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Abstract: Non-alcoholic fatty pancreas disease (NAFPD) is a common and at the same time not
extensively examined pathological condition that is significantly associated with obesity, metabolic
syndrome, and insulin resistance. These factors can lead to the development of critical pathogens
such as type-2 diabetes mellitus (T2DM), atherosclerosis, acute pancreatitis, and pancreatic cancer.
Until recently, the diagnosis of NAFPD was based on noninvasive medical imaging methods and
visual evaluations of microscopic histological samples. The present study focuses on the quantifi-
cation of steatosis prevalence in pancreatic biopsy specimens with varying degrees of NAFPD. All
quantification results are extracted using a methodology consisting of digital image processing and
transfer learning in pretrained convolutional neural networks for the detection of histological fat
structures. The proposed method is applied to 20 digitized histological samples, producing an 0.08%
mean fat quantification error thanks to an ensemble CNN voting system and 83.3% mean Dice fat
segmentation similarity compared to the semi-quantitative estimates of specialist physicians.

Keywords: pancreas biopsy; pancreatitis; non-alcoholic fatty pancreas; digital image processing;
image segmentation; deep learning; convolutional neural networks; computer vision

1. Introduction

Fat accumulation is a common pathological phenomenon in the pancreas. It is
closely related to non-alcoholic fatty pancreas disease (NAFPD), which signals the on-
set of metabolic syndrome (MetS). Key risk factors for developing NAFPD include obesity,
hypertension, and dyslipidemia, which refers to damage to the arteries by blood lipid
disorders. This causes the replacement of the acinar cells by steatotic fat droplets, which
can significantly contribute to the development of a pro-inflammatory environment causing
eventually the progression to type-2 diabetes mellitus (T2DM), severe acute pancreatitis, as
well as end-stage cardiovascular disease and pancreatic cancer [1,2].

Published studies from the beginning of this century have shown that histological
inflammation, as an extension of NAFPD, is the starting point for the development of
further malignancies in which the genetic mechanism has not been fully clarified. This
results in incomplete pharmacotherapy, which makes the early diagnosis of pancreatic
steatosis a major task. “Pancreatic steatosis” is a commonly used term that is widely
characterized by the accumulation of fat droplets in the cytoplasm of cells, thus leading to
cellular dysfunction or death [3]. In recent years, it has increasingly become the focus of
histopathologists, as there have been also cases where NAFPD patients have blood loss
while undergoing pancreatectomy and postoperative pancreatic fistula [1].
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Although the pancreas is more prone to the development of steatosis compared to the
liver, NAFPD has been less studied than non-alcoholic fatty liver disease (NAFLD). That is
because pancreatic biopsy is a strictly responsible invasive procedure for surgeons, which
can lead to severe complications for the patient such as hemorrhage and pancreatic fistula,
as an abnormal communication between the pancreas and other organs [4]. On the other
hand, there are diagnostic limitations to noninvasive medical imaging modalities, such
as computed tomography (CT), ultrasonography (US), and magnetic resonance imaging
(MRI) when examining pathological and chronic conditions, including fat infiltration
and pancreatic cancer. Even though the research community makes an annual effort to
make the most of the noninvasive nature of these methods, in recent years and with the
development of modern computer vision systems, the microscopic analysis of biopsy
images has become the gold standard for diagnosing pathological alterations in the tissue
samples. This is because microscopy provides access to all the morphological features of a
disease and healthy anatomical structure, which is an element that has significantly reduced
the problems of subjective intra-observer and inter-observer interpretations, referring to
diagnostic disagreements between physicians.

Confirming the above, there are few pancreatic steatosis quantification studies based
on biopsy images, which are mainly based on statistical analyses of semi-quantitative
estimates by histopathologists. Starting with the Olsen study [5], his goal was to inves-
tigate the degree of lipomatosis in histological pancreatic samples and to determine its
association with the age and weight of human donors. The results showed a significant
correlation between the three factors as the degree of lipomatosis increased in older and
overweight individuals. Wilson et al. [6] attempted to determine the mechanisms of lipid
droplets accumulation in histological rat samples. The findings showed that the increased
esterification of cholesterol is partly responsible for the formation of adipocytes in the
tissue. Nghiem et al. [7] focused on the semi-quantitative evaluation of the fat infiltra-
tion between the pancreatic lobules and also its correlation with body mass index (BMI).
The high BMI caused increased fat infiltration between the superficial pancreatic lobes
as well as the formation of thicker fatty interlobular septa with numerous intralobular
fat cells. Mathur et al. [8] determined whether steatosis is a risk factor for postoperative
pancreatic fistula. The diagnostics showed that patients with fistula had significantly more
intralobular, interlobular, and total pancreatic fat, which were considered to be major risk
factors for its occurrence. In a later study [9], the same research team performed tests to
determine if fat infiltration and fibrosis accumulation are associated with pancreatic ade-
nocarcinoma individuals. It was observed that patients positive for adenocarcinoma had
significantly more pancreatic fat compared to negative patients. As for positive patients,
they also showed reduced rates of fibrosis. In the Pinnick et al. work [10], the association of
triacylglycerol (TG) with tissue lipid content and T2DM was examined. According to the
histological analysis of human biopsies, the quantitative assessment of fat using morphom-
etry was significantly correlated with the TG content and was independent of the diabetic
condition of each patient. Rosso et al. [11] examined the association of fat prevalence with
the occurrence of pancreatic fistula in patients undergoing pancreaticogastrostomy. The
univariate analysis showed that increased pancreatic fat infiltration was associated with the
presence of fistula. As in the Olsen study [5], the advanced age and BMI were significantly
correlated with increased pancreatic fat levels. Fraulob et al. [12] evaluated the association
of NAFPD, fatty liver, and insulin resistance in mouse biopsy specimens. Mice with higher
pancreatic and liver fat deposition appeared to be insulin resistant. The authors stated
that these phenomena also refer to factors of the human metabolic syndrome, which can
eventually lead to chronic pancreatitis. The aim of Gaujoux et al. [13] was to evaluate the
effect of BMI in patients who underwent pancreatoduodenectomy as a risk factor for the
occurrence of pancreatic fistula. The results showed that pancreatic fat infiltration was
more common in patients with high BMI, which are two important prognostic factors for
fistula. In contrast, pancreatic fibrosis has not been shown to be a determinant for fistula.
As a final for the pancreatic samples study, Van Geenen et al. [14] wanted to identify a
possible association between pancreatic steatosis with non-alcoholic fatty liver disease in
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postmortem human samples. Interlobular and total pancreatic fat were shown to be impor-
tant prognostic factors for the presence of NAFLD. In addition, the presence of intralobular
pancreatic fat was associated with non-alcoholic steatohepatitis (NASH) as opposed to total
fat. As previously mentioned, histological examinations of pancreas biopsy specimens are
limited to semi-quantitative assessments by physicians. However, in recent years, com-
putational analysis methods have provided effective solutions in the diagnosis of chronic
and critical pathogens in biopsy specimens extracted from various organs. In particular,
Forlano et. al. [15] applied image processing and machine learning techniques to detect and
quantify multiple liver pathogens, including steatosis, hepatocellular ballooning, as well
as liver fibrosis and histological inflammation. Guo et al. [16] relied on the Mask R-CNN
deep neural network with various ResNet backbone models to automate the segmentation
of liver steatotic cells. In recent years, deep learning algorithms have also offered highly
efficient automated solutions in the detection and staging of cancer in breast and kidney
biopsy specimens. More emphatically, Gandomkar et al. [17] proposed the “MuDeRN”
system consisting of multiple deep residual networks combined with a meta-decision tree
for the classification of breast cancer subtypes based on a majority of their votes. The breast
cancer classification method of Wang et al. [18] was also based on multi-convolutional
neural networks. The new framework was applied to cropped image regions, from which
convolved feature values were fed into an ensemble support vector machine classifier.
Regarding kidney biopsies, Tian et al. [19] applied image processing and machine learning
techniques for staging cancer cells according to the four-level Fuhrman grading system.
Tabibu et al. [20] employed a hybrid convolutional neural network (CNN) and DAG-SVM
classification method to identify three renal cell carcinoma subtypes and separate them
from healthy tissue regions. Moreover, research studies based on image processing tech-
niques and machine learning models have been proposed for identifying various intestinal
malignancies in biopsy images. Koh et al. [21] developed a multi-stage celiac disease
analysis tool employing image preprocessing and machine learning algorithms. Its purpose
was to detect and classify areas of villous atrophy based on a modified Marsh grading
system. Similarly, Sali et al. [22] proposed a deep learning methodology for automating
the celiac disease diagnostic procedure. The deep analysis system utilized a convolutional
autoencoder to filter out informative features in image patches extracted from whole slide
images. Then, these were inserted in the input layer of deep residual networks to diagnose
celiac disease severity using a modified Marsh score. In closing, computer-aided biopsy im-
age analysis has revolutionized the field of histopathology in recent years. Based on this, it
is expected that in the future, and with the use of robotic-assisted methods, for minimizing
the invasive nature of biopsy extraction, new computational analysis methodologies are to
be introduced based on pancreatic microscopy images.

In this work, a methodology for the quantification of fat infiltration in pancreatic
biopsy images is presented. The automated analysis is performed on a total of 20 micro-
scopic NAFPD specimens through image segmentation and convolutional neural network
classification techniques for the detection of steatosis regions. The general goal is for all
fatty areas to be separated from the healthy anatomical structures. As a result of this
differentiation, most false-positive fat segmentation results can be minimized, allowing
for a more objective fat ratio assessment. This is accomplished by solving a four-class
identification problem of four pancreatic tissue alterations, namely: (1) single fat droplet,
(2) double-agglomerated fat, (3) multi-agglomerated fat, and (4) tissue artifact. Then,
the diagnostic tool’s performance is compared with that derived from semi-quantitative
estimates of expert pathologists.

2. Materials and Methods

The following pages describe the method used to quantify the fat ratio in human
pancreatic biopsy images. The proposed methodology consists of four main stages in total:
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1. An image segmentation stage employing image thresholding and morphological
filtering techniques in 20 pancreatic biopsy images (with 20×magnification) to extract
the tissue area from its background and filter circular white structures.

2. Manual annotation of objects of interest in each 20× histological image and calculation
of the semi-quantitative degree of steatosis by clinicians. At the same time, export of
annotated objects in the form of image patches for applying transfer learning in four
pretrained convolutional neural networks (CNNs).

3. Classification of the segmented regions of interest in step 1 based on the majority of
trained CNN models’ votes and eliminating most false-positive fat segmentation results.

4. Calculation of the fat ratio for each 20× biopsy image and evaluation of the automated
diagnostic method by determining its deviation from the semi-quantitative estimates
of doctors.

Figure 1 shows a flowchart of the proposed diagnostic system, including the image
preprocessing and CNN classification steps, used for the quantification of pancreatic
steatosis prevalence in NAFPD patients.

Figure 1. Flowchart of the proposed methodology for the evaluation of pancreatic fat infiltration in
microscopic biopsy images. An image preprocessing step first aims to the segmentation of circular-
white structures of interest relating to lipid droplets. Then, these are extracted as image patches and
classified using a trained multi-CNN system. Therefore, the elimination through the classification of
false-positive fat findings as histological artifacts leads to more accurate quantification of the steatosis
prevalence ratio in the tissue.

2.1. Histological Image Dataset

The proposed methodology is tested on 20 pancreatic biopsy samples coming with
varying degrees of NAFPD steatosis from the University of Oxford (Oxford, UK). They are
surgical samples of normal donor pancreases taken at the time of transplantation. All the
extracted tissue samples are histologically colored with the hematoxylin and eosin (H&E)
stain, which has become the gold standard in histopathological diagnosis in recent years.
After the tissue coloring and biopsy slide preparation procedures, all pancreatic specimens
are scanned at 20×magnification.

2.2. Image Processing and Segmentation Stage

2.2.1. Tissue Region Extraction

Each scanned biopsy is loaded to the image analysis method as a three-dimensional
array consisting of 8-bit integer values in each RGB color channel (Figure 2A). Initially, it is
preferred to apply histogram equalization to all channels of the RGB sample to adjust the
image intensities and enhance the contrast. This preserves all the histogram-based image
information on all three color channels. Subsequently, the background noise is reduced
by computing the area for each 8-connected pixel region, which consists of objects with
neighboring pixels linked in a horizontal, vertical, or diagonal direction. Then, connected
pixel regions with an area less than 0.3% of the largest region are discarded as part of the
pancreatic sample (Figure 2B). Following the contrast enhancement and image denoising
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steps, a large part of the biopsy reflects a bright background, whereas the H&E histological
sample includes bright red and purple pixels.

For the histological region to be extracted from its white background, the color image
is first converted to a corresponding two-dimensional grayscale, with saturation applied to
the lower 1% and upper 1% of all pixel values. This improves the vividness of the gray pixel
intensities (Figure 2C) and allows the image processing method to accurately determine the
outer boundaries of the tissue area. In the next step, the adaptive thresholding algorithm
based on the local mean intensity, as the selected first-order statistic, is applied to the
neighborhood of each grayscale pixel. This technique emerged as the best option for this
problem to be solved, as the dataset consists of 20 biopsy images with significant changes
in their pixel intensities. In other words, it can calculate a different threshold value for
each pixel in the image, allowing greater tolerance to the intensity changes between the
tissue regions. This is achieved by calculating the integral image, which allows multiple
overlapping rectangular windows to determine the average intensity value for each pixel
neighborhood [23]. More specifically, for each term to the left-top of each (x, y) pixel
coordinate, a function f (x, y) is applied to convert the pixel intensity values to real numbers
for the integral image I(x, y) to be computed with:

I(x, y) = f (x, y) + I(x− 1, y) + I(x, y− 1)− I(x− 1, y− 1) (1)

Then, for any rectangle in the integral image with an upper-left corner (x1, y1) and a
lower-right corner (x2, y2), the sum of the function f is calculated with:

x2

∑
x = x1

y2

∑
y = y1

f (x, y) = I(x2, y2)− I(x2, y1 − 1)− I(x1 − 1, y2) + I(x1 − 1, y1 − 1) (2)

After the algorithm’s convergence, a threshold is set in the pixels of the integral image
by applying a sensitivity value within the closed interval [0, 1], where a higher sensitivity
value equals a larger number of pixels added to the foreground (tissue area). On the
contrary, an excessively high sensitivity value can have a negative effect, as part of the
background pixels may be included in the foreground. With this in mind, the sensitivity
value is set to 0.599, after some trial and error. As a final step, this separation of pixels leads
to the conversion of the grayscale image to binary, where (a) black pixels (logical ‘0’) →
background and (b) white pixels (logical ‘1’) → tissue (Figure 2D).

Figure 2. Visualization of image processing steps for the tissue region extraction and candidate fat
droplets segmentation on the digitized biopsy specimens: (A) initial RGB biopsy image; (B) RGB
color histogram equalization for contrast enhancement; (C) color image to grayscale conversion with
pixel saturation; (D) grayscale image to binary conversion via adaptive thresholding; (E) binary tissue
region identification; (F) morphological opening of circular white objects.
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According to Figure 2D, the adaptive thresholding approach has included several black
regions within the histological area as background pixels. This is a common occurrence
in histological images because they often contain many healthy anatomical structures or
low-contrast tissue pixels. For these areas to be connected and for the histological sample
to be accurately determined, a hole filling function is used to remove all black objects and
replace them with logical ‘1’ values (Figure 2E).

2.2.2. Objects of Interest Segmentation

Currently, the main focus of the image preprocessing method is to filter circular white
objects pointing to potential fat cells inside the previously segmented tissue area. This
process takes place in the binary image of Figure 2D, where all the necessary morphological
elements have been retained and can lead to the segmentation of the steatosis structures
in the original RGB biopsy image. At first, the binary values are reversed, resulting in all
black circular objects within the tissue region being highlighted in white. Afterward, by
initializing a circular mask with an 8-pixel radius, a repeating loop is applied performing
morphological opening on the circular white structures with an increasing radius of 2 pixels
in each iteration. When the radius of the structuring element reaches a maximum of
36 pixels, the loop terminates. These numbers are chosen because physicians believe
that tissue objects outside this radius range are artifacts that indicate the presence of
various healthy anatomies. The main feature here is that any binary pixels that do not
completely intersect the structural element are removed from the binary image and the
external boundaries of each filtered white object are smoothed at the same time. Finally,
active contour models are called upon to converge at the outer boundaries of every filtered
circular white structure in the new morphological image shown in Figure 2F.

Upon completion of the morphological processing, the segmentation of circular objects
takes place in the original RGB biopsy image and green color for each active contour. The
segmentation of circular structures results appears to be sufficient, as the active contour
models have converged to the boundaries of all histological objects of interest. However,
several false-positive fat droplets were observed by the authors, which are in fact artifacts
involving either tissue areas with low-contrast values or circular veins, convex sinusoids,
and ducts. In this case, the inclusion of false-positive fat findings leads to an overestimation
of the pancreatic steatosis prevalence in each microscopic sample, which has a negative
impact on the identification of each patient’s pathological condition. To overcome this
diagnostic obstacle, the next phases of the methodology use an ensemble classification
system based on the training of convolutional neural networks (CNNs), so that false-
positive steatosis structures are excluded from fat ratio calculations.

2.3. Histological Images Annotation

Given the current success of deep learning algorithms in image classification tasks,
forming a multi-CNN system to solve the diagnostic problem in the previous image
segmentation stage is preferred. Since we are dealing with a supervised learning system for
classification purposes, clinicians were called to decide on the class labels that define the
most frequently occurring tissue anatomies in the 20 NAFPD biopsy samples. Particularly,
the anatomical structures in the pancreatic samples were evaluated by two histopathologists.
During the evaluation process, the tissue findings agreed upon by the experts were included
in the digital form of the annotation. Following that, the specialists observed cases of
objects with a similar circular shape with a single fat droplet, but containing red blood cells,
eventually being characterized as veins. Furthermore, the phenomenon of adjacent fat cells
agglomeration was noted, especially in individuals with an increased pancreatic steatosis
ratio. As a result, their edges merge, forming structures with morphological features (e.g.,
size, extent, eccentricity) comparable to healthy histological objects such as the sinusoids
and pancreatic ducts. Based on these findings, four histological class objects are manually
annotated for semi-quantitative and automated diagnostic purposes: (1) single fat droplet,
(2) double-agglomerated fat region, (3) multiple-agglomerated fat region, and (4) tissue
artifact (Figure 3A). The first three classes encompass all types of fat accumulation in the
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NAFPD tissue, whereas the histological artifact class includes all healthy structures that
must be excluded when calculating the patient’s steatosis ratio.

2.3.1. Semi-Quantitative Steatosis Evaluation

Two steps are performed so that the reliability of the developed diagnostic tool’s
performance can be later determined. First, the semi-quantitative steatosis ratio is calculated
for each biopsy specimen by dividing the total area of annotated pixels forming either
single, double-agglomerated, or multiple-agglomerated fat objects by the total area of the
segmented histological region (Figure 2E). Ultimately, a binary image is produced, which
is later used as the ground-truth steatosis image (Figure 3B) and helps in calculating the
automated diagnostic tool’s fat segmentation similarity with the doctors’ estimates.

Figure 3. Visual representation of the histological objects annotation stage: (A) manual annotation of
four pancreatic classes with the NDP.view2 software (black → “single”, red → “double”, yellow →
“multiple”, green → “artifact”); (B) extraction of the ground truth binary fat image and calculation
of the semi-quantitative steatosis prevalence in the biopsy sample; (C) determining the bounding
box for all annotated regions and exporting them as image patches for applying transfer learning in
pretrained CNN models.

2.3.2. Exporting Training Data from Manual Annotations

The manual annotation procedure is performed with the NDP.view2 (Hamamatsu
Photonics, Hamamatsu, Japan) histopathological tool. Figure 3A shows its environment,
thanks to which the objects of interest are marked with a freehand tool and with a different
color per histological class. Then, the 2D Cartesian coordinates of each annotated sample,
showing its position in the H&E biopsy image, are automatically recorded in an XML file.
In addition, for each tissue object, a class label is assigned by the doctors: (1) “single” (black
contour), (2) “double” (red contour), (3) “multiple” (yellow contour), and (4) “artifact”
(green contour).

After all the biopsy images (n = 20) are annotated, a method is called for reading
their 2D coordinates, which leads to the calculation of their bounding box. This enables
all regions of interest to be extracted as image patches from the 20× whole slide images
(WSIs) for CNN model training. Before extracting them, the x-axis, y-axis, width, and
height (x, y, w, h) coordinates for each computed bounding box are rounded to the nearest
integer and then increased by 5 pixels to expand its size (Figure 3C). This is preferred
because the bounding box converges to an object’s boundaries, removing edges that might
provide informative features during the CNN training process. Finally, using a crop tool,
the parameterized image patches are extracted and stored in folders according to their
class label.

2.4. Data Preprocessing and Deep Learning
2.4.1. Image Augmentation and Class Balancing

After completing the image patches extraction process, the final count reveals an
unbalanced dataset with (a) 2400 single, (b) 342 double, (c) 335 multiple, and (d) 870 artifact
samples, a common obstacle in supervised learning methodologies that can lead to reduced
classification performance. To balance the dataset, first all image patches in the majority
class “single” are reduced to 1320 randomly chosen samples. That is because there is
no significant difference in the schematic and textural properties between the single fat
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droplets and therefore their number is reduced. Instead, those in the “double”, “multiple”
and “artifact” minority classes are subjected to image augmentation techniques to increase
their number. Horizontal (x-axis) image flipping, vertical (y-axis) image flipping, and
horizontal in combination with vertical flipping are all examples of these augmentation
techniques. In further detail, Table 1 shows the applied augmentation techniques to the
minority class samples, as well as the steps for splitting the balanced dataset into training,
validation, and testing subsets.

Table 1. Image patches augmentation techniques for class balancing.

Class Label Initial Count Removed Images Image Augmentation Augmented Count Final Count

single 2400 1080 - - 1320

double 342 -
• horizontal flip (x-axis)
• vertical flip (y-axis)
• horizontal + vertical flip

1026 1368

multiple 335 -
• horizontal flip (x-axis)
• vertical flip (y-axis)
• horizontal + vertical flip

1005 1340

artifact 870 - • horizontal + vertical flip 870 1740
Balanced dataset split steps: 1: Gather all the image patches resulting from the “Final Count” column (n = 5768).
2: Form a training subset consisting of 4080 randomly selected augmented and non-augmented “single”, “dou-
ble”, “multiple“, and ”artifact” samples (1020 per class). 3: Form a validation subset consisting of 800 random
non-augmented samples (200 per class). 4: Form a testing subset consisting of 400 random non-augmented
samples (100 per class). 5. Discard the remaining 488 image patches.

The aforementioned class balancing techniques yield 5280 anatomical specimens
(1320 for each pancreatic class), a sufficient number for applying transfer learning to pre-
trained CNN models. This new dataset is then split into (a) 4080 training, (b) 800 validation
and (c) 400 testing samples. According to the balanced dataset separation process in Table 1,
it is noted that the validation and testing subsets include non-augmented samples, as is
commonly suggested, whereas the training subset consists of a mixture of non-augmented
and augmented image patches.

2.4.2. Transfer Learning in Pretrained CNN Models

Transfer learning techniques have emerged as a reliable method for adapting pre-
trained convolutional neural networks to new object recognition problems in recent years.
For this work, an ensemble CNN classification method of pancreatic fat structures is
formed using a combination of shallower and deeper CNN topologies for the steatosis
ratio to be calculated in NAFPD biopsy specimens. These refer to the (a) AlexNet [24],
(b) VGG-16 [25], (c) VGG-19 [25], and (d) ResNet-50 [26] architectures that are loaded along
with their pretrained weights from the ImageNet dataset.

After loading the aforementioned CNNs, the number of their training parameters is
calculated to determine whether to freeze weights on their initial layers or not. Rounding
these numbers to the nearest integer showed that the AlexNet model consists of 61 million
trainable parameters, while VGG-16 consists of 138, VGG-19 consists of 144, and ResNet-
50 consists of 25.6 million. These findings are in agreement with the numbers reported
in the [24–26] papers. According to these numbers, there is a considerable discrepancy
between AlexNet and ResNet-50 with VGG-16 and VGG-19, with the latter two being
regarded as “very deep” neural networks. As a result, it is decided that all weights in the
first two convolutional blocks of VGG-16 and VGG-19 are to be frozen. In general, when
applying transfer learning to much deeper models, the weight-freezing approach in their
initial layers is recommended, since they have generalized to most low-level features (e.g.,
edges, shapes), and updating them may result in overfitting the new histopathological data.

The training of the four CNN networks is performed once on a single NVIDIA RTX
2070 Super GPU and shares the following common training parameters: (a) a maximum
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of 10 training epochs, (b) a mini-batch size of 32 image patches, (c) a global learning rate
of 0.0001, a preferred value in transfer learning tasks ensuring that each fine-tuned model
does not deviate significantly from the corresponding original, (d) a validation patience
number equal to 3, in case a CNN presents the same validation accuracy value three times
during training, and (d) the SGDM optimizer used in the backpropagation method. Last
but not least, the “model checkpoint” option has been enabled to save the weights that
produce the highest validation accuracy at the end of each training epoch.

While considering further transfer learning techniques, the “weight learn rate factor”
and “bias learn rate factor” parameters are taken into consideration in the last fully con-
nected layer of each CNN architecture. Here, the 1000 neurons indicating the number of
classes in the ImageNet dataset have been reduced to 4, allowing each deep model to adapt
to the new object recognition problem. Each parameter is expressed as a non-negative
scalar multiplied by the global learning rate, such that the neurons of the parameterized
fully connected layer can generalize faster to the new pancreatic structures classification
task. Specifically, the two parameters for the AlexNet and ResNet-50 networks are set to
10 (10 × (1 × 10−4) = 0.001), whereas in the deeper VGG-16 and VGG-19, they are equal to
20 (20 × (1 × 10−4) = 0.002).

Having completed the final fully-connected layer and weight-freezing configurations,
the number of new trainable parameters is recalculated for each CNN topology. Table 2
shows the training options per pretrained network as well as the differences between the ini-
tial and final trainable parameters, which result in a decrease of up to 4 million parameters.

Table 2. Applied parameters for transfer learning to pretrained CNN models.

CNN Model Trainable Parameters
(Initial) Frozen Weights Trainable Parameters

(Final)
Weight Learn

Rate Factor
Bias Learn
Rate Factor

AlexNet 60,965,224 - 56,868,224 10 10

VGG-16 138,357,544 • conv. block 1
• conv. block 2 134,260,544 20 20

VGG-19 143,667,240 • conv. block 1
• conv. block 2 139,570,240 20 20

ResNet-50 25,583,592 - 23,534,592 10 10

2.4.3. Classification of Tissue Objects and Fat Ratio Calculation

After transfer learning, each CNN model is asked to make predictions on the testing
subset (Section 2.4.1) so that its classification performance in unknown pancreatic speci-
mens can be assessed. Each image patch of the balanced data set is scaled according to
the required size at the input layer of each pretrained neural network using the bicubic
interpolation method. The identification of histological structures as well as the extraction
of statistical measurements from the classification report (Table 3) is performed initially on
each CNN network. Then, the majority of prediction votes for each pancreatic structure,
based on the individual model characterizations, are taken into account in an ensemble
CNN approach. The maximum softmax probabilities, indicating how confident each CNN
is in its predictions, are also used to determine the majority pancreatic class in the ensemble
classification system, which is analyzed in Algorithm 1 below.

Having measured the deep models’ classification capability in the testing data, their
aim now is to characterize the unknown circular objects from the Section 2.2.2 and to
reduce the number of false-positive fat findings. Similar to the procedure in Section 2.3.2,
each ACM-segmented structure is exported as an image patch and fed as input to each
CNN architecture. Later, its histological class is also determined by the ensemble CNN
voting method. At the end of the classification process, the area of the predicted fat
pixels is calculated and divided by the corresponding one of the segmented histological
regions (Section 2.2.1). The produced result indicates the ratio of pancreatic fat filtration
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in every 20× microscopy image. Lastly, the diagnostic error is retrieved for each biopsy
sample, which refers to its deviation from the semi-quantitative steatosis evaluations by
specialist physicians.

Table 3. Comparison of classification testing results.

CNN
Model

Mean Performance Metrics (%)

Accuracy Precision/PPV Sensitivity/Recall F1-Score Specificity/TNR NPV ROC
AUC

PRC
AUC

AlexNet 97.25 97.25 97.25 97.25 99.08 99.08 99.87 74.64
VGG-16 97 97.08 97 97.04 99 99.01 99.86 74.59
VGG-19 95.25 95.37 95.25 95.31 98.42 98.43 99.83 74.50

ResNet-50 94.25 94.37 94.25 94.31 98.08 98.11 99.58 73.80
Ensemble CNN 98.25 98.25 98.25 98.25 99.42 99.42 99.73 99.47

Algorithm 1 Ensemble CNN System

1: Begin Data Preprocessing
2: Load the 20× biopsy image and its ACM-segmented objects
3: Calculate and increase each ACM object’s bounding box by 5 pixels
4: Crop the image patches and determine their number (NI)
5: Specify the number of deep CNNs (ND) and predicted images (NP)
6: End
7: Begin Ensemble CNN Classification
8: For i = 1, . . . , NI do
9: For j = 1, . . . , ND do
10: Determine the [i, j] class label
11: Retrieve the [i, j] prediction probability
12: End
13: End
14: For k = 1, . . . , NP do
15: Filter the most frequent predicted class label
16: If there are 4 different predicted classes do
17: Retrieve the maximum prediction probability
18: Retrieve its corresponding class label
19: Else If there are 2 different predicted classes do
20: Calculate the 1st (MP1) and 2nd (MP2) mean probabilities
21: Keep the max mean probability and its corresponding class
22: If MP1 equal to MP2 do
23: Keep one mean probability with a random state
24: Retrieve its corresponding class label
25: End
26: Else do
27: Retrieve the majority of votes class label
28: Calculate its mean class probability
29: End
30: End
31: End

3. Results

In this section, the classification performance in the testing data, as well as the visual-
ization of the most informative features that contribute to the discrimination of the four
examined tissue alterations in the 20× biopsy images are analyzed. Next, the steatosis
quantification results coming from two stages are presented: (1) the segmentation of circular
objects, referring to potential fat cells prior to their characterization, and (2) the exclusion
of false-positive fat findings via the CNN classification step. At the same time, the absolute
error produced by these two approaches is compared in all NAFPD histological samples
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(n = 20). Thereafter, fat detection results employing the ensemble CNN classification system
are displayed as well as its fat segmentation similarity with steatotic regions manually
annotated by histopathologists.

3.1. Testing Performance Measurements

Following the previous section, certain statistics from the classification report in the
testing subset (Section 2.4.1) are exported to validate the best CNN classifier (Table 3).
These refer to the accuracy, precision/positive predictive value (PPV), sensitivity/recall,
specificity/true negative rate (TNR), F1-score, negative predictive value (NPV), ROC-AUC,
and PRC-AUC. The ensemble CNN method emerges as the most optimal with accuracy:
98.25%, F1-score: 98.25% and specificity: 99.42%, AlexNet comes in second (accuracy:
97.25%, F1-score: 97.25%, specificity: 99.08%), VGG-16 in third (accuracy: 97%, F1-score:
97.04%, specificity: 99%), VGG-19 in fourth (accuracy: 95.25%, F1-score: 95.31%, specificity:
99.42%), and ResNet-50 in fifth (accuracy: 94.25%, F1-score: 94.31%, specificity: 99.08%).

Concerning the validation accuracy during transfer learning, this equals 95.88% for the
AlexNet model, which is produced with the optimal weights from the 9th training epoch
(out of 10), thanks to the “model checkpoint” option. The corresponding for VGG-16 is
96.88% with the optimal weights of the 4th epoch. With the final weights of the 10th epoch,
on the other hand, the validation accuracy is equal to 95.63% for VGG-19 and 92.13% for
ResNet-50. In the ensemble voting system, the value is equal to 97%, which is the highest
validation performance.

Then, the thresholds for plotting the ROC and PRC curves are calculated for each of
the four pancreatic classes (Figure 4), along with the estimated ROC-AUC and PRC-AUC
values. In addition, in the ROC curves, the optimal operating points are indicated by a
red circle. For each class, the optimal point is determined by moving a straight line with a
slope value S from the upper-left corner of the ROC plot (FPR = 0, TPR = 1) down and to
the right, until it intersects its ROC curve. They are referred to as optimal, since in their
position, they can identify most of their class samples correctly [27]. It must be noted that the
ensemble CNN algorithm takes into account only the maximum softmax probability of each
fine-tuned model’s class prediction. Therefore, the remaining three classes’ probabilities
cannot be used to calculate the ROC and PRC thresholds. To address this issue, the 4-class
threshold calculation problem is divided into four binary problems using the One-vs-Rest
(OvR) strategy [28]. It is recalled that for each tissue sample xi ⊆ X in the testing subset, a
prediction label yi ∈ {single, double, multiple, artifact} is retrieved using four individual
CNN classifiers with fk for k ∈ {AlexNet, VGG-16, VGG-19, ResNet-50}. Following that,
the mean maximum prediction probability determined in Algorithm 1 is used to calculate
the majority of class votes for each testing sample:

ŷ = arg max
k∈{1...4}

fk(X) (3)

where from the ŷ predictions, four new label vectors are constructed with the class names
in each of them being: (1) “single”–“nonsingle”, (2) “double”–“nondouble”, (3) “multiple”–
“nonmultiple”, and (4) “artifact”–“nonartifact”. In addition, the absolute difference between
the mean prediction probability and 1 (the highest possible in the softmax [0, 1] confidence
interval) is calculated for each binary label opposite to that of the classification.

3.2. Visualization of Informative Features

The Grad-CAM (gradient-weighted class activation mapping) and LIME (local in-
terpretable model-agnostic explanations) activation methods are applied to four image
patches, one for each histological class, to highlight the most informative microscopic
features when classifying a healthy or disease microscopic structure (Figure 5). The pro-
cesses are performed on the most optimal AlexNet and VGG-16 networks, according to the
classification report in Table 3. The Grad-CAM activations are computed by taking into
account the gradient of the classification score with respect to convolutional features of a
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specific layer in the two deep networks [29]. Here, the ReLU activations of the last AlexNet
(“relu5”) convolutional layer and VGG-16 (“relu5_3”) convolutional block are declared as
the required feature maps with non-singleton spatial dimensions.

Figure 4. The ROC and PRC curves per pancreatic class, accompanied by their AUC values. The
individual AlexNet, VGG-16, VGG-19, and ResNet-50 models have more difficulty differentiat-
ing between “double” and “multiple” objects than “single” and “artifact”. According to the OvR
method, the distinction of the four classes is improved in the ensemble CNN classifier, but recog-
nizing all “double” structures remains a challenge. The ensemble model’s high ROC-AUC (≥0.994)
and PRC-AUC (≥0.996) values indicate a satisfactory performance for its voting system with high
prediction capability.

The LIME activations [30] are retrieved by fitting a linear regression model with
Lasso regularization to 100 filtered features from all AlexNet and VGG-16 layers. This
number produces a grid of 10 × 10 square features based on the aspect ratio of each
synthetic LIME image (n = 3072). Then, the generated LIME maps are upsampled using the
bicubic interpolation method to match the spatial resolution of each image patch, which is
equivalent to the size of the input layers in the AlexNet (227× 227) and VGG-16 (224× 224)
networks. In the end, by combining the LIME feature maps with the Grad-CAM technique,
the most informative regions of the four pancreatic structures appear as a smooth heatmap.
Both Grad-CAM and LIME heatmap visualizations are performed with an alpha data
transparency value of 0.5 in the original image patches.

3.3. Pancreatic Steatosis Quantification Results

At first, the focus is on Table 4, which shows the fat quantification rates for each 20×
pancreatic image. The percentages come from the circular objects segmentation method
(column 2), their characterization by the four pancreatic objects classification method (col-
umn 3), and the physicians’ semi-quantitative estimates using the NDP.view2 annotation
tool (column 4). It is recalled that during the classification stage, the quantifications are per-
formed with the help of individual pretrained CNN topologies in which learning transfer
is applied as well as by an ensemble CNN classifier (Algorithm 1).

As can be seen in Table 4, the classification stage (FClass) yields lower mean steatosis
rates than the image segmentation method (FSegm). More emphatically, the mean rates
generated from the CNN classifications vary from 1.50% to 1.68%, which is a value range
less than 2.18% of the image segmentation stage. The lower mean values relate to the fact
that most false-positive fat structures are classified as tissue artifacts and thus are excluded
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from the steatosis ratio quantifications. Therefore, fat infiltration areas with a “single”,
“double”, or “multiple” class label are only included in the fat prevalence calculations.

Figure 5. Representation of the most informative features in microscopic tissue anatomies. The
Grad-CAM heatmaps reveal (in yellow–red) that the presence of external curves is taken more into
account when classifying “single” and “double” fat structures. Small gaps and angular (V-shaped)
edges, on the other hand, are the key to identifying “multiple” steatosis regions. The presence of
an erythrocyte in the pancreatic vein mainly leads to its classification as a histological “artifact”.
The LIME Grad-CAM activations show additional filtered texture features within the histological
objects. In both activation methods, it turns out that the deeper VGG-16 architecture performs a more
selective or scattered search of informative features, which leads to less mean fat quantification error
than the AlexNet model (Table 5) and probably less overfitting.

In column 4 of Table 4, the semi-quantitative assessments of physicians (FDoc) for
each pancreatic sample are included, which leads to Table 5 showing the absolute error
values for the circular structures filtering stage (Serr) and their classification as fat findings
(Cerr). Here, the ensemble CNN algorithm has the minimum mean absolute error of 0.08%
in comparison to the second most efficient VGG-16 (0.0879%), as well as the ResNet-50
(0.0880%), VGG-19 (0.0927%), and AlexNet (0.14%) models. In 19 of the 20 total biopsy
specimens, the classification stage produces a lower diagnostic error than the image seg-
mentation method before the characterization of unknown histological structures, which
presents a mean 0.6% value. The only non-optimal performance is found in sample no. 5
(“120495-Head”) with fat prevalence rates in all five classifiers being less than 1.88% of the
image processing stage, according to Table 4. This shows an underestimation of the fat ratio
during the classification step, as “artifact” class labels have been assigned to true-positive
agglomerated or non-agglomerated fat regions. In conclusion, the standard deviation of the
ensemble CNN absolute errors equals 0.05%, which is the smallest value compared to the
corresponding ones produced by the individual CNN networks (0.06% to 0.17%) and the
image segmentation method (0.5%), indicating a more balanced diagnostic performance in
applying its voting method.
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Table 4. Pancreatic fat quantification results.

Testing Image
(20×)

Fat Ratio (%)
Image Segmentation

(FSegm)

Fat Ratio(%)
Regions Classification

(FClass)

Fat Ratio (%)
Manual Annotations

(FDoc)

FACM FAlexNet FVGG-16 FVGG-19 FResNet-50 FEnsembleCNN FAnnot

1 120216-Head 1.83 1.72 1.63 1.70 1.59 1.66 1.74
2 120216-Tail 1.58 1.37 1.21 1.32 1.30 1.29 1.31
3 120485-Tail 1.89 1.71 1.59 1.65 1.65 1.66 1.77
4 120495-Body 2.56 1.71 1.44 1.48 1.40 1.48 1.63
5 120495-Head 1.88 1.64 1.55 1.57 1.57 1.62 1.79
6 121543-Body 5.75 5.11 4.82 4.86 4.88 4.92 5.08
7 121543-Head 6.54 6.12 5.76 5.89 5.89 6.00 5.99
8 122020-Body 0.70 0.39 0.28 0.39 0.32 0.36 0.24
9 122020-Head 1.15 0.59 0.39 0.53 0.43 0.53 0.41

10 122020-Tail 1.22 0.61 0.45 0.50 0.48 0.47 0.44
11 122088-Body 0.52 0.40 0.35 0.36 0.33 0.35 0.36
12 122088-Tail 1.47 0.79 0.63 0.73 0.68 0.71 0.63
13 122288-Body 3.22 1.82 0.97 1.07 1.26 1.07 0.99
14 122288-Tail 0.68 0.41 0.34 0.42 0.36 0.39 0.35
15 122662-Body 1.38 0.16 0.08 0.11 0.09 0.10 0.05
16 122662-Tail 1.05 0.30 0.25 0.30 0.25 0.28 0.25
17 123538-Head 3.04 2.52 2.40 2.50 2.50 2.47 2.55
18 123883-Tail 2.84 2.62 2.41 2.52 2.33 2.56 2.39
19 123948-Tail 1.84 1.57 1.42 1.51 1.41 1.50 1.44
20 HP-0937 2.41 2.10 2.05 2.10 2.10 2.08 2.14

Mean Value: 2.18 1.68 1.50 1.58 1.54 1.58 1.58
StD: 1.57 1.55 1.49 1.50 1.51 1.53 1.57

Table 5. Pancreatic fat quantification error.

Testing Image
(20×)

Classification Error (%)
from Annotations

(Cerr)

Image Segmentation Error (%)
from Annotations

(Serr)

AlexNeterr VGG-16err VGG-19err ResNet-50err EnsembleCNNerr ACMerr

1 120216-Head 0.02 0.11 0.04 0.15 0.08 0.09
2 120216-Tail 0.06 0.10 0.01 0.02 0.02 0.26
3 120485-Tail 0.06 0.18 0.12 0.12 0.11 0.13
4 120495-Body 0.08 0.19 0.15 0.22 0.14 0.93
5 120495-Head 0.16 0.24 0.23 0.22 0.18 0.09
6 121543-Body 0.03 0.26 0.21 0.20 0.16 0.67
7 121543-Head 0.13 0.23 0.10 0.10 0.00 0.54
8 122020-Body 0.15 0.04 0.15 0.07 0.12 0.46
9 122020-Head 0.18 0.02 0.12 0.02 0.12 0.74
10 122020-Tail 0.17 0.01 0.07 0.04 0.03 0.78
11 122088-Body 0.04 0.01 0.00 0.03 0.01 0.16
12 122088-Tail 0.15 0.01 0.10 0.05 0.08 0.84
13 122288-Body 0.83 0.02 0.08 0.27 0.08 2.22
14 122288-Tail 0.06 0.01 0.06 0.01 0.04 0.33
15 122662-Body 0.11 0.03 0.07 0.04 0.05 1.33
16 122662-Tail 0.05 0.01 0.05 0.00 0.04 0.80
17 123538-Head 0.03 0.15 0.05 0.05 0.09 0.49
18 123883-Tail 0.23 0.02 0.13 0.06 0.17 0.45
19 123948-Tail 0.13 0.02 0.07 0.04 0.05 0.39
20 HP-0937 0.05 0.09 0.04 0.04 0.06 0.27

Mean Value: 0.14 0.09 0.09 0.09 0.08 0.60
StD: 0.17 0.09 0.06 0.08 0.05 0.50
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We now turn to the visualization of the fat detection method in sections of various
histological images. The visualization takes place first in Figure 6a, which shows the image
preprocessing stage’s segmentation result of candidate fat structures. It should be noted
again that the presence of low-contrast color sections in the image has resulted in the
inclusion of healthy histological sections as fat droplets. Furthermore, the presence of
adjacent circular objects has led to the merging of their outer boundaries, leading to the
segmentation of healthy histological anatomies other than agglomerated fat regions. For
these incorrect inclusions to be removed from the quantitative fat estimates, the bounding
box is determined for each unknown ACM-segmented object and then classified with
the ensemble CNN method (Figure 6b). In most cases, single lipid droplets, double-
agglomerated, and multiple-agglomerated fat regions are successfully distinguished from
histological artifacts with high probability values (85–100%). Eventually, most false-positive
fat findings are excluded from the quantification of the degree of steatosis in Figure 6c.

Figure 6. Visualization of the pancreatic fat quantification method in 20× microscopic specimens:
(a) segmentation result of circular-bright regions of interest (ROIs), with active contour models
(ACMs), as candidate lipocytes; (b) calculation of the bounding box for each ACM-segmented object
and identification of actual fat accumulation areas with the ensemble CNN classification system;
(c) excluding most false-positive fat structures (red contours) from fat ratio computations.

3.4. Fat Regions Segmentation Similarity

After assessing the fat ratio prevalence and computing the absolute diagnostic error
for each pancreatic biopsy, the next step focuses on another technique for measuring the
reliability of the proposed methodology. This relates to the calculation of fat segmentation
similarity between two binary images: (1) the ground truth image derived from the manual
fat region annotations and (2) the fat detection method with the employed CNN architec-
tures. The comparison is made with the Sorensen–Dice similarity coefficient [31], which is
obtained using the formula below:

Dcoe f f (GT, SG) =
2(|GT ∩ SG|)
|GT|+ |SG| (4)

where the |GT| and |SG| sets denote the ground truth and computed segmentation binary
images, respectively, and ‘∩’ denotes the intersection points of logical ‘1’ values in their 2D
pixel grid. The preceding Equation (4) can also be expressed in terms of true-positive (TP),
false-positive (FP), and false-negative (FN) number of pixels [32].

Dcoe f f (GT, SG) =
2TP

2TP + FP + FN
(5)

Based on Equation (5), the intersection result of ground truth and computed segmenta-
tion images is shown in Figure 7a. More specifically, three different pixel shades are visible:
(1) white pixels referring to the intersection of logical ‘1’ values between the two binary
images, as true-positive fat regions, (2) green pixels indicating false-positive fat region
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inclusions from the ensemble CNN system, and (3) false-negative magenta pixels indicating
unsuccessful fat inclusions from the image preprocessing and CNN classification stages.
The final segmentation similarity results are displayed in the original H&E biopsy sections
(Figure 7b). These visualizations are produced by applying the logical AND (nonzero
elements at that same image coordinates) and XOR (nonzero elements at separate image
coordinates) operators to the two binary images specified above. Here, the successfully
segmented fat pixels are indicated with a green overlay, whereas the incorrect ones are
indicated with red. This representation helps in the analysis of the final fat segmentations
in Figure 6c, where a further distinction can be made between correctly and incorrectly
included pathological alterations in the steatosis ratio quantitative evaluations.

Figure 7. Visual representation of fat segmentation similarity results: (a) white → TP fat pixels,
resulting from the intersection of logical ‘1’ values in ground truth and computed segmentation
images, green → FP steatosis structures included by the automated approach and not by manual
annotation and magenta → FN fat pixels included by annotation and not by the computational
method; (b) green → common areas of fat accumulation between the two binary images and red →
inaccurate or failed inclusions of fat structures by the methodological approach.

From the above, Table 6 presents the Dice segmentation similarity coefficients for
each fatty image. The coefficients are derived from the fat detection approach using the
individual CNN and ensemble CNN algorithms. The research team’s objective was to
acquire scores of at least 70% for the ensemble classification approach as the cut-off value,
indicating a very good level of agreement between the computational diagnoses and the
visual–manual evaluations of clinicians.

From Table 6 it can be said that there is a very good Dice agreement in 18 of 20
NAFPD images. EnsembleCNNDice similarities with coefficients below 70% are found
in samples no. 8 (“122020-Body”) and no. 15 (“122662-Body”). The lower target scores
are related to the low-fat percentages for the two samples, according to the physicians’
estimations in Table 4 (122020-Body = 0.24% and 122662-Body = 0.05%). In particular, due
to the small number of fat structures, every unsuccessful pixel intersection between the
ground truth and computed segmentation images significantly diminishes the similarity
coefficient. Nevertheless, all five CNN models have mean Dice scores of above 70%, leading
the ensemble CNN method to come in second (83.3%) after the optimal VGG-16 network
(84.4%), revealing a weakness in its voting system in a few cases. In closing, VGG-19 has the
third-best mean performance (82.1%), ResNet-50 has the fourth-best (81.6%), and AlexNet
has the lowest (79.5%).
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Table 6. Sorensen–Dice fat segmentation similarity.

Testing Image (20×) AlexNetDice VGG-16Dice VGG-19Dice ResNet-50Dice EnsembleCNNDice

1 120216-Head 91.8 90.3 91.6 91.7 91.0
2 120216-Tail 88.0 91.0 89.1 90.0 90.3
3 120485-Tail 87.7 86.4 86.5 86.2 87.0
4 120495-Body 78.1 82.4 80.5 82.3 82.3
5 120495-Head 87.0 87.5 86.4 87.0 88.5
6 121543-Body 89.0 90.1 89.5 89.8 90.2
7 121543-Head 90.5 91.7 91.2 90.7 90.9
8 122020-Body 60.2 66.0 60.5 64.9 63.4
9 122020-Head 70.0 76.9 73.1 66.4 73.3

10 122020-Tail 71.6 80.7 77.5 77.4 79.9
11 122088-Body 81.9 83.0 86.1 84.1 85.9
12 122088-Tail 78.9 83.4 82.5 80.9 81.9
13 122288-Body 63.1 84.2 80.5 77.4 83.6
14 122288-Tail 79.9 86.9 79.7 79.0 81.3
15 122662-Body 36.2 57.8 47.7 54.6 53.1
16 122662-Tail 82.7 86.8 82.9 80.0 85.4
17 123538-Head 90.6 92.5 91.6 89.0 91.6
18 123883-Tail 87.7 89.8 89.5 83.6 88.2
19 123948-Tail 84.4 88.4 87.0 85.6 87.0
20 HP-0937 91.0 91.8 88.4 91.3 91.3

Mean Value: 79.5 84.4 82.1 81.6 83.3
StD: 13.76 8.82 11.00 9.81 9.90

4. Discussion

Non-alcoholic fatty pancreas disease (NAFPD) is the most prevalent pathological con-
dition in individuals with increased body mass index (BMI) and advanced age (>50 years).
Steatosis, which refers to fat infiltration in the pancreatic tissue, is a symptom of NAFPD
and is responsible for pancreatic cell hyperplasia, insulin resistance, β-cell dysfunction,
and type-2 diabetes mellitus (T2DM) [33]. To an advanced degree, NAFPD can progress to
non-alcoholic steatopancreatitis (NASP), indicating chronic inflammation and histological
fibrosis and eventually pancreatic cancer [34]. These two conditions have aroused the
interest of physicians for their early diagnosis and follow-up in recent years.

This paper aims to solve the problem of steatosis prevalence quantification in pancre-
atic biopsy specimens with a methodology employing image segmentation and deep neural
network classification techniques. Specifically, an image dataset is extracted from manual
annotations and used for transfer learning to pretrained convolutional neural network
(CNN) topologies. Then, the fine-tuned CNNs are asked to distinguish between healthy
histological artifacts and fat accumulation areas, which are classified as single fat droplets,
double-agglomerated, or multiple-agglomerated fat regions. Finally, a voting system in an
ensemble CNN classification approach takes into account all individual CNN model char-
acterizations for the majority class of each segmented microscopic object to be determined.
The multi-CNN classification system yields a 0.08% mean steatosis quantification error and
83.3% mean Dice fat segmentation similarity in 20 pancreatic biopsy images (carrying a
20×magnification).

It should be remembered that the ensemble CNN classification capability for the
400 testing samples (Section 3.1) is analyzed before the identification of any unknown
segmented structure in Section 2.2.2. The ensemble CNN approach employing the voting
strategy in Algorithm 1 is called upon to determine the majority class of each tissue object
by taking into account its predicted label y ∈ {single, double, multiple, artifact} and the
corresponding softmax probability from the individual AlexNet, VGG-16, VGG-19, and
ResNet-50 architectures. Figure 8 shows that the voting method has made four correct
classifications (green borders) and two incorrect ones (red borders). In most situations,
the softmax probabilities from the individual CNNs are thought to be the main cause for
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including the incorrect pancreatic class. In future studies, for the classification and the
disease quantification errors to be reduced, weights will be assigned to the prediction
probabilities based on statistics from the classification report (Table 3) as well as new ones
before determining the majority classes, allowing the decision of the most optimal CNNs
to be taken into account more than the less generalized ones.

Figure 8. Display of classification wins (green borders) and losses (red borders) for all CNN ap-
proaches. The ensemble CNN’s voting system takes into account the majority of predicted pancreatic
classes from the individual AlexNet, VGG-16, VGG-19, and ResNet-50 architectures along with the
estimated softmax probability values.

According to Table 7, there are some confusing results about the performance of
each single model. It could be reported that strict classification metrics (such as Accuracy,
Precision, Recall, etc.) measure the ability of the models to characterize each fat item
(single, double, or multiple); however, the medical question involves and requires the
effective estimation of fat’s expansion in the tissue, which is computed via the fat ratio
error. Under this consideration, Table 7 shows that although AlexNet performs better in
classification accuracy than VGG-16 and VGG-19 performs better than ResNet-50, they
present a higher fat ratio error. The latter indicates that probably AlexNet and VGG-19
fail to efficiently characterize some large multiple fat droplets, which significantly affects
the fat ratio estimation. Furthermore, it could be also reported that according to the total
time complexity of the ensemble model, the computation effort is affordable, making the
employment of the proposed voting system meaningful, combined with its effectiveness
and efficiency.

Even so, the improved results in relation to the segmentation stage of unknown objects
justify the inclusion of supervised models for the elimination of histological artifacts in
the fat quantification process. In addition, the decision to differentiate all fat accumula-
tion regions (single, double, and multiple) with different class labels proved to be correct,
particularly in terms of preventing fat agglomeration areas from being misclassified as
histological artifacts with similar morphological features. Moreover, it appears that the in-
clusion of background pixels in the image patches can provide valuable edge and schematic
properties to the deep classifiers. This advantage, together with the deep CNNs’ ability to
overcome the issues created by hand-crafted features, leads to satisfactory fat quantification
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results with a mean diagnostic error of 0.08% and 83.3% Dice segmentation similarity to
physician estimates.

Table 7. Time complexity versus performance per CNN architecture.

CNN
Model

Time Complexity Performance (%)

Training
(min)

Testing
(s)

Testing
Accuracy

Fat Ratio
Error (Mean)

Fat Ratio
Error (StD)

AlexNet 1.38 0.5 97.25 0.14 0.17
VGG-16 11.07 2.1 97 0.0879 0.09
VGG-19 13.56 2.3 95.25 0.0927 0.06

ResNet-50 9.58 1.9 94.25 0.088 0.08
Ensemble CNN 35.59 15.1 98.25 0.08 0.05

5. Conclusions

In the current work, an automated method for the assessment of non-alcoholic fatty
pancreas disease (NAFPD) prevalence in 20 biopsy specimens is presented. Initially, an
image preprocessing stage is employed for the segmentation of candidate fat cells, resulting
in the inaccurate inclusion of many histological artifacts as fat infiltration regions. For the
healthy artifacts to be excluded and the fat overestimation problem to be solved, each seg-
mented object is classified by the AlexNet, VGG-16, VGG-19, and ResNet-50 convolutional
neural networks (CNNs). Then, the characterizations of each CNN are taken into account
by a voting system to determine the majority class for each segmented structure, thus
forming an ensemble CNN decision model. When compared to the individual deep topolo-
gies, the ensemble CNN algorithm has the highest predictability between four histological
alternations (single fat droplet, double-agglomerated fat, multiple-agglomerated fat, and
tissue artifact), resulting in a 0.08% absolute fat quantification error and 83.3% mean Dice
fat segmentation similarity with respect to semi-quantitative estimates of specialized physi-
cians. This computer vision methodology could be the starting point for the advent of new
automated tools for evaluating the NAFPD steatosis and non-alcoholic steatopancreatitis
(NASP) prevalence, which are two conditions that have not been extensively diagnosed
using the gold standard of biopsy images.
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