strategy had a negative impact on both the response time and the throughput of
each query on all the DBMS in question. In the Q3 testing case, distributed Postgres JSON
data types had a considerable improvement, outperforming even the native Postgres JSON
data types, while MongoDB had a noticeable improvement as well. Distributed PostgreSQL
relational data types performed the worst, in relation to their native counterpart. MongoDB
DBMS performance was impacted the least by the overhead calculations due to MongoDB
architecture being designed for horizontal scaling out. PostgreSQL DBMS with relational
data types and the Citus extension was negatively impacted the most, making the usage of
distributed clustering on relational data inefficient in industrial IoT data applications.

For the Q1 testing case (data insertion), MongoDB provided substantially better
throughput with longer response times up to four shards, delivering a staggering × 2 times
higher bandwidth (response time × achieved TP) than PostgreSQL. This can be interpreted
as MongoDB attempting to parallelize the insert queries rather than performing sequential
execution, which is preferred and highly recommended for industrial IoT data applications.

Information 2022, 13, 190 9 of 16

In this direction, MongoDB, with 6–8 shards configurations, decreased its response times
significantly, outperforming both versions of PostgreSQL.

Finally, Table 4 summarizes the performance in response time of MongoDB (as the
baseline) and the Relational PostgreSQL. It is noticeable that, although in native imple-
mentation, the relational PostgreSQL outperforms in all three testing cases; MongoDB
overturns the situation to its detriment by gaining significantly in performance as the num-
ber of shards increases, in contrast to Relational PostgreSQL performance, which decreases
dramatically. This phenomenon can be explained, because the sharding procedure acts
drastically and more efficiently in MongoDB, since MongoDB is designed with a sharding
strategy as a core functionality, resulting in minimal overhead, rather than any of the two
tested versions of PostgreSQL using the sharding extension.

Table 4. Percentages of inferiority (+)/superiority (−) in terms of response time between MongoDB,
as a baseline, and Relational Postgres.

Scenarios
Distributed Strategy

Standalone 2–4 Shards 6–8 Shards

Q1 −45% −2% to −7% +20% to +22%

Q2 −101% +19% to +25% +27% to +31%

Q3 −305% −57% to −15% −26% to −3%

Suggestions to Developers

Table 5 presents a concluding synopsis on which database schemes are suitable for
low or high QPS data collection burstiness for the three testing scenarios. According to
the table, standalone versions of Relational PostgreSQL are more efficient in all testing
cases for low QPS, while, on the contrary, distributed schemes, being benefited by the
sharding mechanism of six–eight shards, under MongoDB are preferable for all the cases in
situations being characterized by high data burstiness, highlighting that sharding is crucial
and mandatory for storing or fetching big data.

Table 5. Suggested database schemes depending on low, or high burstness categorization, where one
concentrator produces 10 sensor measurements per second. The first choice is written in bold, and
the second in italic.

Burstness

Scenarios LOW HIGH

(Up to 100 Concentrators/1 K QPS) (500–1 K Concentrators/5 K–10 K QPS)

Standalone Rel. Postgres 6-shards MongoDB
Q1 or or

Standalone Postgres JSON 6-shards Rel. Postgres

Standalone Rel. Postgres 8-shards MongoDB
Q2 or or

2-shards MongoDB 6-shards MongoDB

Standalone Rel. Postgres 8-shards Rel. Postgres
Q3 or or

2-shards Rel. Postgres 8-shards MongoDB

6. Application to Industry 4.0

In this section, the application of the distributed MongoDB architecture has been
selected using a NoSQL clustered sensory DB schema, due to its fair results if horizontally
scaled and its ease to store data as JSON records of variable size and fields. Furthermore,
appropriate case study services and applications are presented as part of the authors’

Information 2022, 13, 190 10 of 16

Industry 4.0 preventive maintenance procedures, specifically for equipment in large indus-
trial infrastructures. Details concerning the database architecture, the chosen broker, its
portability via docker, the CRUD, stat and assets managers, and the related JSON ReST
API follow.

6.1. Database Architecture

The DBMS implementation of the A.R.I.S. platform was chosen to build a horizontally
scaled sharded type system with replication (also, replica services coexist). This “Sharded
Replica” type system consists of two shards with three replica nodes, one configuration
server with three replica nodes, and one “mongos” query router. The replica design servers
will be exact copies of each other. This design achieves maximum consistency in read-
ing/writing data and protection from “Denial of Services” in case of the loss of the host
server. This function is achieved by defining one server as primary and using the other two
as secondary servers (Figure 2).

Figure 2. DBMS Architecture of the proposed simulated infrastructure.

The selected cloud servers consist of two Dell twin servers with Intel Xeon E5-2640
2.5 GHz (24 cores) CPUs and 32 GB RAM, running the Ubuntu Linux 20.04.3 operating
system, with two hard drives each in RAID 1 mode, and one computer used in the process
of developing the platform software, which carries Ubuntu Linux with a dedicated single
hard drive to store data as a support server. The three servers communicate through the
open source software OpenVPN (virtual private network) with personal identification keys,
in order to achieve secured connections.

The format of the data set is dynamic, and the ability of MongoDB to store dynamic
format data in a JSON format is one of the main reasons it was chosen to be used for
the authors’ case study, denoted as “Integrated Interactive Augmented Reality System
for Holistic Industrial Maintenance Management”. The data set, although dynamic, is
estimated to implement some basic features for each record (the 23 attributes mentioned in
Section 4.1).

6.2. Broker

The broker service that was chosen to be used for the needs of the system is the
Mosquitto MQTT Broker [32]. An appropriate VPN service has been used via OpenVPN to
communicate between DB shards and the MQTT broker. Appropriate agent services have
been written in Python using the Paho MQTT libraries and the PyMongo Python Driver
from the management of the clustered MongoDBMS service. The service was designed
to simultaneously process information through threads in the shortest possible time and
operate more efficiently in a multicore processor environment.

Information 2022, 13, 190 11 of 16

6.3. Database System Portability Extension

The DBMS for the clustered (sharded) database MongoDB platform uses an arbitrary
number of shards (scalable implementation) for horizontal scaling depending on the data
volume and usage. Each shard has been implemented into Docker containers (config
servers, shard servers, and mongos), with each one including its designated VPN key.

The orchestration of the containers is performed using the Docker-compose tool. The
system is described using the docker-compose.yaml file. This is, by default, initialized with
the orchestration of three configuration servers, two sharded clusters of servers consisting
of three replica servers each, and a mongos routing server divided into two physical servers.

6.4. CRUD Manager HMI

As part of the authors’ Industry 4.0 application services case study implementation for
data management, an appropriate MongoDB capable CRUD Manager Web HMI has been
developed. CRUD Manager includes the MongoDB DBMS, creating, reading, updating,
and deleting (CRUD). The CRUD Manager HMI is named A.R.I.S.-Resources Management
System and is illustrated in Figure 3.

Figure 3. CRUD Manager HMI.

The application has been implemented on a LAMP stack (Linux, Apache, MongoDB,
PHP), using the DataTables libraries, Mongo PHP Driver and jQuery, AJAX, HTML5, and
PHP. The HMI is set on a separate Docker container. It communicates with the database
over the virtual private network, implemented using the OpenVPN service and using x.509
authentication, as mentioned above. Through the CRUD Manager, the end-user can monitor
the data of the corresponding database, and select one of the following system functions:

• Sorting based on any field by clicking on the arrow of the desired column.
• Filtering data based on “tag ID” via the drop down menu or by date by clicking on the

text boxes and selecting the corresponding date via the date/time picker submenu.
• Selectively deleting single or multiple records using the Ctrl or Shift keys and selecting

the desired records to delete and pressing the red “Delete Selection” button on the
HMI. Deleting is carried out after user confirmation, and the page returns a success or
failure message.

• Showing measurements by pressing the blue button with a cross (+) or hiding mea-
surements by pressing the red button with a hyphen (-) on the left side of each record.

Information 2022, 13, 190 12 of 16

• Dynamically displaying panel size by selecting the desired display size in the drop
down menu “show 10/25/50/100 entries” in the center at the top of the HMI.

• Displaying recent measurements per “tag ID”, by selecting the desired “tag ID”
through the filtering function based on “tag ID” and then selecting the “Get Recent
Measurements” button.

6.5. JSON ReST API

As part of the authors’ DB interfacing with other applications, an appropriate ReST
SDK has been implemented. In addition, ReST API type commands have been created
focusing on data retrieval from the MongoDB clustered database. The access requires a
128 bit size key for identification, and the designated pump’s requested 64 bit “tag ID”.
Optional 8 bit field “offset” can also be used, which indicates the time distance between
measurements. In case of an error, the corresponding HTML error messages are propagated.

6.6. Stats Manager HMI

As part of the authors’ statistical trends visualization, an appropriate statistical web
dashboard manager, called the Stats Manager HMI, has been implemented. The use of
the TIG stack was chosen as one of the best open source choices, i.e., the combination of a
group of powerful open source monitoring tools, such as Telegraf [33], InfluxDB [34] and
Grafana [35]:

• Telegraf is an open source server agent for collecting and sending metrics and events
from IoT databases, systems and sensors.

• InfluxDB is an open source timeline database that provides data storage for real time
metrics, events, and analytics.

• Grafana is a data visualization and monitoring tool that supports time series data
repositories such as Graphite [36], InfluxDB [34], Prometheus [37], Elasticsearch [38].

For real time services and alert issuing implementations, appropriate Python scripts
have been created that broadcast real time sensory records as HTTP push notifications
via the ReST API. Finally, as part of the authors’ case study implementation, subsequent
dashboards have been created in the Stats Manager with three panels that each corre-
spond to one of the measurements—RPM, engine shaft temperature, and engine frame
temperature—and three more complex panels that correspond to the measurements vibra-
tion, i.e., vibrations on the X, Y and Z axis of an industrial pump. The user configures the
dashboard to select the “tag ID” to display the chosen data concentrator Gateway ID by
selecting the corresponding field from the drop down list at the top left of the Stats HMI.
The selection of the desired data time periods to be displayed can also be arbitrarily se-
lected. Each of the panels representing the RPM, axial temperature and frame temperature
measurements consists of:

• The most recent measurement displayed on the left side of the panel,
• Statistical values of the selected time period for the maximum value (max), the mean

value (mean), and the minimum value (min), displayed on the center left side of the
panel (Figure 4a),

• Detailed graph of the previous values (max, mean, min) concerning their change in the
selected time period, displayed on the right side of the panel. The red line corresponds
to the maximum value, the green line to the arithmetic mean, and the blue line to the
minimum value.

A similar design logic was followed for the more complex panels representing the
X-, Y-, and Z-axis vibration measurements. The difference is that each panel displays the
aggregate information from the four vibration sensors in NW, NE, SW, and SE directions
(see Figure 4b).

Information 2022, 13, 190 13 of 16

(a) (b)
Figure 4. Stats Manager HMI. (a) RPM, shaft temperature and chassis temperature measurements.
(b) Vibration measurements on the X, Y and Z axis.

6.7. Daily Operations System via Assets Manager HMI

Finally, as part of the authors’ Industry 4.0 proof of concept, appropriate resources
management system interfacing has been implemented in the daily operations and re-
sources management system provided by the project partner Tekmon company, Ioannina,
Greece, illustrated in Figure 5. This system includes processes and plans per machinery
(asset), historical maintenance information, technical specifications, and guidelines for
maintenance operations. It also interfaces with already stored industrial parts per asset
and personnel/assets tracking services, generates tasks, and issues alerts and notifications.
In addition, the proposed system will be capable of interacting with mobile tablets and
exchanging real time information with the maintenance personnel in the field.

Figure 5. Assets Manager HMI.

7. Conclusions

Due to the evolution of Industry 4.0 and the significant increments of IoT sensory
measurements, massive cloud database storages are in great demand. For this reason, the
authors selected three main distributed strategies to be evaluated, a NoSQL database called
MongoDB, and two versions of PostgreSQL, one that benefited from JSON fields and one
the classic relational schema, in order to exploit their horizontal scaling capabilities while
being encapsulated in cloud containers.

From the authors’ experimentation, MongoDB is becoming an attractive solution
for cloud sensing repositories, outperforming relational database schemes for industrial
sensory data burst inserts and bulk reads. Additionally, if horizontal scaling is performed,
MongoDB closes the performance gap to their relational counterparts concerning the
execution of aggregated stored procedures and correlation functions. Moreover, in cases of
low client throughput (≤100 concentrators, 1 K QPS), a standalone version of the Relational
PostgreSQL is sufficient to perform inserts, selects, or aggregations, while, as the client

Information 2022, 13, 190 14 of 16

throughput increases significantly (500–1000 concentrators, 5 K–10 K QPS), a distributed
version of MongoDB, or Relational PostgreSQL with six–eight shards is obligatory.

Finally, the simplicity of the MongoDB shards deployment in containers shows its
significant advantages over the cumbersome and heavily loaded PostgreSQL Citus, and
the flexibility and transparency offerings to the front-end design of industrial applications
and intelligent processes. The authors set, as future work, further experimentation and
evaluation of their proposed solution as part of an assets’ sensory storage engine for
implementing Industrial maintenance A.I. processes.

Author Contributions: Conceptualization, S.K. and T.G.; methodology, S.K.; software, V.K. and T.G.;
validation, V.K., T.G. and S.K.; formal analysis, T.G.; investigation, S.K. and V.K.; resources, S.K.;
data curation, T.G.; writing—original draft preparation, T.G.; writing—review and editing, T.G., V.K.
and S.K.; visualization, T.G.; supervision, T.G.; project administration, T.G.; funding acquisition, S.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research has been cofinanced by the European Union and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH–CREATE–INNOVATE (project code: T2EDK-00708). Project partners: Department of
Mathematics of the University of Ioannina, HELLENIC PETROLEUM HOLDINGS S.A., TEKMON
P.C., and the Department of Surveying Engineering of Aristotle University of Thessaloniki.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: Authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
API Application programming interface
AR Augmented reality
A.R.I.S. Augmented reality information system
AWS Amazon Web Services
CPPS Cyber–physical production system
CPU Central processing unit
CRUD Manager Create, read, update and delete manager
DB Database
DBMS Database management system
DCS Decentralized control system
GCE Google Compute Engine
GPS Global positioning system
HMI Human–machine interface
IaaS Infrastructure as a service
IIoT Industrial internet of things
IoE Internet of everything
IoT Internet of things
JSON JavaScript object notation
M2M Machine to machine
MQTT MQ telemetry transport
NB-IoT NarrowBand IoT
NE North-east
NW North-west
OR-DBMS Object relational database management system
OS Operating system
PaaS Platform as a service
PC Personal computer

Information 2022, 13, 190 15 of 16

PID Proportional, integral, derivative
PLC Programmable logic controller
QPS Queries per second
ReST API Representational state transfer application programming interface
RPM Rotations per minute
RSSI Received signal strength indicator
SaaS Software as a service
SE South-east
SDK Software development kit
SW South-west
TP Throughput
YCSB Yahoo Cloud Serving Benchmarking Tool

References
1. Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. (BISE) 2014, 6, 239–242. [CrossRef]
2. Padovano, A.; Longo, F.; Nicoletti, L.; Mirabelli, G. A Digital Twin based Service Oriented Application for a 4.0 Knowledge

Navigation in the Smart Factory. IFAC-PapersOnLine 2018, 51, 631–636. [CrossRef]
3. Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart Factory of Industry 4.0: Key Technologies, Application Case, and

Challenges. IEEE Access 2018, 6, 6505–6519. [CrossRef]
4. Hu, P. A System Architecture for Software-Defined Industrial Internet of Things. In Proceedings of the IEEE International

Conference on Ubiquitous Wireless Broadband (ICUWB), Montreal, QC, Canada, 4–7 October 2015; pp. 1–5.
5. Yue, X.; Cai, H.; Yan, H.; Zou, C.; Zhou, K. Cloud-Assisted Industrial Cyber-Physical Systems: An Insight. Microprocess. Microsyst.

2015, 39, 1262–1270. [CrossRef]
6. Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett.

2015, 3, 18–23. [CrossRef]
7. Alam, K.M.; El Saddik, A. C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems. IEEE

Access 2017, 5, 2050–2062. [CrossRef]
8. IIoT and Automation. Available online: https://www.punetechtrol.com/blogs/iiot-and-automation (accessed on 9 Novem-

ber 2021).
9. Makris, A.; Tserpes, K.; Spiliopoulos, G.; Anagnostopoulos, D. Performance Evaluation of MongoDB and PostgreSQL for

spatio-temporal data. In Proceedings of the EDBT/ICDT Workshops, Lisbon, Portugal, 26–29 March 2019.
10. Daskevics, A.; Nikiforova, A. IoTSE-based open database vulnerability inspection in three Baltic countries: ShoBEVODSDT sees

you. In Proceedings of the 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS),
Gandia, Spain, 6–9 December 2021; pp. 1–8.

11. Bad Actors Target MongoDB Databases, Threatening to Contact GDPR Legislators Unless Ransom Is Paid. Available online: https:
//www.bitdefender.com/blog/hotforsecurity/bad-actors-target-mongodb-databases-threatening-to-contact-gdpr-legislators-
unless-ransom-is-paid/ (accessed on 15 March 2022).

12. Mongodb. Available online: http://www.mongodb.com/ (accessed on 21 November 2021).
13. Makris, A.; Tserpes, K.; Andronikou, V.; Anagnostopoulos, D. A Classification of NoSQL Data Stores Based on Key Design

Characteristics. Procedia Comput. Sci. 2016, 97, 94–103. [CrossRef]
14. Sharding. Available online: https://docs.mongodb.com/manual/sharding/ (accessed on 22 February 2022).
15. Performance Benchmark POSTGRESQL/MONGODB. Available online: https://info.enterprisedb.com/rs/069-ALB-339/

images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf (accessed on 22 November 2021).
16. TimescaleDB. Available online: https://www.timescale.com/ (accessed on 26 November 2021).
17. What Is Citus? Available online: https://docs.citusdata.com/en/v7.3/get_started/what_is_citus.html (accessed on 22 February

2022).
18. Postgres, Pg-Stat-Statement. Available online: https://www.postgresql.org/docs/9.4/pgstatstatements.html (accessed on

26 November 2021).
19. PostGIS. Available online: https://postgis.net/ (accessed on 26 November 2021).
20. Docker. Available online: https://www.ibm.com/ae-en/cloud/learn/docker (accessed on 22 February 2022).
21. Plugge, E.; Membrey, P.; Hawkins, T. The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing, 1st ed.;

Apress: New York, NY, USA, 2010.
22. Matthew, N.; Stones, R. Beginning Databases with Postgresql: From Novice to Professional, 2nd ed.; Apress: Berkeley, CA, USA, 2005.
23. Gkamas, T.; Karaiskos, V.; Kontogiannis, S. Evaluation of cloud databases as a service for Industrial IoT data. In Proceedings of

the 7th International Congress on Information and Communication Technology (ICICT), London, UK, 21–24 February 2022.
24. Rossman, G. New Benchmarks Show Postgres Dominating MongoDB in Varied Workloads. Available online: https://www.

enterprisedb.com/news/new-benchmarks-show-postgres-dominating-mongodb-varied-workloads (accessed on 11 Novem-
ber 2021).

25. OnGres. Available online: https://ongres.com/ (accessed on 26 November 2021).

http://doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.1016/j.ifacol.2018.08.389
http://dx.doi.org/10.1109/ACCESS.2017.2783682
http://dx.doi.org/10.1016/j.micpro.2015.08.013
http://dx.doi.org/10.1016/j.mfglet.2014.12.001
http://dx.doi.org/10.1109/ACCESS.2017.2657006
https://www.punetechtrol.com/blogs/iiot-and-automation
https://www.bitdefender.com/blog/hotforsecurity/bad-actors-target-mongodb-databases-threatening-to-contact-gdpr-legislators-unless-ransom-is-paid/
https://www.bitdefender.com/blog/hotforsecurity/bad-actors-target-mongodb-databases-threatening-to-contact-gdpr-legislators-unless-ransom-is-paid/
https://www.bitdefender.com/blog/hotforsecurity/bad-actors-target-mongodb-databases-threatening-to-contact-gdpr-legislators-unless-ransom-is-paid/
http://www.mongodb.com/
http://dx.doi.org/10.1016/j.procs.2016.08.284
https://docs.mongodb.com/manual/sharding/
https://info.enterprisedb.com/rs/069-ALB-339/images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf
https://info.enterprisedb.com/rs/069-ALB-339/images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf
https://www.timescale.com/
https://docs.citusdata.com/en/v7.3/get_started/what_is_citus.html
https://www.postgresql.org/docs/9.4/pgstatstatements.html
https://postgis.net/
https://www.ibm.com/ae-en/cloud/learn/docker
https://www.enterprisedb.com/news/new-benchmarks-show-postgres-dominating-mongodb-varied-workloads
https://www.enterprisedb.com/news/new-benchmarks-show-postgres-dominating-mongodb-varied-workloads
https://ongres.com/

Information 2022, 13, 190 16 of 16

26. Comparing MongoDB vs. PostgreSQL. Available online: https://www.mongodb.com/compare/mongodb-postgresql (accessed
on 11 November 2021).

27. Martins, P.; Abbasi, M.; Sá, F. A study over NoSQL performance. In Proceedings of the 7th World Conference on Information
Systems and Technologies, La Toja Island, Galicia, Spain, 16–19 April 2019; pp. 603–611.

28. Martins, P.; Tomé, P.; Wanzeller, C.; Sá, F.; Abbasi, M. NoSQL Comparative Performance Study. In Proceedings of the 9th World
Conference on Information Systems and Technologies, Terceira Island, Azores, Portugal, 30 March–2 April 2021; pp. 428–438.

29. Seghier, N.B.; Kazar, O. Performance Benchmarking and Comparison of NoSQL Databases: Redis vs. MongoDB vs. Cassandra
Using YCSB Tool. In Proceedings of the International Conference on Recent Advances in Mathematics and Informatics (ICRAMI),
Tebessa, Algeria, 21–22 September 2021; pp. 1–6.

30. SaaS vs. PaaS vs. IaaS: What’s The Difference & How to Choose. Available online: https://www.bmc.com/blogs/saas-vs-paas-
vs-iaas-whats-the-difference-and-how-to-choose/ (accessed on 28 November 2021).

31. Asiminidis, C.; Kokkonis, G.; Kontogiannis, S. Database Systems Performance Evaluation for IoT Applications. Int. J. Database
Manag. Syst. 2018, 10, 1–14. [CrossRef]

32. Mosquitto™ an Open Source MQTT Broker. Available online: https://mosquitto.org/ (accessed on 15 March 2022).
33. Telegraf Open Source Server Agent. Available online: https://www.influxdata.com/time-series-platform/telegraf/ (accessed on

15 March 2022).
34. InfluxDB: Open Source Time Series Database. Available online: https://www.influxdata.com/ (accessed on 15 March 2022).
35. Grafana: The Open Observability Platform. Available online: https://grafana.com/ (accessed on 15 March 2022).
36. Graphite. Available online: https://graphiteapp.org/ (accessed on 15 March 2022).
37. Prometheus—Monitoring System & Time Series Database. Available online: https://prometheus.io/ (accessed on 15 March

2022).
38. Elasticsearch. Available online: https://www.elastic.co/ (accessed on 15 March 2022).

https://www.mongodb.com/compare/mongodb-postgresql
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
http://dx.doi.org/10.5121/ijdms.2018.10601
https://mosquitto.org/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/
https://grafana.com/
https://graphiteapp.org/
https://prometheus.io/
https://www.elastic.co/

	Introduction
	Related Work
	DBMS System Architecture for Industry 4.0 Standards
	Database Performance Evaluation
	Dataset Overview
	Evaluation Metrics
	Performance Evaluation Set Up
	Experimental Results
	Scenario (Q1)—IIoT Data Insertion
	Scenario (Q2)—IIoT Data Selection
	Scenario (Q3)—IIoT Correlation Functions

	Discussion
	Application to Industry 4.0
	Database Architecture
	Broker
	Database System Portability Extension
	CRUD Manager HMI
	JSON ReST API
	Stats Manager HMI
	Daily Operations System via Assets Manager HMI

	Conclusions
	References

